organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Meth­­oxy-3-[(5-meth­­oxy-1H-indol-3-yl)(phen­yl)meth­yl]-1H-indole

aDepartment of Physics, RKM Vivekananda College (Autonomous), Chennai 600 004, India, and bOrganic Chemistry Division, Central Leather Research Institute, Adyar, Chennai 600 020, India
*Correspondence e-mail: ksethusankar@yahoo.co.in

(Received 13 October 2011; accepted 29 October 2011; online 5 November 2011)

In the title compound, C25H22N2O2, the indole rings are individually almost planar [with maximum deviations of 0.0116 (19) and 0.0113 (18) Å] and are almost orthogonal to each other, making a dihedral angle of 84.49 (6)°. The benzene ring is inclined at 72.83 (9) and 80.85 (9)° with respect to the indole rings. In the crystal, mol­ecules are linked by N—H⋯O inter­actions into chains running parallel to the c axis. The crystal structure is further stabilized by C—H⋯π inter­actions.

Related literature

For the biological activity and uses of indole derivatives, see: Bell et al. (1994[Bell, R., Carmeli, S. & Sar, N. (1994). J. Nat. Prod. 57, 1587-1590.]); Ge et al. (1996[Ge, X., Yannai, S., Rennert, G., Gruener, N. & Fares, F. A. (1996). Biochem. Biophys. Res. Commun. 228, pp. 153-158.]). For related structures, see: Zhang et al. (2006[Zhang, D.-M., Tang, S.-G., Wu, W.-Y., Tang, Q.-G. & Guo, C. (2006). Acta Cryst. E62, o5467-o5468.], 2007[Zhang, D.-M., Tang, Q.-G., Ji, C.-X. & Guo, C. (2007). Acta Cryst. E63, o81-o82.]).

[Scheme 1]

Experimental

Crystal data
  • C25H22N2O2

  • Mr = 382.45

  • Monoclinic, P 21 /n

  • a = 9.1545 (4) Å

  • b = 10.5954 (6) Å

  • c = 21.1668 (13) Å

  • β = 93.679 (2)°

  • V = 2048.86 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.25 × 0.20 × 0.15 mm

Data collection
  • Bruker APEXII KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.981, Tmax = 0.988

  • 16790 measured reflections

  • 3087 independent reflections

  • 2317 reflections with I > 2σ(I)

  • Rint = 0.034

  • θmax = 23.7°

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.119

  • S = 1.03

  • 3087 reflections

  • 264 parameters

  • H-atom parameters constrained

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2, Cg3, Cg4 and Cg5 are the centroids of the N2/C17–C20, C1–C6, C10–C15 and C19–C24 rings, respectively

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2i 0.86 2.09 2.904 (2) 158
C25—H25BCg2ii 0.96 2.95 3.515 (3) 119
C16—H16CCg3iii 0.96 2.90 3.508 (3) 122
N2—H2ACg4iv 0.86 2.49 3.3149 (19) 160
C3—H3⋯Cg5v 0.93 2.60 3.470 (2) 157
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x+1, y, z; (iv) -x+2, -y+1, -z+1; (v) x-1, y, z.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The synthesis of bis-indolylalkanes (BIAs) has been of considerable interest because of their occurance in various natural products posessing biological activities and usefulness in drug design (Bell, et al. 1994). These compounds also inhibit the proliferation of both estrogen dependent and independent cultured breast tumor cells (Ge, et al. 1996). In this paper, we present the synthesis and crystal structure of the title bis-indolylalkane derivative.

The title compound (Fig. 1) comprises a benzene ring and two methoxy indole rings connected through a carbon atom C7. The bicyclic indole rings, are individually planar with maximum deviations of 0.0116 (19)Å for C10 atom, in ring A (N1/C8–C15) and -0.0113 (18)Å for N2 atom, in ring B (N2/C17–C24). The indole rings are almost orthogonal to each other, with a dihedral angle of 84.49 (6)°. The deviations of methoxy group carbon atoms C16 and C25 from the rings A & B, are -0.118 (3)Å and -0.100 (3) Å, respectively.

The benzene ring (C1–C6) is inclined at 72.83 (9)° and 80.85 (9)°, with the indole rings A & B, respectively. The angles around atom C7 [C8–C7–C17 = 113.07 (14)°, C8–C7–C6 = 112.52 (14)° and C17–C7–C6 = 111.53 (15)°] deviate significantly from the ideal tetrahedral values which may be a result of steric interactions between benzene ring and the indole rings.

In the crystal packing, the molecules are linked by N—H···O intermolecular interactions into infinite chains running parallel to the c axis (Fig. 2). The crystal structure is further stabilized by C—H···Cg interactions where Cg2, Cg3, Cg4 and Cg5 are the centers of gravity of rings (N2/C17–C20), (C1–C6), (C10–C15) and (C19–C24), respectively (Table 1).

Related literature top

For the biological activity and uses of indole derivatives, see: Bell et al. (1994); Ge et al. (1996). For related structures, see: Zhang et al. (2006, 2007).

Experimental top

To benzaldehyde (1 mmol) in CH2Cl2 (10 ml) was added KHSO4 (30 mol%) and the mixture was stirred for 5 min. Methoxyindole (2 mmol) was added to the mixture and the stirring was continued following the progress of the reaction by TLC. After completion of the reaction, the reaction mixture was extracted with ethyl acetate (3 x 10 ml), dried over anhydrous sodium sulfate, filtered, concentrated under reduced pressure and the residue was column chromatographed over silica gel using EtOAc/Petroleum ether (1:19) as eluent to get the pure product, the title compound, which was re-crystallized by slow evaporation of its solution in ethyl acetate, resulting in single crystals, suitable for XRD studies.

Refinement top

The hydrogen atoms were placed in calculated positions with C–H = 0.93 to 0.98 and N–H = 0.86 Å and refined in the riding model with fixed isotropic displacement parameters: Uiso(H) = 1.5Ueq(C) for methyl groups and Uiso(H) = 1.2Ueq(C,N) for others. The crystal did not diffract beyond θ =23.7 ° as its mosaicity was quite high and a low temperature facility was not used for intensity data collection.

Structure description top

The synthesis of bis-indolylalkanes (BIAs) has been of considerable interest because of their occurance in various natural products posessing biological activities and usefulness in drug design (Bell, et al. 1994). These compounds also inhibit the proliferation of both estrogen dependent and independent cultured breast tumor cells (Ge, et al. 1996). In this paper, we present the synthesis and crystal structure of the title bis-indolylalkane derivative.

The title compound (Fig. 1) comprises a benzene ring and two methoxy indole rings connected through a carbon atom C7. The bicyclic indole rings, are individually planar with maximum deviations of 0.0116 (19)Å for C10 atom, in ring A (N1/C8–C15) and -0.0113 (18)Å for N2 atom, in ring B (N2/C17–C24). The indole rings are almost orthogonal to each other, with a dihedral angle of 84.49 (6)°. The deviations of methoxy group carbon atoms C16 and C25 from the rings A & B, are -0.118 (3)Å and -0.100 (3) Å, respectively.

The benzene ring (C1–C6) is inclined at 72.83 (9)° and 80.85 (9)°, with the indole rings A & B, respectively. The angles around atom C7 [C8–C7–C17 = 113.07 (14)°, C8–C7–C6 = 112.52 (14)° and C17–C7–C6 = 111.53 (15)°] deviate significantly from the ideal tetrahedral values which may be a result of steric interactions between benzene ring and the indole rings.

In the crystal packing, the molecules are linked by N—H···O intermolecular interactions into infinite chains running parallel to the c axis (Fig. 2). The crystal structure is further stabilized by C—H···Cg interactions where Cg2, Cg3, Cg4 and Cg5 are the centers of gravity of rings (N2/C17–C20), (C1–C6), (C10–C15) and (C19–C24), respectively (Table 1).

For the biological activity and uses of indole derivatives, see: Bell et al. (1994); Ge et al. (1996). For related structures, see: Zhang et al. (2006, 2007).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme; displacement ellipsoids are drawn at 30% probability level.
[Figure 2] Fig. 2. The packing arrangement of the title compound viewed down the a axis. The dashed lines indicate N—H···O intermolecular interactions resulting in chaims of molecules running parallel to the c axis.
5-Methoxy-3-[(5-methoxy-1H-indol-3-yl)(phenyl)methyl]-1H-indole top
Crystal data top
C25H22N2O2F(000) = 808
Mr = 382.45Dx = 1.240 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3087 reflections
a = 9.1545 (4) Åθ = 2.2–23.7°
b = 10.5954 (6) ŵ = 0.08 mm1
c = 21.1668 (13) ÅT = 293 K
β = 93.679 (2)°Block, brown
V = 2048.86 (19) Å30.25 × 0.20 × 0.15 mm
Z = 4
Data collection top
Bruker APEXII KappaCCD
diffractometer
3087 independent reflections
Radiation source: fine-focus sealed tube2317 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ω and φ scansθmax = 23.7°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 710
Tmin = 0.981, Tmax = 0.988k = 1111
16790 measured reflectionsl = 2223
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0627P)2 + 0.4003P]
where P = (Fo2 + 2Fc2)/3
3087 reflections(Δ/σ)max < 0.001
264 parametersΔρmax = 0.12 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C25H22N2O2V = 2048.86 (19) Å3
Mr = 382.45Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.1545 (4) ŵ = 0.08 mm1
b = 10.5954 (6) ÅT = 293 K
c = 21.1668 (13) Å0.25 × 0.20 × 0.15 mm
β = 93.679 (2)°
Data collection top
Bruker APEXII KappaCCD
diffractometer
3087 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2317 reflections with I > 2σ(I)
Tmin = 0.981, Tmax = 0.988Rint = 0.034
16790 measured reflectionsθmax = 23.7°
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.119H-atom parameters constrained
S = 1.03Δρmax = 0.12 e Å3
3087 reflectionsΔρmin = 0.18 e Å3
264 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4797 (2)0.37371 (19)0.41816 (10)0.0532 (5)
H10.52360.44470.43700.064*
C20.3360 (2)0.3804 (2)0.39415 (11)0.0661 (6)
H20.28370.45520.39730.079*
C30.2704 (2)0.2767 (3)0.36573 (12)0.0748 (7)
H30.17390.28120.34930.090*
C40.3477 (2)0.1667 (3)0.36166 (12)0.0776 (8)
H40.30330.09620.34260.093*
C50.4916 (2)0.1600 (2)0.38590 (10)0.0580 (6)
H50.54330.08500.38270.070*
C60.55940 (18)0.26319 (17)0.41470 (8)0.0405 (5)
C70.71658 (18)0.25468 (16)0.44225 (8)0.0374 (4)
H70.75590.17520.42680.045*
C80.72666 (19)0.24617 (17)0.51335 (8)0.0394 (4)
C90.6212 (2)0.26862 (18)0.55446 (9)0.0493 (5)
H90.52700.29670.54290.059*
C100.85246 (19)0.20426 (17)0.55141 (8)0.0402 (4)
C110.8153 (2)0.20311 (18)0.61463 (9)0.0489 (5)
C120.9142 (3)0.1637 (2)0.66314 (10)0.0639 (6)
H120.88850.16260.70490.077*
C131.0503 (3)0.1267 (2)0.64757 (11)0.0681 (6)
H131.11830.10070.67950.082*
C141.0901 (2)0.1267 (2)0.58488 (11)0.0566 (6)
C150.9929 (2)0.16574 (17)0.53660 (9)0.0460 (5)
H151.01970.16660.49500.055*
C161.2814 (2)0.0968 (2)0.51545 (13)0.0767 (7)
H16A1.22140.04600.48660.115*
H16B1.38090.06820.51600.115*
H16C1.27630.18340.50200.115*
C170.80985 (17)0.35843 (17)0.41750 (8)0.0378 (4)
C180.8511 (2)0.46889 (19)0.44561 (9)0.0502 (5)
H180.82820.49330.48600.060*
C190.94249 (19)0.47413 (18)0.35062 (9)0.0445 (5)
C200.86769 (17)0.35972 (16)0.35638 (8)0.0365 (4)
C210.86324 (18)0.27284 (18)0.30657 (8)0.0422 (5)
H210.81420.19640.30950.051*
C220.9332 (2)0.30362 (19)0.25334 (9)0.0468 (5)
C231.0038 (2)0.4195 (2)0.24795 (10)0.0566 (6)
H231.04730.43870.21060.068*
C241.0106 (2)0.5050 (2)0.29604 (10)0.0571 (6)
H241.05920.58150.29240.069*
C250.8751 (4)0.1091 (3)0.20263 (14)0.1214 (14)
H25A0.92350.05740.23480.182*
H25B0.88040.06920.16210.182*
H25C0.77440.11990.21160.182*
N10.6733 (2)0.24406 (16)0.61507 (8)0.0585 (5)
H1A0.62480.25290.64830.070*
N20.93115 (18)0.53917 (16)0.40619 (8)0.0568 (5)
H2A0.96830.61220.41480.068*
O11.23040 (17)0.08657 (16)0.57707 (8)0.0778 (5)
O20.94253 (17)0.22539 (15)0.20173 (7)0.0693 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0506 (12)0.0478 (13)0.0616 (14)0.0015 (10)0.0059 (10)0.0035 (10)
C20.0535 (13)0.0641 (16)0.0804 (17)0.0134 (11)0.0026 (11)0.0016 (13)
C30.0444 (12)0.092 (2)0.0867 (18)0.0084 (13)0.0066 (11)0.0137 (15)
C40.0510 (13)0.0825 (19)0.097 (2)0.0035 (13)0.0095 (12)0.0342 (15)
C50.0470 (11)0.0568 (14)0.0701 (15)0.0024 (10)0.0022 (10)0.0191 (11)
C60.0387 (10)0.0447 (12)0.0390 (11)0.0023 (8)0.0090 (8)0.0032 (8)
C70.0385 (9)0.0368 (10)0.0376 (11)0.0013 (8)0.0088 (8)0.0050 (8)
C80.0442 (10)0.0363 (11)0.0390 (11)0.0053 (8)0.0115 (8)0.0025 (8)
C90.0522 (11)0.0499 (12)0.0472 (13)0.0019 (9)0.0134 (10)0.0004 (9)
C100.0504 (11)0.0320 (10)0.0387 (11)0.0068 (8)0.0072 (8)0.0012 (8)
C110.0643 (13)0.0415 (12)0.0419 (12)0.0069 (10)0.0118 (10)0.0000 (9)
C120.0972 (18)0.0559 (14)0.0384 (12)0.0070 (13)0.0021 (12)0.0074 (10)
C130.0833 (17)0.0560 (15)0.0626 (16)0.0029 (12)0.0130 (13)0.0122 (12)
C140.0611 (13)0.0438 (13)0.0641 (15)0.0001 (10)0.0033 (11)0.0032 (10)
C150.0514 (11)0.0403 (11)0.0464 (12)0.0042 (9)0.0046 (9)0.0017 (9)
C160.0547 (13)0.0661 (17)0.111 (2)0.0008 (11)0.0160 (14)0.0084 (15)
C170.0364 (9)0.0403 (11)0.0372 (11)0.0024 (8)0.0056 (8)0.0028 (8)
C180.0574 (12)0.0516 (13)0.0427 (11)0.0084 (10)0.0122 (9)0.0075 (10)
C190.0474 (10)0.0405 (11)0.0463 (12)0.0032 (9)0.0079 (9)0.0011 (9)
C200.0341 (9)0.0378 (11)0.0379 (11)0.0009 (8)0.0047 (7)0.0008 (8)
C210.0402 (10)0.0454 (12)0.0418 (11)0.0063 (8)0.0089 (8)0.0014 (9)
C220.0490 (11)0.0546 (13)0.0379 (11)0.0024 (9)0.0112 (9)0.0024 (10)
C230.0662 (13)0.0579 (14)0.0483 (13)0.0051 (11)0.0236 (10)0.0102 (11)
C240.0662 (13)0.0416 (13)0.0659 (15)0.0092 (10)0.0223 (11)0.0068 (11)
C250.167 (3)0.118 (3)0.086 (2)0.081 (2)0.067 (2)0.0612 (19)
N10.0740 (12)0.0639 (12)0.0403 (11)0.0035 (9)0.0243 (9)0.0015 (8)
N20.0704 (11)0.0422 (10)0.0591 (11)0.0166 (8)0.0140 (9)0.0078 (9)
O10.0604 (10)0.0750 (12)0.0961 (14)0.0174 (8)0.0089 (9)0.0057 (9)
O20.0840 (11)0.0779 (11)0.0491 (9)0.0194 (9)0.0296 (8)0.0157 (8)
Geometric parameters (Å, º) top
C1—C21.382 (3)C14—C151.374 (3)
C1—C61.384 (3)C15—H150.9300
C1—H10.9300C16—O11.417 (3)
C2—C31.372 (3)C16—H16A0.9600
C2—H20.9300C16—H16B0.9600
C3—C41.369 (3)C16—H16C0.9600
C3—H30.9300C17—C181.356 (3)
C4—C51.385 (3)C17—C201.429 (2)
C4—H40.9300C18—N21.366 (2)
C5—C61.379 (3)C18—H180.9300
C5—H50.9300C19—N21.373 (2)
C6—C71.520 (2)C19—C241.386 (3)
C7—C81.505 (2)C19—C201.401 (2)
C7—C171.506 (2)C20—C211.398 (2)
C7—H70.9800C21—C221.371 (3)
C8—C91.362 (3)C21—H210.9300
C8—C101.433 (3)C22—O21.378 (2)
C9—N11.365 (3)C22—C231.395 (3)
C9—H90.9300C23—C241.361 (3)
C10—C111.402 (3)C23—H230.9300
C10—C151.404 (3)C24—H240.9300
C11—N11.371 (3)C25—O21.379 (3)
C11—C121.389 (3)C25—H25A0.9600
C12—C131.367 (3)C25—H25B0.9600
C12—H120.9300C25—H25C0.9600
C13—C141.398 (3)N1—H1A0.8600
C13—H130.9300N2—H2A0.8600
C14—O11.373 (2)
C2—C1—C6121.1 (2)C14—C15—H15120.7
C2—C1—H1119.4C10—C15—H15120.7
C6—C1—H1119.4O1—C16—H16A109.5
C3—C2—C1120.0 (2)O1—C16—H16B109.5
C3—C2—H2120.0H16A—C16—H16B109.5
C1—C2—H2120.0O1—C16—H16C109.5
C4—C3—C2119.8 (2)H16A—C16—H16C109.5
C4—C3—H3120.1H16B—C16—H16C109.5
C2—C3—H3120.1C18—C17—C20106.26 (15)
C3—C4—C5120.2 (2)C18—C17—C7128.73 (16)
C3—C4—H4119.9C20—C17—C7124.96 (15)
C5—C4—H4119.9C17—C18—N2110.36 (17)
C6—C5—C4120.9 (2)C17—C18—H18124.8
C6—C5—H5119.5N2—C18—H18124.8
C4—C5—H5119.5N2—C19—C24131.17 (18)
C5—C6—C1118.03 (17)N2—C19—C20107.18 (15)
C5—C6—C7120.69 (17)C24—C19—C20121.65 (18)
C1—C6—C7121.27 (17)C21—C20—C19119.64 (16)
C8—C7—C17113.07 (14)C21—C20—C17132.98 (16)
C8—C7—C6112.52 (14)C19—C20—C17107.37 (15)
C17—C7—C6111.53 (15)C22—C21—C20118.07 (17)
C8—C7—H7106.4C22—C21—H21121.0
C17—C7—H7106.4C20—C21—H21121.0
C6—C7—H7106.4C21—C22—O2124.35 (18)
C9—C8—C10105.80 (17)C21—C22—C23121.32 (18)
C9—C8—C7128.92 (17)O2—C22—C23114.32 (17)
C10—C8—C7125.19 (15)C24—C23—C22121.57 (18)
C8—C9—N1110.34 (18)C24—C23—H23119.2
C8—C9—H9124.8C22—C23—H23119.2
N1—C9—H9124.8C23—C24—C19117.70 (19)
C11—C10—C15119.51 (18)C23—C24—H24121.2
C11—C10—C8107.68 (16)C19—C24—H24121.2
C15—C10—C8132.80 (17)O2—C25—H25A109.5
N1—C11—C12131.56 (19)O2—C25—H25B109.5
N1—C11—C10106.98 (17)H25A—C25—H25B109.5
C12—C11—C10121.46 (19)O2—C25—H25C109.5
C13—C12—C11118.0 (2)H25A—C25—H25C109.5
C13—C12—H12121.0H25B—C25—H25C109.5
C11—C12—H12121.0C9—N1—C11109.19 (16)
C12—C13—C14121.7 (2)C9—N1—H1A125.4
C12—C13—H13119.2C11—N1—H1A125.4
C14—C13—H13119.2C18—N2—C19108.83 (16)
O1—C14—C15124.7 (2)C18—N2—H2A125.6
O1—C14—C13114.60 (19)C19—N2—H2A125.6
C15—C14—C13120.7 (2)C14—O1—C16116.91 (17)
C14—C15—C10118.66 (19)C22—O2—C25118.42 (16)
C6—C1—C2—C30.7 (3)C8—C10—C15—C14178.15 (19)
C1—C2—C3—C40.4 (4)C8—C7—C17—C1828.6 (3)
C2—C3—C4—C50.2 (4)C6—C7—C17—C1899.3 (2)
C3—C4—C5—C60.3 (4)C8—C7—C17—C20154.25 (16)
C4—C5—C6—C10.5 (3)C6—C7—C17—C2077.8 (2)
C4—C5—C6—C7178.92 (19)C20—C17—C18—N20.1 (2)
C2—C1—C6—C50.7 (3)C7—C17—C18—N2177.62 (17)
C2—C1—C6—C7178.74 (18)N2—C19—C20—C21179.02 (16)
C5—C6—C7—C8104.3 (2)C24—C19—C20—C211.2 (3)
C1—C6—C7—C875.1 (2)N2—C19—C20—C170.3 (2)
C5—C6—C7—C17127.43 (19)C24—C19—C20—C17179.42 (17)
C1—C6—C7—C1753.1 (2)C18—C17—C20—C21179.09 (19)
C17—C7—C8—C9113.9 (2)C7—C17—C20—C213.3 (3)
C6—C7—C8—C913.6 (3)C18—C17—C20—C190.2 (2)
C17—C7—C8—C1070.0 (2)C7—C17—C20—C19177.49 (16)
C6—C7—C8—C10162.53 (17)C19—C20—C21—C220.0 (3)
C10—C8—C9—N10.3 (2)C17—C20—C21—C22179.20 (18)
C7—C8—C9—N1176.99 (16)C20—C21—C22—O2177.46 (17)
C9—C8—C10—C110.2 (2)C20—C21—C22—C231.7 (3)
C7—C8—C10—C11176.63 (16)C21—C22—C23—C242.3 (3)
C9—C8—C10—C15179.1 (2)O2—C22—C23—C24176.93 (19)
C7—C8—C10—C152.2 (3)C22—C23—C24—C191.1 (3)
C15—C10—C11—N1179.67 (17)N2—C19—C24—C23179.6 (2)
C8—C10—C11—N10.7 (2)C20—C19—C24—C230.7 (3)
C15—C10—C11—C120.5 (3)C8—C9—N1—C110.7 (2)
C8—C10—C11—C12178.51 (18)C12—C11—N1—C9178.2 (2)
N1—C11—C12—C13179.5 (2)C10—C11—N1—C90.9 (2)
C10—C11—C12—C130.5 (3)C17—C18—N2—C190.3 (2)
C11—C12—C13—C140.6 (3)C24—C19—N2—C18179.3 (2)
C12—C13—C14—O1179.8 (2)C20—C19—N2—C180.4 (2)
C12—C13—C14—C150.7 (3)C15—C14—O1—C165.7 (3)
O1—C14—C15—C10179.89 (18)C13—C14—O1—C16173.79 (19)
C13—C14—C15—C100.7 (3)C21—C22—O2—C251.3 (3)
C11—C10—C15—C140.6 (3)C23—C22—O2—C25179.6 (2)
Hydrogen-bond geometry (Å, º) top
Cg2, Cg3, Cg4 and Cg5 are the centroids of the N2/C17–C20, C1–C6, C10–C15 and C19–C24 rings, respectively
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.862.092.904 (2)158
C25—H25B···Cg2ii0.962.953.515 (3)119
C16—H16C···Cg3iii0.962.903.508 (3)122
N2—H2A···Cg4iv0.862.493.3149 (19)160
C3—H3···Cg5v0.932.603.470 (2)157
Symmetry codes: (i) x1/2, y+1/2, z+1/2; (ii) x+3/2, y1/2, z+1/2; (iii) x+1, y, z; (iv) x+2, y+1, z+1; (v) x1, y, z.

Experimental details

Crystal data
Chemical formulaC25H22N2O2
Mr382.45
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)9.1545 (4), 10.5954 (6), 21.1668 (13)
β (°) 93.679 (2)
V3)2048.86 (19)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.25 × 0.20 × 0.15
Data collection
DiffractometerBruker APEXII KappaCCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.981, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
16790, 3087, 2317
Rint0.034
θmax (°)23.7
(sin θ/λ)max1)0.565
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.119, 1.03
No. of reflections3087
No. of parameters264
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.12, 0.18

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg2, Cg3, Cg4 and Cg5 are the centroids of the N2/C17–C20, C1–C6, C10–C15 and C19–C24 rings, respectively
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.862.092.904 (2)158
C25—H25B···Cg2ii0.962.953.515 (3)119
C16—H16C···Cg3iii0.962.903.508 (3)122
N2—H2A···Cg4iv0.862.493.3149 (19)160
C3—H3···Cg5v0.932.603.470 (2)157
Symmetry codes: (i) x1/2, y+1/2, z+1/2; (ii) x+3/2, y1/2, z+1/2; (iii) x+1, y, z; (iv) x+2, y+1, z+1; (v) x1, y, z.
 

Acknowledgements

PN and KS thank Dr Babu Varghese, Senior Scientific Officer, SAIF, IIT, Chennai, India, for the X-ray intensity data collection and Dr V. Murugan, Head of the Department of Physics, for providing facilities in the department to carry out this work.

References

First citationBell, R., Carmeli, S. & Sar, N. (1994). J. Nat. Prod. 57, 1587–1590.  CrossRef CAS PubMed Web of Science Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGe, X., Yannai, S., Rennert, G., Gruener, N. & Fares, F. A. (1996). Biochem. Biophys. Res. Commun. 228, pp. 153–158.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, D.-M., Tang, Q.-G., Ji, C.-X. & Guo, C. (2007). Acta Cryst. E63, o81–o82.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, D.-M., Tang, S.-G., Wu, W.-Y., Tang, Q.-G. & Guo, C. (2006). Acta Cryst. E62, o5467–o5468.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds