metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[di­aqua­bis­­(μ3-1H-imidazole-4,5-di­carboxyl­ato)(μ2-sulfato)­diytterbium(III)]

aSchool of Chemistry and Environment, South China Normal University, Guangzhou 510631, People's Republic of China
*Correspondence e-mail: licaizhu1977@yahoo.com.cn

(Received 24 October 2011; accepted 31 October 2011; online 5 November 2011)

In the title compound, [Yb2(C5H2N2O4)2(SO4)(H2O)2]n, the YbIII ion is eight-coordinated by four O atoms and one N atom from three imidazole-4,5-dicarboxyl­ate ligands, two O atoms from one SO42− anion (site symmetry 2), as well as one O atom of a water mol­ecule, giving a bicapped trigonal–prismatic coordination geometry. The metal coordination units are connected by bridging imidazole-4,5-dicarboxyl­ate and sulfate ligands, generating a heterometallic layer. The layers are stacked along the a axis via N—H⋯O, O—H⋯O, and C—H⋯O hydrogen-bonding inter­actions, generating a three-dimensional framework.

Related literature

For the application of multifunctional organic ligands containing O- and N-donors in the design of metal-organic frameworks, see: Cheng et al. (2006[Cheng, J.-W., Zhang, J., Zheng, S.-T., Zhang, M.-B. & Yang, G.-Y. (2006). Angew. Chem. Int. Ed. 45, 73-77.]); Kuang et al. (2007[Kuang, D.-Z., Feng, Y.-L., Peng, Y.-L. & Deng, Y.-F. (2007). Acta Cryst. E63, m2526-m2527.]); Sun et al. (2006[Sun, Y.-Q., Zhang, J. & Yang, G.-Y. (2006). Chem. Commun. pp. 4700-4702.]); Zhu et al. (2010[Zhu, L.-C., Zhao, Y., Yu, S.-J. & Zhao, M.-M. (2010). Inorg. Chem. Commun. 13, 1299-1303.]).

[Scheme 1]

Experimental

Crystal data
  • [Yb2(C5H2N2O4)2(SO4)(H2O)2]

  • Mr = 786.35

  • Monoclinic, C 2/c

  • a = 21.1089 (14) Å

  • b = 6.5584 (4) Å

  • c = 12.8766 (9) Å

  • β = 105.874 (1)°

  • V = 1714.7 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 11.05 mm−1

  • T = 296 K

  • 0.20 × 0.18 × 0.15 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.126, Tmax = 0.191

  • 4239 measured reflections

  • 1534 independent reflections

  • 1392 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.020

  • wR(F2) = 0.047

  • S = 1.09

  • 1534 reflections

  • 150 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.66 e Å−3

  • Δρmin = −0.99 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1⋯O6i 0.87 (5) 2.09 (3) 2.925 (6) 161 (5)
O1W—H2W⋯O2ii 0.82 (2) 1.94 (3) 2.693 (5) 151 (5)
O1W—H1W⋯O3iii 0.82 (6) 2.24 (4) 2.896 (5) 138 (5)
O1W—H1W⋯O4iii 0.82 (6) 2.51 (6) 3.308 (5) 167 (5)
C5—H5⋯O5iv 0.93 2.52 3.347 (6) 149
Symmetry codes: (i) [x, -y+1, z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+2]; (iv) x, y+1, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the past few years, the application of multifunctional organic ligands containing O– and N–donors to design metal-organic frameworks are of increasing interest, not only because of their impressive topological structures, but also due to their versatile applications in ion exchange, magnetism, bimetallic catalysis and luminescent probe (Cheng et al., 2006; Kuang et al., 2007; Sun et al., 2006; Zhu et al., 2010). As an extension of this research, the structure of the title compound, a new metal-organic framework, has been determined which is presented in this artcle.

The asymmetric unite of the title compound (Fig. 1), contains a YbIII ion, an imidazole-4,5-dicarboxylate ligand, a half SO42- anion, and a coordinated water molecule. The YbIII ion is eight-coordinated by four O atoms and a N atom from three imidazole-4,5-dicarboxylate ligands, two O atoms from a SO42- anion as well as a coordinated water molecule, giving a bicapped trigonal prismatic coordination geometry. The metal coordination units are connected by bridging imidazole-4,5-dicarboxylate and sulfate ligands, generating a two-dimensional heterometallic layer. The two-dimensional layers are stacked along a axis via N—H···O, O—H···O, and C—H···O hydrogen-bonding interactions to generate the three-dimensional framework (Table 1 and Fig. 2).

Related literature top

For the application of multifunctional organic ligands containing O- and N-donors in the design of metal-organic frameworks, see: Cheng et al. (2006); Kuang et al. (2007); Sun et al. (2006); Zhu et al. (2010).

Experimental top

A mixture of Yb2O3 (0.099 g, 0.25 mmol), imidazole-4,5-dicarboxylic acid (0.156 g, 1 mmol), and H2O (7 ml) was sealed in a 20 ml Teflon-lined reaction vessel at 443 K for 5 days then slowly cooled to room temperature. The product was collected by filtration, washed with water and air-dried. Colorless block crystals suitable for X-ray analysis were obtained.

Refinement top

H atoms bonded to C atoms were positioned geometrically and refined as riding, with C—H = 0.93 Å and Uiso(H) = 1.2 Ueq(C). H atoms bonded to N atoms water molecules were found from difference Fourier maps and refined isotropically with a restraint of N—H = 0.87 Å, O—H = 0.82 Å and Uiso(H) = 1.5 Ueq(N, O).

Structure description top

In the past few years, the application of multifunctional organic ligands containing O– and N–donors to design metal-organic frameworks are of increasing interest, not only because of their impressive topological structures, but also due to their versatile applications in ion exchange, magnetism, bimetallic catalysis and luminescent probe (Cheng et al., 2006; Kuang et al., 2007; Sun et al., 2006; Zhu et al., 2010). As an extension of this research, the structure of the title compound, a new metal-organic framework, has been determined which is presented in this artcle.

The asymmetric unite of the title compound (Fig. 1), contains a YbIII ion, an imidazole-4,5-dicarboxylate ligand, a half SO42- anion, and a coordinated water molecule. The YbIII ion is eight-coordinated by four O atoms and a N atom from three imidazole-4,5-dicarboxylate ligands, two O atoms from a SO42- anion as well as a coordinated water molecule, giving a bicapped trigonal prismatic coordination geometry. The metal coordination units are connected by bridging imidazole-4,5-dicarboxylate and sulfate ligands, generating a two-dimensional heterometallic layer. The two-dimensional layers are stacked along a axis via N—H···O, O—H···O, and C—H···O hydrogen-bonding interactions to generate the three-dimensional framework (Table 1 and Fig. 2).

For the application of multifunctional organic ligands containing O- and N-donors in the design of metal-organic frameworks, see: Cheng et al. (2006); Kuang et al. (2007); Sun et al. (2006); Zhu et al. (2010).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title comples showing atomic-numbering scheme and displacement ellipsoids drawn at 30% probability level. Symmetry codes: A = 1 - x, y, 1.5 - z; B = x, 1 - y, -1/2 + z; C = x, -y, -1/2 + z.
[Figure 2] Fig. 2. A view of the three-dimensional structure of the title compound, the hydrogen bonding interactions have been drawn as broken lines.
Poly[diaquabis(µ3-1H-imidazole-4,5-dicarboxylato)(µ2- sulfato)diytterbium(III)] top
Crystal data top
[Yb2(C5H2N2O4)2(SO4)(H2O)2]F(000) = 1456
Mr = 786.35Dx = 3.046 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2574 reflections
a = 21.1089 (14) Åθ = 3.3–28.0°
b = 6.5584 (4) ŵ = 11.05 mm1
c = 12.8766 (9) ÅT = 296 K
β = 105.874 (1)°Block, colorless
V = 1714.7 (2) Å30.20 × 0.18 × 0.15 mm
Z = 4
Data collection top
Bruker APEXII area-detector
diffractometer
1534 independent reflections
Radiation source: fine-focus sealed tube1392 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
φ and ω scanθmax = 25.2°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2522
Tmin = 0.126, Tmax = 0.191k = 77
4239 measured reflectionsl = 1415
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.020Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.047H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0216P)2 + 5.6648P]
where P = (Fo2 + 2Fc2)/3
1534 reflections(Δ/σ)max = 0.001
150 parametersΔρmax = 0.66 e Å3
4 restraintsΔρmin = 0.99 e Å3
Crystal data top
[Yb2(C5H2N2O4)2(SO4)(H2O)2]V = 1714.7 (2) Å3
Mr = 786.35Z = 4
Monoclinic, C2/cMo Kα radiation
a = 21.1089 (14) ŵ = 11.05 mm1
b = 6.5584 (4) ÅT = 296 K
c = 12.8766 (9) Å0.20 × 0.18 × 0.15 mm
β = 105.874 (1)°
Data collection top
Bruker APEXII area-detector
diffractometer
1534 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1392 reflections with I > 2σ(I)
Tmin = 0.126, Tmax = 0.191Rint = 0.023
4239 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0204 restraints
wR(F2) = 0.047H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.66 e Å3
1534 reflectionsΔρmin = 0.99 e Å3
150 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Yb10.355312 (10)0.07841 (3)0.714967 (16)0.01086 (9)
S10.50000.0299 (3)0.75000.0182 (4)
C10.3390 (2)0.0272 (7)0.9554 (4)0.0134 (10)
C20.3697 (2)0.2318 (7)0.9654 (4)0.0148 (10)
C30.3764 (2)0.3838 (7)1.0402 (4)0.0145 (10)
C40.3492 (2)0.4128 (7)1.1340 (4)0.0128 (10)
C50.4168 (2)0.4805 (8)0.9077 (4)0.0179 (11)
H50.43710.56030.86640.022*
N10.3942 (2)0.2930 (6)0.8817 (3)0.0165 (9)
N20.4065 (2)0.5391 (6)1.0009 (3)0.0183 (10)
H10.420 (3)0.648 (6)1.039 (4)0.027*
O10.32418 (19)0.0583 (5)1.0318 (3)0.0220 (9)
O20.32955 (18)0.0546 (5)0.8633 (3)0.0192 (8)
O30.33204 (18)0.2591 (5)1.1767 (3)0.0219 (8)
O40.34067 (19)0.5917 (5)1.1620 (3)0.0219 (8)
O50.45816 (18)0.0925 (5)0.7997 (3)0.0304 (10)
O60.45308 (19)0.1572 (6)0.6710 (3)0.0349 (10)
O1W0.24374 (18)0.1038 (6)0.6799 (3)0.0250 (9)
H2W0.224 (2)0.201 (6)0.646 (4)0.037*
H1W0.221 (3)0.075 (8)0.720 (4)0.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Yb10.01712 (13)0.00743 (13)0.00944 (13)0.00016 (8)0.00604 (9)0.00022 (8)
S10.0156 (9)0.0145 (9)0.0250 (10)0.0000.0063 (8)0.000
C10.017 (2)0.010 (2)0.012 (3)0.0000 (19)0.001 (2)0.001 (2)
C20.021 (2)0.012 (3)0.011 (2)0.003 (2)0.0040 (19)0.000 (2)
C30.021 (3)0.013 (2)0.011 (2)0.002 (2)0.006 (2)0.001 (2)
C40.017 (2)0.010 (3)0.010 (2)0.0018 (19)0.002 (2)0.0017 (19)
C50.025 (3)0.015 (3)0.015 (3)0.005 (2)0.008 (2)0.003 (2)
N10.024 (2)0.012 (2)0.016 (2)0.0023 (17)0.0082 (18)0.0010 (17)
N20.027 (2)0.014 (2)0.016 (2)0.0064 (19)0.0084 (19)0.0018 (18)
O10.042 (2)0.0151 (19)0.0107 (19)0.0090 (16)0.0095 (17)0.0001 (15)
O20.033 (2)0.0155 (19)0.0110 (18)0.0084 (15)0.0090 (15)0.0058 (15)
O30.037 (2)0.0144 (19)0.0182 (18)0.0042 (16)0.0134 (16)0.0061 (16)
O40.039 (2)0.0103 (19)0.018 (2)0.0028 (16)0.0105 (17)0.0009 (14)
O50.021 (2)0.030 (2)0.041 (3)0.0019 (16)0.0104 (18)0.0155 (19)
O60.023 (2)0.044 (2)0.041 (3)0.0071 (19)0.0135 (19)0.027 (2)
O1W0.024 (2)0.023 (2)0.031 (2)0.0066 (17)0.0129 (18)0.0083 (17)
Geometric parameters (Å, º) top
Yb1—O4i2.264 (3)C1—C21.481 (6)
Yb1—O1ii2.272 (3)C2—C31.367 (7)
Yb1—O1W2.280 (4)C2—N11.377 (6)
Yb1—O3ii2.291 (3)C3—N21.369 (6)
Yb1—O22.297 (3)C3—C41.485 (7)
Yb1—O62.342 (4)C4—O31.249 (6)
Yb1—O52.421 (4)C4—O41.255 (5)
Yb1—N12.510 (4)C5—N11.328 (6)
Yb1—S12.9798 (3)C5—N21.334 (7)
S1—O5iii1.464 (4)C5—H50.9300
S1—O51.464 (4)N2—H10.87 (5)
S1—O6iii1.470 (4)O1—Yb1iv2.272 (3)
S1—O61.470 (4)O3—Yb1iv2.291 (3)
S1—Yb1iii2.9798 (3)O4—Yb1v2.264 (3)
C1—O11.244 (6)O1W—H2W0.82 (2)
C1—O21.266 (6)O1W—H1W0.82 (6)
O4i—Yb1—O1ii76.46 (12)O6iii—S1—O6110.8 (4)
O4i—Yb1—O1W79.74 (14)O5iii—S1—Yb1135.09 (15)
O1ii—Yb1—O1W78.99 (15)O5—S1—Yb153.75 (14)
O4i—Yb1—O3ii148.74 (13)O6iii—S1—Yb1120.86 (16)
O1ii—Yb1—O3ii74.75 (12)O6—S1—Yb150.65 (15)
O1W—Yb1—O3ii83.05 (14)O5iii—S1—Yb1iii53.75 (14)
O4i—Yb1—O2124.73 (12)O5—S1—Yb1iii135.09 (15)
O1ii—Yb1—O2140.73 (13)O6iii—S1—Yb1iii50.65 (15)
O1W—Yb1—O274.07 (14)O6—S1—Yb1iii120.86 (16)
O3ii—Yb1—O274.10 (12)Yb1—S1—Yb1iii167.75 (7)
O4i—Yb1—O676.89 (14)O1—C1—O2122.7 (4)
O1ii—Yb1—O677.64 (14)O1—C1—C2122.6 (4)
O1W—Yb1—O6150.11 (14)O2—C1—C2114.7 (4)
O3ii—Yb1—O6108.21 (14)C3—C2—N1110.6 (4)
O2—Yb1—O6135.20 (13)C3—C2—C1132.9 (5)
O4i—Yb1—O5127.57 (13)N1—C2—C1116.5 (4)
O1ii—Yb1—O5114.21 (14)C2—C3—N2104.5 (4)
O1W—Yb1—O5150.85 (13)C2—C3—C4132.8 (4)
O3ii—Yb1—O576.28 (13)N2—C3—C4121.8 (4)
O2—Yb1—O580.58 (13)O3—C4—O4123.2 (5)
O6—Yb1—O558.02 (13)O3—C4—C3118.5 (4)
O4i—Yb1—N172.99 (13)O4—C4—C3118.1 (4)
O1ii—Yb1—N1148.68 (12)N1—C5—N2111.0 (4)
O1W—Yb1—N1101.95 (14)N1—C5—H5124.5
O3ii—Yb1—N1136.57 (13)N2—C5—H5124.5
O2—Yb1—N166.31 (12)C5—N1—C2105.0 (4)
O6—Yb1—N188.79 (15)C5—N1—Yb1138.2 (3)
O5—Yb1—N180.25 (14)C2—N1—Yb1113.6 (3)
O4i—Yb1—S1101.39 (10)C5—N2—C3109.0 (4)
O1ii—Yb1—S198.30 (10)C5—N2—H1130 (4)
O1W—Yb1—S1176.78 (11)C3—N2—H1121 (4)
O3ii—Yb1—S194.59 (10)C1—O1—Yb1iv141.5 (3)
O2—Yb1—S1107.44 (9)C1—O2—Yb1127.3 (3)
O6—Yb1—S129.03 (9)C4—O3—Yb1iv143.5 (3)
O5—Yb1—S129.18 (9)C4—O4—Yb1v164.1 (3)
N1—Yb1—S181.27 (10)S1—O5—Yb197.06 (18)
O5iii—S1—O5113.5 (3)S1—O6—Yb1100.32 (19)
O5iii—S1—O6iii103.9 (2)Yb1—O1W—H2W121 (4)
O5—S1—O6iii112.4 (2)Yb1—O1W—H1W128 (4)
O5iii—S1—O6112.4 (2)H2W—O1W—H1W102 (3)
O5—S1—O6103.9 (2)
Symmetry codes: (i) x, y+1, z1/2; (ii) x, y, z1/2; (iii) x+1, y, z+3/2; (iv) x, y, z+1/2; (v) x, y+1, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1···O6v0.87 (5)2.09 (3)2.925 (6)161 (5)
O1W—H2W···O2vi0.82 (2)1.94 (3)2.693 (5)151 (5)
O1W—H1W···O3vii0.82 (6)2.24 (4)2.896 (5)138 (5)
O1W—H1W···O4vii0.82 (6)2.51 (6)3.308 (5)167 (5)
C5—H5···O5viii0.932.523.347 (6)149
Symmetry codes: (v) x, y+1, z+1/2; (vi) x+1/2, y+1/2, z+3/2; (vii) x+1/2, y+1/2, z+2; (viii) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Yb2(C5H2N2O4)2(SO4)(H2O)2]
Mr786.35
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)21.1089 (14), 6.5584 (4), 12.8766 (9)
β (°) 105.874 (1)
V3)1714.7 (2)
Z4
Radiation typeMo Kα
µ (mm1)11.05
Crystal size (mm)0.20 × 0.18 × 0.15
Data collection
DiffractometerBruker APEXII area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.126, 0.191
No. of measured, independent and
observed [I > 2σ(I)] reflections
4239, 1534, 1392
Rint0.023
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.020, 0.047, 1.09
No. of reflections1534
No. of parameters150
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.66, 0.99

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1···O6i0.87 (5)2.09 (3)2.925 (6)161 (5)
O1W—H2W···O2ii0.82 (2)1.94 (3)2.693 (5)151 (5)
O1W—H1W···O3iii0.82 (6)2.24 (4)2.896 (5)138 (5)
O1W—H1W···O4iii0.82 (6)2.51 (6)3.308 (5)167 (5)
C5—H5···O5iv0.93002.52003.347 (6)149.00
Symmetry codes: (i) x, y+1, z+1/2; (ii) x+1/2, y+1/2, z+3/2; (iii) x+1/2, y+1/2, z+2; (iv) x, y+1, z.
 

Acknowledgements

The authors acknowledge South China Normal University for supporting this work.

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCheng, J.-W., Zhang, J., Zheng, S.-T., Zhang, M.-B. & Yang, G.-Y. (2006). Angew. Chem. Int. Ed. 45, 73–77.  Web of Science CSD CrossRef CAS Google Scholar
First citationKuang, D.-Z., Feng, Y.-L., Peng, Y.-L. & Deng, Y.-F. (2007). Acta Cryst. E63, m2526–m2527.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, Y.-Q., Zhang, J. & Yang, G.-Y. (2006). Chem. Commun. pp. 4700–4702.  Web of Science CSD CrossRef Google Scholar
First citationZhu, L.-C., Zhao, Y., Yu, S.-J. & Zhao, M.-M. (2010). Inorg. Chem. Commun. 13, 1299–1303.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds