metal-organic compounds
Bis(pentane-2,4-dionato-κ2O,O′)(1,10-phenanthroline-κ2N,N′)cobalt(II)
aFaculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva 5, PO Box 537, SI-1000 Ljubljana, Slovenia, and CO EN–FIST, Dunajska 156, SI-1000 Ljubljana, Slovenia
*Correspondence e-mail: franc.perdih@fkkt.uni-lj.si
In the title compound, [Co(C5H7O2)2(C12H8N2)], the CoII cation lies on a twofold rotation axis and is coordinated by four O atoms from two acetylacetonate (acac) ligands and two N atoms from a 1,10-phenanthroline (phen) ligand in a slightly distorted octahedral environment, with Co—O bond lengths of 2.0565 (11) and 2.0641 (11) Å and Co—N bond lengths of 2.1630 (12) Å. In the crystal, there are no significant hydrogen-bonding or π–π interactions.
Related literature
For applications of metal complexes containing β-diketones, see: Garibay et al. (2009); Kaitner et al. (2008). For related cobalt(II) structures, see: Meštrović & Kaitner (2006); Riblet et al. (2010). For the synthetic procedure, see: Ellern & Ragsdale (1968).
Experimental
Crystal data
|
Data collection: COLLECT (Hooft, 1998); cell DENZO (Otwinowski & Minor, 1997); data reduction: SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and publCIF (Westrip, 2010).
Supporting information
https://doi.org/10.1107/S1600536811046216/pv2467sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536811046216/pv2467Isup2.hkl
(1,10-Phenanthroline-κ2N,N')bis(2,4-pentanedionato-κ2 O,O')cobalt(II) was prepared according to the published procedure (Ellern & Ragsdale, 1968). 0.25 mmol (0.064 mg) of bis(2,4-pentanedionato-κ2 O,O')cobalt(II) was disolved in 5 ml of warm chloroform and than 0.25 mmol (0.045 mg) of 1,10-phenantroline was added. Orange crystals suitable for single-crystal X–ray diffraction were obtained after slow evaporation.
Although H atoms were visible in a difference Fourier map they were treated in riding mode in geometrically idealized positions, with C—H = 0.93 (aromatic and alkenyl) or 0.96 Å (CH3), and with Uiso(H) = kUeq(C), where k = 1.5 for methyl groups, which were permitted to rotate but not to tilt, and 1.2 for all other H atoms. To improve the δ(F2)/e.s.d. and with Fo2 < Fc2 was excluded from the refinement.
results, one reflection with too high value ofMetal β-diketonate compounds attracted great interest, because metal complexes of β-diketonate derivatives are useful building blocks for design of porous and supramolecular materials and can be good precursors in metal-organic chemical vapour deposition (MOCVD) (Garibay et al., 2009; Kaitner et al. 2008).
In the title molecule (Fig. 1), the cobalt(II) cation lies on a twofold axis, and is surrounded by six donor atoms arranged at the vertices of a distorted octahedron. The π–π interactions.
of CoII is formed by four oxygen atoms of two symmetry related 2,4-pentanedionato ligands and two nitrogen atoms of 1,10-phenantroline. Consequently, the octahedron is defined by two symmetry-independent cobalt-oxygen bonds Co–O1 2.0565 (11) Å (in trans position to N1 of the phen ligand) and Co–O2 2.0641 (11) Å (in cis position to N1 of the phen ligand) and a cobalt-nitrogen bond Co–N1 2.1630 (12) Å. These bond lengths are similar with the ones observed in adducts (1,10-phenanthroline)bis(1,3-diphenyl-1,3-propanedionato)cobalt(II) (Meštrović & Kaitner 2006) and (2,2'-bipyridine)bis(4,4,4-trifluoro-1-(2-thienyl)-1,3-butanedionato)cobalt(II) (Riblet et al., 2010). The discrepancy of the of CoII from the ideal octahedral arrangement is well illustrated by the angles O1–Co–O2 and N1–Co–N1 of 87.62 (4)° and 77.20 (6)°, respectively. In the there are no hydrogen-bonding orFor applications of metal complexes with β-diketones, see: Garibay et al. (2009); Kaitner et al. (2008). For related cobalt(II) structures, see: Meštrović & Kaitner (2006); Riblet et al. (2010). For the synthetic procedure, see: Ellern & Ragsdale (1968).
Data collection: COLLECT (Hooft, 1998); cell
DENZO (Otwinowski & Minor, 1997); data reduction: SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and publCIF (Westrip, 2010).Fig. 1. The molecular structure of the title complex showing the numbering scheme and displacement ellipsoids drawn at the 30% probability level. Symmetry code: i = x, -y+1/2, -z+1. |
[Co(C5H7O2)2(C12H8N2)] | F(000) = 908 |
Mr = 437.35 | Dx = 1.43 Mg m−3 |
Orthorhombic, Pbna | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ac 2b | Cell parameters from 2617 reflections |
a = 10.2660 (2) Å | θ = 0.4–27.5° |
b = 12.6981 (3) Å | µ = 0.88 mm−1 |
c = 15.5885 (3) Å | T = 293 K |
V = 2032.10 (7) Å3 | Block, orange |
Z = 4 | 0.6 × 0.3 × 0.13 mm |
Nonius KappaCCD area-detector diffractometer | 2294 independent reflections |
Graphite monochromator | 2022 reflections with I > 2σ(I) |
Detector resolution: 0.055 pixels mm-1 | Rint = 0.014 |
φ and ω scans | θmax = 27.5°, θmin = 3.5° |
Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997) | h = −13→13 |
Tmin = 0.622, Tmax = 0.895 | k = −16→16 |
4293 measured reflections | l = −20→20 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.032 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.089 | H-atom parameters constrained |
S = 1.08 | w = 1/[σ2(Fo2) + (0.0472P)2 + 0.6276P] where P = (Fo2 + 2Fc2)/3 |
2294 reflections | (Δ/σ)max < 0.001 |
134 parameters | Δρmax = 0.28 e Å−3 |
0 restraints | Δρmin = −0.36 e Å−3 |
[Co(C5H7O2)2(C12H8N2)] | V = 2032.10 (7) Å3 |
Mr = 437.35 | Z = 4 |
Orthorhombic, Pbna | Mo Kα radiation |
a = 10.2660 (2) Å | µ = 0.88 mm−1 |
b = 12.6981 (3) Å | T = 293 K |
c = 15.5885 (3) Å | 0.6 × 0.3 × 0.13 mm |
Nonius KappaCCD area-detector diffractometer | 2294 independent reflections |
Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997) | 2022 reflections with I > 2σ(I) |
Tmin = 0.622, Tmax = 0.895 | Rint = 0.014 |
4293 measured reflections |
R[F2 > 2σ(F2)] = 0.032 | 0 restraints |
wR(F2) = 0.089 | H-atom parameters constrained |
S = 1.08 | Δρmax = 0.28 e Å−3 |
2294 reflections | Δρmin = −0.36 e Å−3 |
134 parameters |
Experimental. 346 frames in 4 sets of φ scans + ω scans. Rotation/frame = 2.0 °. Crystal-detector distance = 34.7 mm. Measuring time = 20 s/°. |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Co1 | −0.01460 (3) | 0.25 | 0.5 | 0.03014 (12) | |
N1 | 0.15007 (12) | 0.34681 (9) | 0.46431 (8) | 0.0314 (3) | |
O1 | −0.14810 (11) | 0.14898 (9) | 0.55387 (7) | 0.0427 (3) | |
O2 | −0.00799 (11) | 0.32708 (9) | 0.61650 (7) | 0.0401 (3) | |
C1 | −0.2481 (2) | 0.03967 (18) | 0.65656 (14) | 0.0662 (6) | |
H1A | −0.3184 | 0.0319 | 0.6165 | 0.099* | |
H1B | −0.2827 | 0.0488 | 0.7133 | 0.099* | |
H1C | −0.1943 | −0.0222 | 0.6551 | 0.099* | |
C2 | −0.16730 (15) | 0.13500 (14) | 0.63257 (10) | 0.0417 (4) | |
C3 | −0.1192 (2) | 0.19883 (16) | 0.69833 (11) | 0.0536 (5) | |
H3 | −0.1388 | 0.1791 | 0.7543 | 0.064* | |
C4 | −0.04462 (18) | 0.28934 (14) | 0.68732 (10) | 0.0423 (4) | |
C5 | −0.0002 (2) | 0.34879 (19) | 0.76625 (12) | 0.0711 (7) | |
H5A | 0.0868 | 0.3276 | 0.7808 | 0.107* | |
H5B | −0.0576 | 0.3334 | 0.8132 | 0.107* | |
H5C | −0.0016 | 0.4231 | 0.7547 | 0.107* | |
C6 | 0.14845 (15) | 0.44271 (11) | 0.43038 (10) | 0.0360 (3) | |
H6 | 0.0684 | 0.4745 | 0.4198 | 0.043* | |
C7 | 0.26196 (16) | 0.49794 (11) | 0.40985 (11) | 0.0402 (4) | |
H7 | 0.257 | 0.5652 | 0.3864 | 0.048* | |
C8 | 0.38011 (15) | 0.45233 (12) | 0.42452 (10) | 0.0383 (3) | |
H8 | 0.4563 | 0.4877 | 0.4099 | 0.046* | |
C9 | 0.38654 (14) | 0.35112 (11) | 0.46198 (9) | 0.0329 (3) | |
C10 | 0.26736 (14) | 0.30172 (10) | 0.48049 (9) | 0.0295 (3) | |
C11 | 0.50593 (15) | 0.29880 (15) | 0.48177 (11) | 0.0384 (4) | |
H11 | 0.5847 | 0.3317 | 0.4696 | 0.046* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Co1 | 0.03095 (18) | 0.03099 (18) | 0.02847 (17) | 0 | 0 | 0.00224 (10) |
N1 | 0.0328 (6) | 0.0283 (6) | 0.0331 (6) | 0.0006 (5) | 0.0004 (5) | 0.0019 (5) |
O1 | 0.0419 (6) | 0.0490 (7) | 0.0372 (6) | −0.0132 (5) | −0.0024 (5) | 0.0051 (5) |
O2 | 0.0501 (6) | 0.0370 (6) | 0.0331 (5) | −0.0006 (4) | 0.0016 (5) | −0.0016 (4) |
C1 | 0.0646 (12) | 0.0776 (14) | 0.0563 (12) | −0.0301 (11) | −0.0085 (9) | 0.0266 (11) |
C2 | 0.0338 (7) | 0.0511 (9) | 0.0401 (8) | −0.0038 (7) | −0.0014 (6) | 0.0124 (7) |
C3 | 0.0636 (12) | 0.0658 (12) | 0.0315 (8) | −0.0112 (9) | 0.0035 (8) | 0.0083 (8) |
C4 | 0.0484 (9) | 0.0463 (9) | 0.0320 (8) | 0.0059 (8) | −0.0009 (7) | −0.0019 (7) |
C5 | 0.1033 (19) | 0.0719 (15) | 0.0381 (10) | −0.0125 (12) | −0.0019 (10) | −0.0115 (10) |
C6 | 0.0378 (7) | 0.0312 (7) | 0.0389 (8) | 0.0028 (6) | 0.0019 (6) | 0.0039 (6) |
C7 | 0.0483 (9) | 0.0304 (7) | 0.0420 (9) | −0.0016 (6) | 0.0046 (7) | 0.0064 (6) |
C8 | 0.0391 (8) | 0.0354 (8) | 0.0404 (8) | −0.0062 (6) | 0.0074 (6) | 0.0032 (6) |
C9 | 0.0344 (7) | 0.0332 (7) | 0.0311 (7) | −0.0022 (6) | 0.0030 (6) | −0.0014 (6) |
C10 | 0.0318 (7) | 0.0283 (7) | 0.0285 (6) | −0.0001 (5) | 0.0009 (5) | −0.0011 (5) |
C11 | 0.0315 (7) | 0.0413 (10) | 0.0424 (8) | −0.0040 (6) | 0.0037 (6) | −0.0001 (7) |
Co1—O1 | 2.0565 (11) | C3—H3 | 0.93 |
Co1—O1i | 2.0565 (11) | C4—C5 | 1.514 (2) |
Co1—O2 | 2.0641 (11) | C5—H5A | 0.96 |
Co1—O2i | 2.0641 (11) | C5—H5B | 0.96 |
Co1—N1i | 2.1630 (12) | C5—H5C | 0.96 |
Co1—N1 | 2.1630 (12) | C6—C7 | 1.397 (2) |
N1—C6 | 1.3277 (18) | C6—H6 | 0.93 |
N1—C10 | 1.3570 (18) | C7—C8 | 1.363 (2) |
O1—C2 | 1.2551 (19) | C7—H7 | 0.93 |
O2—C4 | 1.261 (2) | C8—C9 | 1.413 (2) |
C1—C2 | 1.514 (2) | C8—H8 | 0.93 |
C1—H1A | 0.96 | C9—C10 | 1.4049 (19) |
C1—H1B | 0.96 | C9—C11 | 1.428 (2) |
C1—H1C | 0.96 | C10—C10i | 1.448 (3) |
C2—C3 | 1.397 (3) | C11—C11i | 1.363 (4) |
C3—C4 | 1.392 (3) | C11—H11 | 0.93 |
O1—Co1—O1i | 96.41 (7) | C4—C3—H3 | 117.2 |
O1—Co1—O2 | 87.62 (4) | C2—C3—H3 | 117.2 |
O1i—Co1—O2 | 94.90 (4) | O2—C4—C3 | 125.87 (15) |
O1—Co1—O2i | 94.90 (4) | O2—C4—C5 | 115.61 (17) |
O1i—Co1—O2i | 87.62 (4) | C3—C4—C5 | 118.51 (16) |
O2—Co1—O2i | 176.23 (6) | C4—C5—H5A | 109.5 |
O1—Co1—N1i | 93.51 (5) | C4—C5—H5B | 109.5 |
O1i—Co1—N1i | 168.64 (4) | H5A—C5—H5B | 109.5 |
O2—Co1—N1i | 91.00 (4) | C4—C5—H5C | 109.5 |
O2i—Co1—N1i | 86.05 (4) | H5A—C5—H5C | 109.5 |
O1—Co1—N1 | 168.64 (4) | H5B—C5—H5C | 109.5 |
O1i—Co1—N1 | 93.51 (5) | N1—C6—C7 | 122.76 (14) |
O2—Co1—N1 | 86.05 (4) | N1—C6—H6 | 118.6 |
O2i—Co1—N1 | 91.00 (4) | C7—C6—H6 | 118.6 |
N1i—Co1—N1 | 77.20 (6) | C8—C7—C6 | 119.36 (13) |
C6—N1—C10 | 118.17 (12) | C8—C7—H7 | 120.3 |
C6—N1—Co1 | 127.88 (10) | C6—C7—H7 | 120.3 |
C10—N1—Co1 | 113.95 (9) | C7—C8—C9 | 119.81 (14) |
C2—O1—Co1 | 126.30 (10) | C7—C8—H8 | 120.1 |
C4—O2—Co1 | 125.47 (11) | C9—C8—H8 | 120.1 |
C2—C1—H1A | 109.5 | C10—C9—C8 | 116.76 (13) |
C2—C1—H1B | 109.5 | C10—C9—C11 | 119.70 (13) |
H1A—C1—H1B | 109.5 | C8—C9—C11 | 123.54 (14) |
C2—C1—H1C | 109.5 | N1—C10—C9 | 123.11 (12) |
H1A—C1—H1C | 109.5 | N1—C10—C10i | 117.45 (7) |
H1B—C1—H1C | 109.5 | C9—C10—C10i | 119.44 (8) |
O1—C2—C3 | 125.43 (15) | C11i—C11—C9 | 120.87 (9) |
O1—C2—C1 | 116.13 (16) | C11i—C11—H11 | 119.6 |
C3—C2—C1 | 118.43 (16) | C9—C11—H11 | 119.6 |
C4—C3—C2 | 125.66 (15) | ||
O1—Co1—N1—C6 | −143.2 (2) | C1—C2—C3—C4 | −179.5 (2) |
O1i—Co1—N1—C6 | 7.72 (13) | Co1—O2—C4—C3 | −13.7 (3) |
O2—Co1—N1—C6 | −86.96 (13) | Co1—O2—C4—C5 | 165.38 (13) |
O2i—Co1—N1—C6 | 95.39 (13) | C2—C3—C4—O2 | −0.7 (3) |
N1i—Co1—N1—C6 | −178.89 (15) | C2—C3—C4—C5 | −179.73 (19) |
O1—Co1—N1—C10 | 36.0 (3) | C10—N1—C6—C7 | 0.8 (2) |
O1i—Co1—N1—C10 | −173.10 (10) | Co1—N1—C6—C7 | 180.00 (11) |
O2—Co1—N1—C10 | 92.22 (10) | N1—C6—C7—C8 | 0.3 (2) |
O2i—Co1—N1—C10 | −85.43 (10) | C6—C7—C8—C9 | −1.4 (2) |
N1i—Co1—N1—C10 | 0.29 (7) | C7—C8—C9—C10 | 1.4 (2) |
O1i—Co1—O1—C2 | −113.29 (15) | C7—C8—C9—C11 | −178.19 (15) |
O2—Co1—O1—C2 | −18.62 (14) | C6—N1—C10—C9 | −0.9 (2) |
O2i—Co1—O1—C2 | 158.57 (14) | Co1—N1—C10—C9 | 179.85 (11) |
N1i—Co1—O1—C2 | 72.24 (14) | C6—N1—C10—C10i | 178.45 (15) |
N1—Co1—O1—C2 | 37.5 (3) | Co1—N1—C10—C10i | −0.82 (19) |
O1—Co1—O2—C4 | 19.03 (14) | C8—C9—C10—N1 | −0.2 (2) |
O1i—Co1—O2—C4 | 115.26 (13) | C11—C9—C10—N1 | 179.37 (14) |
N1i—Co1—O2—C4 | −74.45 (13) | C8—C9—C10—C10i | −179.54 (15) |
N1—Co1—O2—C4 | −151.54 (14) | C11—C9—C10—C10i | 0.1 (2) |
Co1—O1—C2—C3 | 12.6 (3) | C10—C9—C11—C11i | 0.2 (3) |
Co1—O1—C2—C1 | −166.56 (13) | C8—C9—C11—C11i | 179.75 (19) |
O1—C2—C3—C4 | 1.4 (3) |
Symmetry code: (i) x, −y+1/2, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Co(C5H7O2)2(C12H8N2)] |
Mr | 437.35 |
Crystal system, space group | Orthorhombic, Pbna |
Temperature (K) | 293 |
a, b, c (Å) | 10.2660 (2), 12.6981 (3), 15.5885 (3) |
V (Å3) | 2032.10 (7) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.88 |
Crystal size (mm) | 0.6 × 0.3 × 0.13 |
Data collection | |
Diffractometer | Nonius KappaCCD area-detector |
Absorption correction | Multi-scan (SCALEPACK; Otwinowski & Minor, 1997) |
Tmin, Tmax | 0.622, 0.895 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4293, 2294, 2022 |
Rint | 0.014 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.032, 0.089, 1.08 |
No. of reflections | 2294 |
No. of parameters | 134 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.28, −0.36 |
Computer programs: COLLECT (Hooft, 1998), DENZO (Otwinowski & Minor, 1997), SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999) and publCIF (Westrip, 2010).
Acknowledgements
The author thanks the Ministry of Higher Education, Science and Technology of the Republic of Slovenia and the Slovenian Research Agency for financial support through grants P1–0230–0175 and X-2000.
References
Ellern, J. B. & Ragsdale, R. O. (1968). Inorg. Synth. 11, 82–89. CrossRef CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Garibay, S. J., Stork, J. R. & Cohen, S. M. (2009). Prog. Inorg. Chem. 56, 335–378. Web of Science CrossRef CAS Google Scholar
Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Kaitner, B., Mesarek, K. & Meštrović, E. (2008). Acta Cryst. E64, m230–m231. Web of Science CSD CrossRef IUCr Journals Google Scholar
Meštrović, E. & Kaitner, B. (2006). J. Chem. Crystallogr. 36, 599–603. Web of Science CSD CrossRef CAS Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Riblet, F., Novitchi, G., Scopelliti, R., Helm, L., Gulea, A. & Merbach, A. E. (2010). Inorg. Chem. 49, 4194–4211. Web of Science CSD CrossRef PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Metal β-diketonate compounds attracted great interest, because metal complexes of β-diketonate derivatives are useful building blocks for design of porous and supramolecular materials and can be good precursors in metal-organic chemical vapour deposition (MOCVD) (Garibay et al., 2009; Kaitner et al. 2008).
In the title molecule (Fig. 1), the cobalt(II) cation lies on a twofold axis, and is surrounded by six donor atoms arranged at the vertices of a distorted octahedron. The coordination polyhedron of CoII is formed by four oxygen atoms of two symmetry related 2,4-pentanedionato ligands and two nitrogen atoms of 1,10-phenantroline. Consequently, the octahedron is defined by two symmetry-independent cobalt-oxygen bonds Co–O1 2.0565 (11) Å (in trans position to N1 of the phen ligand) and Co–O2 2.0641 (11) Å (in cis position to N1 of the phen ligand) and a cobalt-nitrogen bond Co–N1 2.1630 (12) Å. These bond lengths are similar with the ones observed in adducts (1,10-phenanthroline)bis(1,3-diphenyl-1,3-propanedionato)cobalt(II) (Meštrović & Kaitner 2006) and (2,2'-bipyridine)bis(4,4,4-trifluoro-1-(2-thienyl)-1,3-butanedionato)cobalt(II) (Riblet et al., 2010). The discrepancy of the coordination polyhedron of CoII from the ideal octahedral arrangement is well illustrated by the angles O1–Co–O2 and N1–Co–N1 of 87.62 (4)° and 77.20 (6)°, respectively. In the crystal structure, there are no hydrogen-bonding or π–π interactions.