organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,1,1,5,5,5-Hexa­fluoro-2,4-dimeth­­oxy­pentane-2,4-diol

aDepartment of Chemistry, University of the Free State, PO Box 339, Bloemfontein 9300, South Africa
*Correspondence e-mail: koen.renier87@gmail.com

(Received 18 October 2011; accepted 26 October 2011; online 2 November 2011)

The title compound, C7H10F6O4, was isolated as an unexpected product from a reaction of tantalum(V) methoxide with hexa­fluoro­acetyl­acetone in a methanol solution. The asymmetric unit consists of one half-mol­ecule with the middle C atom lying on a twofold axis. The crystal structure is stabilized by O—H⋯O and an array of C—H⋯F hydrogen-bonding inter­actions. These inter­actions link the mol­ecules into a stable supra­molecular three-dimensional network. The mol­ecules pack in a ribbon-like form in the ac plane as a result of these inter­actions.

Related literature

For metal complexes with acetyl­acetone derivatives, see: Viljoen et al. (2010[Viljoen, J. A., Visser, H. G. & Roodt, A. (2010). Acta Cryst. E66, m603-m604.]); Steyn et al. (2008[Steyn, M., Roodt, A. & Steyl, G. (2008). Acta Cryst. E64, m827.]); Cole et al. (2005[Cole, M. L., Hibbs, D. E., Jones, C., Junk, P. C. & Smithies, N. A. (2005). Inorg. Chim. Acta, 102, 102-108.]).

[Scheme 1]

Experimental

Crystal data
  • C7H10F6O4

  • Mr = 272.15

  • Monoclinic, C 2/c

  • a = 17.829 (5) Å

  • b = 6.713 (5) Å

  • c = 9.347 (5) Å

  • β = 109.509 (5)°

  • V = 1054.5 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 100 K

  • 0.75 × 0.28 × 0.19 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT-Plus and SADABS. BrukerAXS Inc, Madison, Wisconsin, USA.]) Tmin = 0.936, Tmax = 0.963

  • 5850 measured reflections

  • 1277 independent reflections

  • 1049 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.079

  • S = 1.05

  • 1277 reflections

  • 98 parameters

  • All H-atom parameters refined

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1i 0.835 (17) 1.935 (17) 2.6648 (14) 145.4 (16)
O2—H2⋯O2ii 0.835 (17) 2.640 (17) 3.073 (2) 113.7 (14)
C4—H4A⋯F3iii 0.954 (17) 2.741 (17) 3.644 (2) 158.4 (13)
C3—H3⋯F2iv 0.945 (13) 2.663 (13) 3.4022 (17) 135.5 (10)
C4—H4A⋯F1v 0.954 (17) 2.853 (17) 3.383 (3) 116.1 (11)
Symmetry codes: (i) [-x+1, y, -z+{\script{1\over 2}}]; (ii) -x+1, -y+1, -z; (iii) [x, -y+1, z+{\script{1\over 2}}]; (iv) -x+1, -y, -z; (v) x, y+1, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT-Plus and SADABS. BrukerAXS Inc, Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2007[Bruker (2007). APEX2, SAINT-Plus and SADABS. BrukerAXS Inc, Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005)[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]; software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

In continuation of our research on the formation kinetics of complexes derived from metals like hafnium, zirconium, etc., with different bidentate ligands (Viljoen et al., 2010; Steyn et al., 2008), an unexpected product, the title compound, was isolated after reacting tantalum(V) methoxide with hexafluoroacetylacetone in a methanol reaction solution.

The asymmetric unit of the title compound consists of a half molecule with C3 lying on a twofold axis (Figure 1). The bond angles and bond distances in the title compound are in accord with corresponding bond angles and distances reported for hexafluoroacetylacetone like derivatives (Cole et al., 2005).

The crystal structure is stabilized by O—H···O (O···O separation 2.6648 (14) and 3.073 (2) Å) and an array of C—H···F (C···F separation in the range 3.383 (2)-3.644 (2)Å) hydrogen bonding interactions. All of these interactions serve to link the molecules into a stable supramolecular three-dimensional network. In the ac plane, the molecules pack in a ribbon-like formation as a result of these interactions (Figure 2).

Related literature top

For metal complexes with acetylacetone derivatives, see: Viljoen et al. (2010); Steyn et al. (2008); Cole et al. (2005).

Experimental top

The reaction was performed under modified Schlenk conditions under a nitrogen atmosphere. To a solution of Ta(OMe)5 (0.5010 g, 1.40 x 10 -3 mol), a solution of hexafluoroacetylacetone (0.2912 g, 1.40 x 10 -3 mol) was added and was placed in a sonic bath for 1 h. The resultant mixture was then stored at 252 K. After two days colourless crystals of the title compound were formed.

Refinement top

All H atoms were located from differencee Fourier maps and refined isotropically.

Structure description top

In continuation of our research on the formation kinetics of complexes derived from metals like hafnium, zirconium, etc., with different bidentate ligands (Viljoen et al., 2010; Steyn et al., 2008), an unexpected product, the title compound, was isolated after reacting tantalum(V) methoxide with hexafluoroacetylacetone in a methanol reaction solution.

The asymmetric unit of the title compound consists of a half molecule with C3 lying on a twofold axis (Figure 1). The bond angles and bond distances in the title compound are in accord with corresponding bond angles and distances reported for hexafluoroacetylacetone like derivatives (Cole et al., 2005).

The crystal structure is stabilized by O—H···O (O···O separation 2.6648 (14) and 3.073 (2) Å) and an array of C—H···F (C···F separation in the range 3.383 (2)-3.644 (2)Å) hydrogen bonding interactions. All of these interactions serve to link the molecules into a stable supramolecular three-dimensional network. In the ac plane, the molecules pack in a ribbon-like formation as a result of these interactions (Figure 2).

For metal complexes with acetylacetone derivatives, see: Viljoen et al. (2010); Steyn et al. (2008); Cole et al. (2005).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus (Bruker, 2007); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. An ORTEP view of the title compound, showing the numbering scheme and displacement ellipsoids (50% probability). Symmetry code: i: 1 - x, y, 1/2 - z.
[Figure 2] Fig. 2. A partial packing diagram of the unit cell showing selected hydrogen bonding interactions of the title compound illustrating the ribbon-like formation across the ac plane.
1,1,1,5,5,5-Hexafluoro-2,4-dimethoxypentane-2,4-diol top
Crystal data top
C7H10F6O4F(000) = 552
Mr = 272.15Dx = 1.714 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 17.829 (5) ÅCell parameters from 2123 reflections
b = 6.713 (5) Åθ = 3.3–28.1°
c = 9.347 (5) ŵ = 0.20 mm1
β = 109.509 (5)°T = 100 K
V = 1054.5 (10) Å3Needle, colourless
Z = 40.75 × 0.28 × 0.19 mm
Data collection top
Bruker APEXII CCD
diffractometer
1049 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
φ and ω scansθmax = 28°, θmin = 3.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 2321
Tmin = 0.936, Tmax = 0.963k = 88
5850 measured reflectionsl = 1112
1277 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079All H-atom parameters refined
S = 1.05 w = 1/[σ2(Fo2) + (0.0386P)2 + 0.4659P]
where P = (Fo2 + 2Fc2)/3
1277 reflections(Δ/σ)max < 0.001
98 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C7H10F6O4V = 1054.5 (10) Å3
Mr = 272.15Z = 4
Monoclinic, C2/cMo Kα radiation
a = 17.829 (5) ŵ = 0.20 mm1
b = 6.713 (5) ÅT = 100 K
c = 9.347 (5) Å0.75 × 0.28 × 0.19 mm
β = 109.509 (5)°
Data collection top
Bruker APEXII CCD
diffractometer
1277 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
1049 reflections with I > 2σ(I)
Tmin = 0.936, Tmax = 0.963Rint = 0.025
5850 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.079All H-atom parameters refined
S = 1.05Δρmax = 0.39 e Å3
1277 reflectionsΔρmin = 0.24 e Å3
98 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.67222 (4)0.00201 (11)0.36009 (8)0.0251 (2)
F20.61085 (5)0.06716 (11)0.12475 (8)0.0263 (2)
F30.69105 (4)0.18291 (12)0.18451 (9)0.0286 (2)
O10.59145 (5)0.34897 (12)0.35035 (9)0.0176 (2)
O20.54269 (5)0.31437 (13)0.08511 (9)0.0192 (2)
C10.63589 (7)0.08280 (19)0.22390 (13)0.0192 (3)
C20.56606 (7)0.21774 (18)0.22550 (12)0.0153 (3)
C30.50.0899 (2)0.250.0150 (3)
C40.64796 (10)0.5018 (2)0.34926 (19)0.0311 (3)
H30.4785 (8)0.008 (2)0.1636 (14)0.016 (3)*
H4A0.6446 (9)0.598 (3)0.4222 (18)0.032 (4)*
H4B0.6369 (10)0.559 (3)0.251 (2)0.043 (5)*
H4C0.7027 (13)0.450 (3)0.383 (2)0.056 (6)*
H20.4960 (10)0.351 (3)0.0706 (18)0.036 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0227 (4)0.0299 (4)0.0202 (4)0.0092 (3)0.0038 (3)0.0038 (3)
F20.0285 (4)0.0259 (4)0.0241 (4)0.0068 (3)0.0083 (3)0.0070 (3)
F30.0198 (4)0.0341 (5)0.0382 (5)0.0039 (3)0.0179 (3)0.0044 (3)
O10.0171 (4)0.0168 (4)0.0207 (4)0.0048 (3)0.0085 (3)0.0045 (3)
O20.0164 (5)0.0238 (5)0.0187 (4)0.0031 (4)0.0076 (3)0.0064 (3)
C10.0181 (6)0.0226 (6)0.0171 (6)0.0024 (5)0.0062 (5)0.0007 (4)
C20.0159 (6)0.0162 (5)0.0143 (6)0.0011 (4)0.0057 (4)0.0001 (4)
C30.0149 (8)0.0148 (8)0.0152 (8)00.0049 (6)0
C40.0336 (8)0.0291 (8)0.0342 (8)0.0165 (6)0.0159 (7)0.0074 (6)
Geometric parameters (Å, º) top
F1—C11.3354 (15)C1—C21.5438 (17)
F2—C11.3399 (16)C2—C31.5352 (15)
F3—C11.3402 (15)C3—C2i1.5352 (15)
O1—C21.4107 (15)C3—H30.945 (13)
O1—C41.4405 (17)C4—H4A0.954 (17)
O2—C21.3968 (15)C4—H4B0.950 (17)
O2—H20.835 (17)C4—H4C0.98 (2)
C2—O1—C4118.10 (10)O1—C2—C1109.72 (9)
C2—O2—H2104.9 (11)C3—C2—C1109.55 (11)
F1—C1—F2107.32 (11)C2—C3—C2i112.00 (14)
F1—C1—F3107.38 (10)C2—C3—H3108.1 (8)
F2—C1—F3107.00 (10)C2i—C3—H3109.8 (8)
F1—C1—C2111.41 (10)O1—C4—H4A105.3 (10)
F2—C1—C2111.35 (10)O1—C4—H4B111.8 (11)
F3—C1—C2112.12 (11)H4A—C4—H4B112.1 (14)
O2—C2—O1113.56 (11)O1—C4—H4C111.7 (12)
O2—C2—C3113.38 (9)H4A—C4—H4C107.4 (15)
O1—C2—C3106.02 (9)H4B—C4—H4C108.4 (15)
O2—C2—C1104.60 (9)
C4—O1—C2—O248.50 (14)F3—C1—C2—O171.61 (13)
C4—O1—C2—C3173.64 (11)F1—C1—C2—C367.23 (11)
C4—O1—C2—C168.14 (14)F2—C1—C2—C352.54 (12)
F1—C1—C2—O2170.92 (9)F3—C1—C2—C3172.38 (8)
F2—C1—C2—O269.30 (12)O2—C2—C3—C2i71.42 (8)
F3—C1—C2—O250.54 (12)O1—C2—C3—C2i53.84 (6)
F1—C1—C2—O148.77 (13)C1—C2—C3—C2i172.17 (10)
F2—C1—C2—O1168.55 (9)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.835 (17)1.935 (17)2.6648 (14)145.4 (16)
O2—H2···O2ii0.835 (17)2.640 (17)3.073 (2)113.7 (14)
C4—H4A···F3iii0.954 (17)2.741 (17)3.644 (2)158.4 (13)
C3—H3···F2iv0.945 (13)2.663 (13)3.4022 (17)135.5 (10)
C4—H4A···F1v0.954 (17)2.853 (17)3.383 (3)116.1 (11)
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+1, y+1, z; (iii) x, y+1, z+1/2; (iv) x+1, y, z; (v) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC7H10F6O4
Mr272.15
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)17.829 (5), 6.713 (5), 9.347 (5)
β (°) 109.509 (5)
V3)1054.5 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.75 × 0.28 × 0.19
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.936, 0.963
No. of measured, independent and
observed [I > 2σ(I)] reflections
5850, 1277, 1049
Rint0.025
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.079, 1.05
No. of reflections1277
No. of parameters98
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.39, 0.24

Computer programs: APEX2 (Bruker, 2007), SAINT-Plus (Bruker, 2007), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.835 (17)1.935 (17)2.6648 (14)145.4 (16)
O2—H2···O2ii0.835 (17)2.640 (17)3.073 (2)113.7 (14)
C4—H4A···F3iii0.954 (17)2.741 (17)3.644 (2)158.4 (13)
C3—H3···F2iv0.945 (13)2.663 (13)3.4022 (17)135.5 (10)
C4—H4A···F1v0.954 (17)2.853 (17)3.383 (3)116.1 (11)
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+1, y+1, z; (iii) x, y+1, z+1/2; (iv) x+1, y, z; (v) x, y+1, z.
 

Acknowledgements

Financial assistance from the Advanced Metals Initiative (AMI) and the Department of Science and Technology (DST) of South Africa, the New Metals Development Network (NMDN), the South African Nuclear Energy Corporation Limited (Necsa) and the University of the Free State is gratefully acknowledged.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). APEX2, SAINT-Plus and SADABS. BrukerAXS Inc, Madison, Wisconsin, USA.  Google Scholar
First citationCole, M. L., Hibbs, D. E., Jones, C., Junk, P. C. & Smithies, N. A. (2005). Inorg. Chim. Acta, 102, 102–108.  Web of Science CSD CrossRef Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteyn, M., Roodt, A. & Steyl, G. (2008). Acta Cryst. E64, m827.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationViljoen, J. A., Visser, H. G. & Roodt, A. (2010). Acta Cryst. E66, m603–m604.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds