metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(pentane-2,4-dionato-κ2O,O′)(1,10-phenanthroline-κ2N,N′)cobalt(II)

aFaculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva 5, PO Box 537, SI-1000 Ljubljana, Slovenia, and CO EN–FIST, Dunajska 156, SI-1000 Ljubljana, Slovenia
*Correspondence e-mail: franc.perdih@fkkt.uni-lj.si

(Received 21 October 2011; accepted 2 November 2011; online 5 November 2011)

In the title compound, [Co(C5H7O2)2(C12H8N2)], the CoII cation lies on a twofold rotation axis and is coordinated by four O atoms from two acetyl­acetonate (acac) ligands and two N atoms from a 1,10-phenanthroline (phen) ligand in a slightly distorted octa­hedral environment, with Co—O bond lengths of 2.0565 (11) and 2.0641 (11) Å and Co—N bond lengths of 2.1630 (12) Å. In the crystal, there are no significant hydrogen-bonding or ππ inter­actions.

Related literature

For applications of metal complexes containing β-diketones, see: Garibay et al. (2009[Garibay, S. J., Stork, J. R. & Cohen, S. M. (2009). Prog. Inorg. Chem. 56, 335-378.]); Kaitner et al. (2008[Kaitner, B., Mesarek, K. & Meštrović, E. (2008). Acta Cryst. E64, m230-m231.]). For related cobalt(II) structures, see: Meštrović & Kaitner (2006[Meštrović, E. & Kaitner, B. (2006). J. Chem. Crystallogr. 36, 599-603.]); Riblet et al. (2010[Riblet, F., Novitchi, G., Scopelliti, R., Helm, L., Gulea, A. & Merbach, A. E. (2010). Inorg. Chem. 49, 4194-4211.]). For the synthetic procedure, see: Ellern & Ragsdale (1968[Ellern, J. B. & Ragsdale, R. O. (1968). Inorg. Synth. 11, 82-89.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C5H7O2)2(C12H8N2)]

  • Mr = 437.35

  • Orthorhombic, P b n a

  • a = 10.2660 (2) Å

  • b = 12.6981 (3) Å

  • c = 15.5885 (3) Å

  • V = 2032.10 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.88 mm−1

  • T = 293 K

  • 0.60 × 0.30 × 0.13 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.622, Tmax = 0.895

  • 4293 measured reflections

  • 2294 independent reflections

  • 2022 reflections with I > 2σ(I)

  • Rint = 0.014

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.089

  • S = 1.08

  • 2294 reflections

  • 134 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.36 e Å−3

Data collection: COLLECT (Hooft, 1998[Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Metal β-diketonate compounds attracted great interest, because metal complexes of β-diketonate derivatives are useful building blocks for design of porous and supramolecular materials and can be good precursors in metal-organic chemical vapour deposition (MOCVD) (Garibay et al., 2009; Kaitner et al. 2008).

In the title molecule (Fig. 1), the cobalt(II) cation lies on a twofold axis, and is surrounded by six donor atoms arranged at the vertices of a distorted octahedron. The coordination polyhedron of CoII is formed by four oxygen atoms of two symmetry related 2,4-pentanedionato ligands and two nitrogen atoms of 1,10-phenantroline. Consequently, the octahedron is defined by two symmetry-independent cobalt-oxygen bonds Co–O1 2.0565 (11) Å (in trans position to N1 of the phen ligand) and Co–O2 2.0641 (11) Å (in cis position to N1 of the phen ligand) and a cobalt-nitrogen bond Co–N1 2.1630 (12) Å. These bond lengths are similar with the ones observed in adducts (1,10-phenanthroline)bis(1,3-diphenyl-1,3-propanedionato)cobalt(II) (Meštrović & Kaitner 2006) and (2,2'-bipyridine)bis(4,4,4-trifluoro-1-(2-thienyl)-1,3-butanedionato)cobalt(II) (Riblet et al., 2010). The discrepancy of the coordination polyhedron of CoII from the ideal octahedral arrangement is well illustrated by the angles O1–Co–O2 and N1–Co–N1 of 87.62 (4)° and 77.20 (6)°, respectively. In the crystal structure, there are no hydrogen-bonding or ππ interactions.

Related literature top

For applications of metal complexes with β-diketones, see: Garibay et al. (2009); Kaitner et al. (2008). For related cobalt(II) structures, see: Meštrović & Kaitner (2006); Riblet et al. (2010). For the synthetic procedure, see: Ellern & Ragsdale (1968).

Experimental top

(1,10-Phenanthroline-κ2N,N')bis(2,4-pentanedionato-κ2 O,O')cobalt(II) was prepared according to the published procedure (Ellern & Ragsdale, 1968). 0.25 mmol (0.064 mg) of bis(2,4-pentanedionato-κ2 O,O')cobalt(II) was disolved in 5 ml of warm chloroform and than 0.25 mmol (0.045 mg) of 1,10-phenantroline was added. Orange crystals suitable for single-crystal X–ray diffraction were obtained after slow evaporation.

Refinement top

Although H atoms were visible in a difference Fourier map they were treated in riding mode in geometrically idealized positions, with C—H = 0.93 (aromatic and alkenyl) or 0.96 Å (CH3), and with Uiso(H) = kUeq(C), where k = 1.5 for methyl groups, which were permitted to rotate but not to tilt, and 1.2 for all other H atoms. To improve the refinement results, one reflection with too high value of δ(F2)/e.s.d. and with Fo2 < Fc2 was excluded from the refinement.

Structure description top

Metal β-diketonate compounds attracted great interest, because metal complexes of β-diketonate derivatives are useful building blocks for design of porous and supramolecular materials and can be good precursors in metal-organic chemical vapour deposition (MOCVD) (Garibay et al., 2009; Kaitner et al. 2008).

In the title molecule (Fig. 1), the cobalt(II) cation lies on a twofold axis, and is surrounded by six donor atoms arranged at the vertices of a distorted octahedron. The coordination polyhedron of CoII is formed by four oxygen atoms of two symmetry related 2,4-pentanedionato ligands and two nitrogen atoms of 1,10-phenantroline. Consequently, the octahedron is defined by two symmetry-independent cobalt-oxygen bonds Co–O1 2.0565 (11) Å (in trans position to N1 of the phen ligand) and Co–O2 2.0641 (11) Å (in cis position to N1 of the phen ligand) and a cobalt-nitrogen bond Co–N1 2.1630 (12) Å. These bond lengths are similar with the ones observed in adducts (1,10-phenanthroline)bis(1,3-diphenyl-1,3-propanedionato)cobalt(II) (Meštrović & Kaitner 2006) and (2,2'-bipyridine)bis(4,4,4-trifluoro-1-(2-thienyl)-1,3-butanedionato)cobalt(II) (Riblet et al., 2010). The discrepancy of the coordination polyhedron of CoII from the ideal octahedral arrangement is well illustrated by the angles O1–Co–O2 and N1–Co–N1 of 87.62 (4)° and 77.20 (6)°, respectively. In the crystal structure, there are no hydrogen-bonding or ππ interactions.

For applications of metal complexes with β-diketones, see: Garibay et al. (2009); Kaitner et al. (2008). For related cobalt(II) structures, see: Meštrović & Kaitner (2006); Riblet et al. (2010). For the synthetic procedure, see: Ellern & Ragsdale (1968).

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex showing the numbering scheme and displacement ellipsoids drawn at the 30% probability level. Symmetry code: i = x, -y+1/2, -z+1.
Bis(pentane-2,4-dionato-κ2O,O')(1,10-phenanthroline- κ2N,N')cobalt(II) top
Crystal data top
[Co(C5H7O2)2(C12H8N2)]F(000) = 908
Mr = 437.35Dx = 1.43 Mg m3
Orthorhombic, PbnaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2bCell parameters from 2617 reflections
a = 10.2660 (2) Åθ = 0.4–27.5°
b = 12.6981 (3) ŵ = 0.88 mm1
c = 15.5885 (3) ÅT = 293 K
V = 2032.10 (7) Å3Block, orange
Z = 40.6 × 0.3 × 0.13 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
2294 independent reflections
Graphite monochromator2022 reflections with I > 2σ(I)
Detector resolution: 0.055 pixels mm-1Rint = 0.014
φ and ω scansθmax = 27.5°, θmin = 3.5°
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
h = 1313
Tmin = 0.622, Tmax = 0.895k = 1616
4293 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0472P)2 + 0.6276P]
where P = (Fo2 + 2Fc2)/3
2294 reflections(Δ/σ)max < 0.001
134 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
[Co(C5H7O2)2(C12H8N2)]V = 2032.10 (7) Å3
Mr = 437.35Z = 4
Orthorhombic, PbnaMo Kα radiation
a = 10.2660 (2) ŵ = 0.88 mm1
b = 12.6981 (3) ÅT = 293 K
c = 15.5885 (3) Å0.6 × 0.3 × 0.13 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
2294 independent reflections
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
2022 reflections with I > 2σ(I)
Tmin = 0.622, Tmax = 0.895Rint = 0.014
4293 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.089H-atom parameters constrained
S = 1.08Δρmax = 0.28 e Å3
2294 reflectionsΔρmin = 0.36 e Å3
134 parameters
Special details top

Experimental. 346 frames in 4 sets of φ scans + ω scans. Rotation/frame = 2.0 °. Crystal-detector distance = 34.7 mm. Measuring time = 20 s/°.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.01460 (3)0.250.50.03014 (12)
N10.15007 (12)0.34681 (9)0.46431 (8)0.0314 (3)
O10.14810 (11)0.14898 (9)0.55387 (7)0.0427 (3)
O20.00799 (11)0.32708 (9)0.61650 (7)0.0401 (3)
C10.2481 (2)0.03967 (18)0.65656 (14)0.0662 (6)
H1A0.31840.03190.61650.099*
H1B0.28270.04880.71330.099*
H1C0.19430.02220.65510.099*
C20.16730 (15)0.13500 (14)0.63257 (10)0.0417 (4)
C30.1192 (2)0.19883 (16)0.69833 (11)0.0536 (5)
H30.13880.17910.75430.064*
C40.04462 (18)0.28934 (14)0.68732 (10)0.0423 (4)
C50.0002 (2)0.34879 (19)0.76625 (12)0.0711 (7)
H5A0.08680.32760.78080.107*
H5B0.05760.33340.81320.107*
H5C0.00160.42310.75470.107*
C60.14845 (15)0.44271 (11)0.43038 (10)0.0360 (3)
H60.06840.47450.41980.043*
C70.26196 (16)0.49794 (11)0.40985 (11)0.0402 (4)
H70.2570.56520.38640.048*
C80.38011 (15)0.45233 (12)0.42452 (10)0.0383 (3)
H80.45630.48770.40990.046*
C90.38654 (14)0.35112 (11)0.46198 (9)0.0329 (3)
C100.26736 (14)0.30172 (10)0.48049 (9)0.0295 (3)
C110.50593 (15)0.29880 (15)0.48177 (11)0.0384 (4)
H110.58470.33170.46960.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.03095 (18)0.03099 (18)0.02847 (17)000.00224 (10)
N10.0328 (6)0.0283 (6)0.0331 (6)0.0006 (5)0.0004 (5)0.0019 (5)
O10.0419 (6)0.0490 (7)0.0372 (6)0.0132 (5)0.0024 (5)0.0051 (5)
O20.0501 (6)0.0370 (6)0.0331 (5)0.0006 (4)0.0016 (5)0.0016 (4)
C10.0646 (12)0.0776 (14)0.0563 (12)0.0301 (11)0.0085 (9)0.0266 (11)
C20.0338 (7)0.0511 (9)0.0401 (8)0.0038 (7)0.0014 (6)0.0124 (7)
C30.0636 (12)0.0658 (12)0.0315 (8)0.0112 (9)0.0035 (8)0.0083 (8)
C40.0484 (9)0.0463 (9)0.0320 (8)0.0059 (8)0.0009 (7)0.0019 (7)
C50.1033 (19)0.0719 (15)0.0381 (10)0.0125 (12)0.0019 (10)0.0115 (10)
C60.0378 (7)0.0312 (7)0.0389 (8)0.0028 (6)0.0019 (6)0.0039 (6)
C70.0483 (9)0.0304 (7)0.0420 (9)0.0016 (6)0.0046 (7)0.0064 (6)
C80.0391 (8)0.0354 (8)0.0404 (8)0.0062 (6)0.0074 (6)0.0032 (6)
C90.0344 (7)0.0332 (7)0.0311 (7)0.0022 (6)0.0030 (6)0.0014 (6)
C100.0318 (7)0.0283 (7)0.0285 (6)0.0001 (5)0.0009 (5)0.0011 (5)
C110.0315 (7)0.0413 (10)0.0424 (8)0.0040 (6)0.0037 (6)0.0001 (7)
Geometric parameters (Å, º) top
Co1—O12.0565 (11)C3—H30.93
Co1—O1i2.0565 (11)C4—C51.514 (2)
Co1—O22.0641 (11)C5—H5A0.96
Co1—O2i2.0641 (11)C5—H5B0.96
Co1—N1i2.1630 (12)C5—H5C0.96
Co1—N12.1630 (12)C6—C71.397 (2)
N1—C61.3277 (18)C6—H60.93
N1—C101.3570 (18)C7—C81.363 (2)
O1—C21.2551 (19)C7—H70.93
O2—C41.261 (2)C8—C91.413 (2)
C1—C21.514 (2)C8—H80.93
C1—H1A0.96C9—C101.4049 (19)
C1—H1B0.96C9—C111.428 (2)
C1—H1C0.96C10—C10i1.448 (3)
C2—C31.397 (3)C11—C11i1.363 (4)
C3—C41.392 (3)C11—H110.93
O1—Co1—O1i96.41 (7)C4—C3—H3117.2
O1—Co1—O287.62 (4)C2—C3—H3117.2
O1i—Co1—O294.90 (4)O2—C4—C3125.87 (15)
O1—Co1—O2i94.90 (4)O2—C4—C5115.61 (17)
O1i—Co1—O2i87.62 (4)C3—C4—C5118.51 (16)
O2—Co1—O2i176.23 (6)C4—C5—H5A109.5
O1—Co1—N1i93.51 (5)C4—C5—H5B109.5
O1i—Co1—N1i168.64 (4)H5A—C5—H5B109.5
O2—Co1—N1i91.00 (4)C4—C5—H5C109.5
O2i—Co1—N1i86.05 (4)H5A—C5—H5C109.5
O1—Co1—N1168.64 (4)H5B—C5—H5C109.5
O1i—Co1—N193.51 (5)N1—C6—C7122.76 (14)
O2—Co1—N186.05 (4)N1—C6—H6118.6
O2i—Co1—N191.00 (4)C7—C6—H6118.6
N1i—Co1—N177.20 (6)C8—C7—C6119.36 (13)
C6—N1—C10118.17 (12)C8—C7—H7120.3
C6—N1—Co1127.88 (10)C6—C7—H7120.3
C10—N1—Co1113.95 (9)C7—C8—C9119.81 (14)
C2—O1—Co1126.30 (10)C7—C8—H8120.1
C4—O2—Co1125.47 (11)C9—C8—H8120.1
C2—C1—H1A109.5C10—C9—C8116.76 (13)
C2—C1—H1B109.5C10—C9—C11119.70 (13)
H1A—C1—H1B109.5C8—C9—C11123.54 (14)
C2—C1—H1C109.5N1—C10—C9123.11 (12)
H1A—C1—H1C109.5N1—C10—C10i117.45 (7)
H1B—C1—H1C109.5C9—C10—C10i119.44 (8)
O1—C2—C3125.43 (15)C11i—C11—C9120.87 (9)
O1—C2—C1116.13 (16)C11i—C11—H11119.6
C3—C2—C1118.43 (16)C9—C11—H11119.6
C4—C3—C2125.66 (15)
O1—Co1—N1—C6143.2 (2)C1—C2—C3—C4179.5 (2)
O1i—Co1—N1—C67.72 (13)Co1—O2—C4—C313.7 (3)
O2—Co1—N1—C686.96 (13)Co1—O2—C4—C5165.38 (13)
O2i—Co1—N1—C695.39 (13)C2—C3—C4—O20.7 (3)
N1i—Co1—N1—C6178.89 (15)C2—C3—C4—C5179.73 (19)
O1—Co1—N1—C1036.0 (3)C10—N1—C6—C70.8 (2)
O1i—Co1—N1—C10173.10 (10)Co1—N1—C6—C7180.00 (11)
O2—Co1—N1—C1092.22 (10)N1—C6—C7—C80.3 (2)
O2i—Co1—N1—C1085.43 (10)C6—C7—C8—C91.4 (2)
N1i—Co1—N1—C100.29 (7)C7—C8—C9—C101.4 (2)
O1i—Co1—O1—C2113.29 (15)C7—C8—C9—C11178.19 (15)
O2—Co1—O1—C218.62 (14)C6—N1—C10—C90.9 (2)
O2i—Co1—O1—C2158.57 (14)Co1—N1—C10—C9179.85 (11)
N1i—Co1—O1—C272.24 (14)C6—N1—C10—C10i178.45 (15)
N1—Co1—O1—C237.5 (3)Co1—N1—C10—C10i0.82 (19)
O1—Co1—O2—C419.03 (14)C8—C9—C10—N10.2 (2)
O1i—Co1—O2—C4115.26 (13)C11—C9—C10—N1179.37 (14)
N1i—Co1—O2—C474.45 (13)C8—C9—C10—C10i179.54 (15)
N1—Co1—O2—C4151.54 (14)C11—C9—C10—C10i0.1 (2)
Co1—O1—C2—C312.6 (3)C10—C9—C11—C11i0.2 (3)
Co1—O1—C2—C1166.56 (13)C8—C9—C11—C11i179.75 (19)
O1—C2—C3—C41.4 (3)
Symmetry code: (i) x, y+1/2, z+1.

Experimental details

Crystal data
Chemical formula[Co(C5H7O2)2(C12H8N2)]
Mr437.35
Crystal system, space groupOrthorhombic, Pbna
Temperature (K)293
a, b, c (Å)10.2660 (2), 12.6981 (3), 15.5885 (3)
V3)2032.10 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.88
Crystal size (mm)0.6 × 0.3 × 0.13
Data collection
DiffractometerNonius KappaCCD area-detector
Absorption correctionMulti-scan
(SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.622, 0.895
No. of measured, independent and
observed [I > 2σ(I)] reflections
4293, 2294, 2022
Rint0.014
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.089, 1.08
No. of reflections2294
No. of parameters134
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.36

Computer programs: COLLECT (Hooft, 1998), DENZO (Otwinowski & Minor, 1997), SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999) and publCIF (Westrip, 2010).

 

Acknowledgements

The author thanks the Ministry of Higher Education, Science and Technology of the Republic of Slovenia and the Slovenian Research Agency for financial support through grants P1–0230–0175 and X-2000.

References

First citationEllern, J. B. & Ragsdale, R. O. (1968). Inorg. Synth. 11, 82–89.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGaribay, S. J., Stork, J. R. & Cohen, S. M. (2009). Prog. Inorg. Chem. 56, 335–378.  Web of Science CrossRef CAS Google Scholar
First citationHooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationKaitner, B., Mesarek, K. & Meštrović, E. (2008). Acta Cryst. E64, m230–m231.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMeštrović, E. & Kaitner, B. (2006). J. Chem. Crystallogr. 36, 599–603.  Web of Science CSD CrossRef CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationRiblet, F., Novitchi, G., Scopelliti, R., Helm, L., Gulea, A. & Merbach, A. E. (2010). Inorg. Chem. 49, 4194–4211.  Web of Science CSD CrossRef PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds