organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 5-(4-hy­dr­oxy-3-meth­­oxy­phen­yl)-2-(4-meth­­oxy­benzyl­­idene)-7-methyl-3-oxo-2,3-di­hydro-5H-thia­zolo[3,2-a]pyrimidine-6-carboxyl­ate

aDepartment of Studies in Chemistry, Bangalore University, Bangalore 560 001, India
*Correspondence e-mail: noorsb@rediffmail.com

(Received 24 October 2011; accepted 17 November 2011; online 25 November 2011)

In the title compound, C24H22N2O6S, a pyrimidine ring substituted with 4-hy­droxy-3-meth­oxy­phenyl is fused with a thia­zole ring. The 4-hy­droxy-3-meth­oxy­phenyl group is positioned axially to the pyrimidine ring, making a dihedral angle 85.36 (7)°. The pyrimidine ring adopts a twist boat conformation. In the crystal, O—H⋯N inter­actions result in a chain running along the b axis. The carbonyl O atom bonded to the thia­zole ring is involved in two C—H⋯O hydrogen-bond inter­actions forming centrosymmetric dimers; the ten- and six-membered rings resulting from these inter­actions have R22(10) and R12(6) motifs, respectively.

Related literature

For pharmacological properties of pyrimidine derivatives, see: Alam et al. (2010[Alam, O., Khan, S. A., Siddiqui, N. & Ahsan, W. (2010). Med. Chem. Res. 19, 1245-1258.]). For related structures, see: Jotani et al. (2010[Jotani, M. M., Baldaniya, B. B. & Jasinski, J. P. (2010). Acta Cryst. E66, o599-o600.]). For graph-set motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C24H22N2O6S

  • Mr = 466.50

  • Triclinic, [P \overline 1]

  • a = 6.8096 (12) Å

  • b = 9.9343 (18) Å

  • c = 16.246 (3) Å

  • α = 86.816 (3)°

  • β = 85.588 (3)°

  • γ = 81.318 (3)°

  • V = 1082.1 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 296 K

  • 0.18 × 0.16 × 0.16 mm

Data collection
  • Bruker SMART APEX CCD detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconcin, USA.]) Tmin = 0.966, Tmax = 0.969

  • 6570 measured reflections

  • 4581 independent reflections

  • 3452 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.069

  • wR(F2) = 0.279

  • S = 1.33

  • 4581 reflections

  • 303 parameters

  • H-atom parameters constrained

  • Δρmax = 0.69 e Å−3

  • Δρmin = −0.62 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H6⋯N2i 0.82 2.01 2.783 (4) 156
C10—H10⋯O2ii 0.93 2.55 3.425 (4) 156
C12—H12⋯O2ii 0.93 2.67 3.499 (4) 149
C1—H1A⋯O6iii 0.96 2.57 3.444 (5) 152
C17—H17C⋯O2iv 0.96 2.47 3.429 (5) 179
Symmetry codes: (i) x, y-1, z; (ii) -x, -y, -z+1; (iii) -x, -y, -z; (iv) -x+1, -y, -z+1.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconcin, USA.]); cell refinement: SAINT-Plus (Bruker, 1998[Bruker (1998). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconcin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Pyrimidine derivatives are of interest because of their pharmacological properties (Alam et al., 2010).

The central pyrimidine ring with a chiral C5 atom is significantly puckered and adopts a conformation which is best described as an intermediate between a boat and a screw boat form as seen earlier (Jotani et al., 2010). The atoms C5 and N1 deviate from the mean plane C6/C7/N2/C8 by 0.1024 (3) and -0.0602 (3) Å, respectively, indicating that the conformation of the pyrimidine ring is that of a twisted boat. In the molecule, The fused thiazole-pyrimidine ring is coplanar with benzylidene ring with dihedral angle 5.19 (7)°. The dihedral angle between the thiazolopyrimidine ring and 4-hydroxy-3-methoxy-phenyl group is 85.36 (7)°. The crystal structure is stabilized by a strong intermolecular O—H···N hydrogen bond resulting in a one dimensional chain of molecules along the b axis. The structure is further consolidated by C—H···O type intermolecular interactions, involving carbonyl O2 atom, forming centrosymmetric dimers; the ten and 6 membered rings thus resulting from these interactions can be described as R22(10) and R21(6) motifs in graph-set notations (Bernstein et al., 1995).

Related literature top

For pharmacological properties of pyrimidine derivatives, see: Alam et al. (2010). For related structures, see: Jotani et al. (2010). For graph-set motifs, see: Bernstein et al. (1995).

Experimental top

A mixture of 4-(4-hydroxy-3-methoxy-phenyl)-6-methyl-2-thioxo-1,2,3,4-tetrahydro -pyrimidine-5-carboxylic acid methyl ester (0.01 mol), chloroaceticacid (0.01 mol), 4-methoxy benzaldehyde (0.01 mol) and sodium acetate (1.5 g) in a mixture of glacial acetic acid and acetic anhydride (25 ml; 1:1) was refluxed for 8–10 h.The reaction mixture was concentrated and the solid thus obtained was filtered and recrystallized from ethyl acetate to get the title compound. (78% yield, mp 427 K). The compound was recrystallized by slow evaporation of an ethyl acetate-ethanol (3:2) solution, yielding pale yellow single crystals suitable for X-ray diffraction studies.

Refinement top

The H atoms were placed at calculated positions in the riding model approximation with O—H = 0.820 Å and C—H = 0.93, 0.96, 0.98 Å, for aryl, methyl and methyne H-atoms, respectively, with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C/O) for other H atoms.

Structure description top

Pyrimidine derivatives are of interest because of their pharmacological properties (Alam et al., 2010).

The central pyrimidine ring with a chiral C5 atom is significantly puckered and adopts a conformation which is best described as an intermediate between a boat and a screw boat form as seen earlier (Jotani et al., 2010). The atoms C5 and N1 deviate from the mean plane C6/C7/N2/C8 by 0.1024 (3) and -0.0602 (3) Å, respectively, indicating that the conformation of the pyrimidine ring is that of a twisted boat. In the molecule, The fused thiazole-pyrimidine ring is coplanar with benzylidene ring with dihedral angle 5.19 (7)°. The dihedral angle between the thiazolopyrimidine ring and 4-hydroxy-3-methoxy-phenyl group is 85.36 (7)°. The crystal structure is stabilized by a strong intermolecular O—H···N hydrogen bond resulting in a one dimensional chain of molecules along the b axis. The structure is further consolidated by C—H···O type intermolecular interactions, involving carbonyl O2 atom, forming centrosymmetric dimers; the ten and 6 membered rings thus resulting from these interactions can be described as R22(10) and R21(6) motifs in graph-set notations (Bernstein et al., 1995).

For pharmacological properties of pyrimidine derivatives, see: Alam et al. (2010). For related structures, see: Jotani et al. (2010). For graph-set motifs, see: Bernstein et al. (1995).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 1998); data reduction: SAINT-Plus (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and CAMERON (Watkin et al., 1996); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. ORTEP-3 (Farrugia, 1997) view of the title compound, showing 50% probability ellipsoids and the atom numbering scheme.
[Figure 2] Fig. 2. A unit cell packing of the title compound showing intermolecular interactions with dotted lines. H-atoms not involved in hydrogen bonding have been excluded for clarity.
Methyl 5-(4-hydroxy-3-methoxyphenyl)-2-(4-methoxybenzylidene)-7-methyl-3-oxo- 2,3-dihydro-5H-thiazolo[3,2-a]pyrimidine-6-carboxylate top
Crystal data top
C24H22N2O6SV = 1082.1 (3) Å3
Mr = 466.50Z = 2
Triclinic, P1F(000) = 488
Hall symbol: -P 1Dx = 1.432 Mg m3
a = 6.8096 (12) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.9343 (18) ŵ = 0.20 mm1
c = 16.246 (3) ÅT = 296 K
α = 86.816 (3)°Block, yellow
β = 85.588 (3)°0.18 × 0.16 × 0.16 mm
γ = 81.318 (3)°
Data collection top
Bruker SMART APEX CCD detector
diffractometer
4581 independent reflections
Radiation source: fine-focus sealed tube3452 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ω scansθmax = 27.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 88
Tmin = 0.966, Tmax = 0.969k = 1210
6570 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.069Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.279H-atom parameters constrained
S = 1.33 w = 1/[σ2(Fo2) + (0.1558P)2]
where P = (Fo2 + 2Fc2)/3
4581 reflections(Δ/σ)max < 0.001
303 parametersΔρmax = 0.69 e Å3
0 restraintsΔρmin = 0.62 e Å3
Crystal data top
C24H22N2O6Sγ = 81.318 (3)°
Mr = 466.50V = 1082.1 (3) Å3
Triclinic, P1Z = 2
a = 6.8096 (12) ÅMo Kα radiation
b = 9.9343 (18) ŵ = 0.20 mm1
c = 16.246 (3) ÅT = 296 K
α = 86.816 (3)°0.18 × 0.16 × 0.16 mm
β = 85.588 (3)°
Data collection top
Bruker SMART APEX CCD detector
diffractometer
4581 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
3452 reflections with I > 2σ(I)
Tmin = 0.966, Tmax = 0.969Rint = 0.018
6570 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0690 restraints
wR(F2) = 0.279H-atom parameters constrained
S = 1.33Δρmax = 0.69 e Å3
4581 reflectionsΔρmin = 0.62 e Å3
303 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.15410 (13)0.32220 (9)0.29148 (5)0.0312 (3)
O60.0905 (4)0.4233 (2)0.13814 (16)0.0352 (6)
H60.01100.47790.14470.053*
O20.1068 (4)0.0292 (2)0.39078 (14)0.0314 (6)
N10.1155 (4)0.1703 (3)0.27435 (16)0.0257 (6)
O30.6100 (4)0.0792 (3)0.16436 (16)0.0372 (6)
N20.0791 (5)0.3389 (3)0.16660 (17)0.0299 (7)
O10.8821 (4)0.3698 (3)0.54235 (17)0.0415 (7)
C60.3314 (5)0.1959 (3)0.15964 (19)0.0263 (7)
O50.2673 (4)0.3960 (2)0.22167 (17)0.0365 (6)
C50.2615 (5)0.1047 (3)0.2339 (2)0.0276 (7)
H50.37650.09770.27330.033*
C190.2694 (5)0.1507 (3)0.2295 (2)0.0276 (7)
H190.39250.13910.25930.033*
O40.5284 (4)0.1916 (3)0.04588 (15)0.0465 (8)
C210.0002 (5)0.2994 (3)0.1616 (2)0.0288 (7)
C180.1708 (5)0.0377 (3)0.20939 (19)0.0264 (7)
C30.0444 (5)0.1214 (3)0.3500 (2)0.0281 (7)
C120.4787 (5)0.1626 (4)0.5346 (2)0.0298 (7)
H120.42320.09360.56470.036*
C80.0300 (5)0.2758 (3)0.2354 (2)0.0281 (7)
C200.1849 (5)0.2791 (3)0.20538 (19)0.0271 (7)
C220.0966 (5)0.1868 (3)0.1404 (2)0.0313 (8)
H220.21940.19820.11030.038*
C20.1203 (5)0.1940 (3)0.3687 (2)0.0297 (7)
C100.2243 (5)0.1629 (3)0.4359 (2)0.0276 (7)
H100.18090.09460.47090.033*
C110.3928 (5)0.2179 (4)0.4631 (2)0.0315 (8)
C70.2434 (5)0.3037 (3)0.1307 (2)0.0284 (7)
C140.7248 (5)0.3131 (4)0.5199 (2)0.0321 (8)
C230.0097 (5)0.0576 (4)0.1639 (2)0.0324 (8)
H230.07470.01680.14870.039*
C130.6444 (5)0.2068 (4)0.5625 (2)0.0335 (8)
H130.70150.16540.60950.040*
C10.3048 (6)0.4018 (4)0.0603 (2)0.0382 (9)
H1A0.22340.37610.01120.057*
H1B0.28810.49220.07350.057*
H1C0.44190.39970.05140.057*
C40.5039 (5)0.1509 (4)0.1248 (2)0.0321 (8)
C150.6422 (6)0.3702 (4)0.4484 (2)0.0405 (9)
H150.69660.44080.41940.049*
C170.9714 (6)0.3169 (4)0.6163 (2)0.0397 (9)
H17A0.87790.33640.66300.060*
H17B1.08750.35870.62230.060*
H17C1.00900.22010.61350.060*
C160.4802 (6)0.3238 (4)0.4194 (2)0.0375 (9)
H160.42810.36230.37080.045*
C240.4702 (6)0.3847 (4)0.2508 (3)0.0441 (10)
H24A0.48460.35830.30710.066*
H24B0.51580.47100.24760.066*
H24C0.54790.31710.21730.066*
C90.7019 (7)0.1526 (6)0.0106 (3)0.0592 (14)
H9A0.70480.05700.02180.089*
H9B0.69360.17140.04800.089*
H9C0.82120.20370.03490.089*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0364 (5)0.0289 (5)0.0312 (5)0.0120 (4)0.0098 (4)0.0032 (3)
O60.0355 (14)0.0286 (13)0.0421 (15)0.0088 (10)0.0013 (11)0.0022 (11)
O20.0380 (14)0.0306 (13)0.0281 (12)0.0132 (11)0.0077 (10)0.0057 (10)
N10.0267 (15)0.0245 (14)0.0270 (14)0.0077 (11)0.0056 (11)0.0039 (11)
O30.0300 (14)0.0459 (16)0.0385 (14)0.0149 (12)0.0089 (11)0.0070 (12)
N20.0384 (17)0.0251 (15)0.0287 (15)0.0107 (12)0.0077 (12)0.0000 (11)
O10.0365 (15)0.0447 (16)0.0481 (16)0.0150 (12)0.0171 (12)0.0011 (13)
C60.0282 (17)0.0274 (17)0.0242 (16)0.0065 (13)0.0064 (13)0.0047 (13)
O50.0351 (14)0.0282 (13)0.0480 (15)0.0142 (11)0.0049 (11)0.0023 (11)
C50.0259 (17)0.0287 (17)0.0308 (17)0.0114 (13)0.0068 (13)0.0036 (13)
C190.0250 (17)0.0305 (18)0.0296 (17)0.0111 (13)0.0034 (13)0.0005 (13)
O40.0453 (17)0.070 (2)0.0309 (14)0.0285 (15)0.0194 (12)0.0146 (13)
C210.0297 (18)0.0279 (17)0.0298 (17)0.0072 (13)0.0065 (13)0.0030 (13)
C180.0270 (17)0.0288 (17)0.0250 (16)0.0072 (13)0.0089 (12)0.0029 (13)
C30.0309 (18)0.0264 (17)0.0276 (17)0.0049 (14)0.0067 (13)0.0002 (13)
C120.0302 (18)0.0326 (18)0.0280 (17)0.0071 (14)0.0057 (13)0.0014 (14)
C80.0279 (18)0.0255 (16)0.0308 (17)0.0032 (13)0.0015 (13)0.0030 (13)
C200.0340 (19)0.0248 (17)0.0253 (16)0.0122 (14)0.0055 (13)0.0009 (13)
C220.0272 (18)0.0269 (18)0.0398 (19)0.0058 (13)0.0019 (14)0.0028 (14)
C20.0319 (19)0.0269 (17)0.0324 (17)0.0098 (14)0.0022 (14)0.0064 (14)
C100.0296 (18)0.0292 (18)0.0258 (16)0.0086 (14)0.0056 (13)0.0011 (13)
C110.0317 (19)0.0308 (18)0.0329 (18)0.0074 (14)0.0018 (14)0.0001 (14)
C70.0281 (18)0.0276 (17)0.0303 (17)0.0035 (13)0.0096 (13)0.0007 (13)
C140.0293 (19)0.0285 (18)0.0396 (19)0.0040 (14)0.0073 (14)0.0034 (15)
C230.0272 (18)0.0298 (18)0.043 (2)0.0118 (14)0.0066 (14)0.0030 (15)
C130.0300 (19)0.0342 (19)0.0354 (19)0.0006 (14)0.0067 (14)0.0023 (15)
C10.047 (2)0.0300 (19)0.039 (2)0.0091 (16)0.0150 (17)0.0093 (16)
C40.0279 (18)0.0346 (19)0.0338 (18)0.0040 (14)0.0063 (14)0.0029 (15)
C150.040 (2)0.039 (2)0.046 (2)0.0174 (17)0.0140 (17)0.0082 (17)
C170.034 (2)0.049 (2)0.039 (2)0.0080 (17)0.0112 (16)0.0030 (17)
C160.044 (2)0.0294 (19)0.041 (2)0.0110 (16)0.0120 (17)0.0061 (15)
C240.035 (2)0.034 (2)0.063 (3)0.0134 (16)0.0078 (18)0.0012 (18)
C90.048 (3)0.095 (4)0.042 (2)0.032 (3)0.021 (2)0.017 (2)
Geometric parameters (Å, º) top
S1—C81.735 (3)C12—C131.387 (5)
S1—C21.765 (4)C12—C111.388 (5)
O6—C211.352 (4)C12—H120.9300
O6—H60.8200C22—C231.391 (5)
O2—C31.210 (4)C22—H220.9300
N1—C81.376 (4)C2—C101.343 (5)
N1—C31.391 (4)C10—C111.451 (4)
N1—C51.479 (4)C10—H100.9300
O3—C41.215 (4)C11—C161.416 (5)
N2—C81.292 (4)C7—C11.503 (5)
N2—C71.398 (4)C14—C151.386 (5)
O1—C141.364 (4)C14—C131.389 (5)
O1—C171.427 (4)C23—H230.9300
C6—C71.350 (5)C13—H130.9300
C6—C41.479 (5)C1—H1A0.9600
C6—C51.530 (4)C1—H1B0.9600
O5—C201.369 (4)C1—H1C0.9600
O5—C241.416 (4)C15—C161.382 (5)
C5—C181.518 (5)C15—H150.9300
C5—H50.9800C17—H17A0.9600
C19—C201.382 (5)C17—H17B0.9600
C19—C181.404 (4)C17—H17C0.9600
C19—H190.9300C16—H160.9300
O4—C41.338 (4)C24—H24A0.9600
O4—C91.463 (4)C24—H24B0.9600
C21—C201.392 (5)C24—H24C0.9600
C21—C221.395 (4)C9—H9A0.9600
C18—C231.378 (5)C9—H9B0.9600
C3—C21.480 (4)C9—H9C0.9600
C8—S1—C291.56 (16)C12—C11—C16117.3 (3)
C21—O6—H6109.5C12—C11—C10119.2 (3)
C8—N1—C3116.4 (3)C16—C11—C10123.6 (3)
C8—N1—C5121.3 (3)C6—C7—N2121.8 (3)
C3—N1—C5122.1 (3)C6—C7—C1127.0 (3)
C8—N2—C7117.4 (3)N2—C7—C1111.2 (3)
C14—O1—C17117.6 (3)O1—C14—C15115.0 (3)
C7—C6—C4125.2 (3)O1—C14—C13125.7 (3)
C7—C6—C5122.9 (3)C15—C14—C13119.3 (3)
C4—C6—C5111.8 (3)C18—C23—C22121.2 (3)
C20—O5—C24118.5 (3)C18—C23—H23119.4
N1—C5—C18110.5 (3)C22—C23—H23119.4
N1—C5—C6108.4 (2)C12—C13—C14119.7 (3)
C18—C5—C6112.2 (3)C12—C13—H13120.2
N1—C5—H5108.6C14—C13—H13120.2
C18—C5—H5108.6C7—C1—H1A109.5
C6—C5—H5108.6C7—C1—H1B109.5
C20—C19—C18120.5 (3)H1A—C1—H1B109.5
C20—C19—H19119.8C7—C1—H1C109.5
C18—C19—H19119.8H1A—C1—H1C109.5
C4—O4—C9115.8 (3)H1B—C1—H1C109.5
O6—C21—C20123.0 (3)O3—C4—O4123.1 (3)
O6—C21—C22118.4 (3)O3—C4—C6122.2 (3)
C20—C21—C22118.6 (3)O4—C4—C6114.6 (3)
C23—C18—C19118.5 (3)C16—C15—C14121.0 (3)
C23—C18—C5119.9 (3)C16—C15—H15119.5
C19—C18—C5121.6 (3)C14—C15—H15119.5
O2—C3—N1123.1 (3)O1—C17—H17A109.5
O2—C3—C2127.1 (3)O1—C17—H17B109.5
N1—C3—C2109.7 (3)H17A—C17—H17B109.5
C13—C12—C11122.2 (3)O1—C17—H17C109.5
C13—C12—H12118.9H17A—C17—H17C109.5
C11—C12—H12118.9H17B—C17—H17C109.5
N2—C8—N1126.2 (3)C15—C16—C11120.5 (3)
N2—C8—S1121.8 (3)C15—C16—H16119.7
N1—C8—S1112.0 (2)C11—C16—H16119.7
O5—C20—C19125.4 (3)O5—C24—H24A109.5
O5—C20—C21113.7 (3)O5—C24—H24B109.5
C19—C20—C21120.9 (3)H24A—C24—H24B109.5
C23—C22—C21120.2 (3)O5—C24—H24C109.5
C23—C22—H22119.9H24A—C24—H24C109.5
C21—C22—H22119.9H24B—C24—H24C109.5
C10—C2—C3122.8 (3)O4—C9—H9A109.5
C10—C2—S1126.9 (3)O4—C9—H9B109.5
C3—C2—S1110.3 (2)H9A—C9—H9B109.5
C2—C10—C11131.0 (3)O4—C9—H9C109.5
C2—C10—H10114.5H9A—C9—H9C109.5
C11—C10—H10114.5H9B—C9—H9C109.5
C8—N1—C5—C18108.8 (3)N1—C3—C2—C10176.5 (3)
C3—N1—C5—C1865.4 (4)O2—C3—C2—S1179.2 (3)
C8—N1—C5—C614.4 (4)N1—C3—C2—S13.7 (4)
C3—N1—C5—C6171.3 (3)C8—S1—C2—C10177.4 (3)
C7—C6—C5—N110.4 (5)C8—S1—C2—C32.8 (3)
C4—C6—C5—N1169.6 (3)C3—C2—C10—C11177.5 (3)
C7—C6—C5—C18111.9 (4)S1—C2—C10—C112.7 (6)
C4—C6—C5—C1868.1 (4)C13—C12—C11—C160.6 (6)
C20—C19—C18—C231.1 (5)C13—C12—C11—C10177.6 (3)
C20—C19—C18—C5179.0 (3)C2—C10—C11—C12177.3 (4)
N1—C5—C18—C2351.6 (4)C2—C10—C11—C160.8 (6)
C6—C5—C18—C2369.4 (4)C4—C6—C7—N2179.3 (3)
N1—C5—C18—C19130.5 (3)C5—C6—C7—N20.7 (5)
C6—C5—C18—C19108.4 (3)C4—C6—C7—C12.2 (6)
C8—N1—C3—O2179.9 (3)C5—C6—C7—C1177.8 (3)
C5—N1—C3—O25.6 (5)C8—N2—C7—C69.0 (5)
C8—N1—C3—C22.9 (4)C8—N2—C7—C1169.7 (3)
C5—N1—C3—C2171.6 (3)C17—O1—C14—C15179.0 (3)
C7—N2—C8—N14.7 (5)C17—O1—C14—C130.7 (5)
C7—N2—C8—S1173.2 (2)C19—C18—C23—C222.0 (5)
C3—N1—C8—N2177.3 (3)C5—C18—C23—C22179.9 (3)
C5—N1—C8—N28.1 (5)C21—C22—C23—C180.9 (5)
C3—N1—C8—S10.8 (4)C11—C12—C13—C142.3 (6)
C5—N1—C8—S1173.7 (2)O1—C14—C13—C12177.3 (3)
C2—S1—C8—N2179.4 (3)C15—C14—C13—C122.3 (6)
C2—S1—C8—N11.2 (3)C9—O4—C4—O34.3 (6)
C24—O5—C20—C1913.4 (5)C9—O4—C4—C6178.0 (4)
C24—O5—C20—C21167.5 (3)C7—C6—C4—O3159.7 (4)
C18—C19—C20—O5179.9 (3)C5—C6—C4—O320.3 (5)
C18—C19—C20—C210.8 (5)C7—C6—C4—O422.6 (5)
O6—C21—C20—O50.6 (5)C5—C6—C4—O4157.4 (3)
C22—C21—C20—O5178.9 (3)O1—C14—C15—C16179.0 (4)
O6—C21—C20—C19178.6 (3)C13—C14—C15—C160.6 (6)
C22—C21—C20—C191.9 (5)C14—C15—C16—C111.1 (6)
O6—C21—C22—C23179.4 (3)C12—C11—C16—C151.0 (6)
C20—C21—C22—C231.0 (5)C10—C11—C16—C15179.2 (4)
O2—C3—C2—C100.6 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6···N2i0.822.012.783 (4)156
C10—H10···O2ii0.932.553.425 (4)156
C12—H12···O2ii0.932.673.499 (4)149
C1—H1A···O6iii0.962.573.444 (5)152
C17—H17C···O2iv0.962.473.429 (5)179
Symmetry codes: (i) x, y1, z; (ii) x, y, z+1; (iii) x, y, z; (iv) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC24H22N2O6S
Mr466.50
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)6.8096 (12), 9.9343 (18), 16.246 (3)
α, β, γ (°)86.816 (3), 85.588 (3), 81.318 (3)
V3)1082.1 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.18 × 0.16 × 0.16
Data collection
DiffractometerBruker SMART APEX CCD detector
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.966, 0.969
No. of measured, independent and
observed [I > 2σ(I)] reflections
6570, 4581, 3452
Rint0.018
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.069, 0.279, 1.33
No. of reflections4581
No. of parameters303
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.69, 0.62

Computer programs: SMART (Bruker, 1998), SAINT-Plus (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and CAMERON (Watkin et al., 1996), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6···N2i0.8202.0102.783 (4)156
C10—H10···O2ii0.9302.5503.425 (4)156
C12—H12···O2ii0.9302.6703.499 (4)149
C1—H1A···O6iii0.9602.5663.444 (5)152
C17—H17C···O2iv0.9602.4693.429 (5)179
Symmetry codes: (i) x, y1, z; (ii) x, y, z+1; (iii) x, y, z; (iv) x+1, y, z+1.
 

Acknowledgements

NSB is thankful to the University Grants Commission (UGC), India, for financial assistance and the Department of Science and Technology, (DST), India, for the data-collection facility under the IRHPA–DST program.

References

First citationAlam, O., Khan, S. A., Siddiqui, N. & Ahsan, W. (2010). Med. Chem. Res. 19, 1245–1258.  Web of Science CrossRef CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (1998). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconcin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationJotani, M. M., Baldaniya, B. B. & Jasinski, J. P. (2010). Acta Cryst. E66, o599–o600.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds