metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(1H-benzotriazole-4-sulfonato-κ2N3,O)(2,2′-bi­pyridyl-κ2N,N′)cadmium

aFaculty of Life Science and Chemical Engineering, Huaiyin Institute of Technology, Huaian 223003, People's Republic of China
*Correspondence e-mail: hgzhuxh@yeah.net

(Received 24 October 2011; accepted 1 November 2011; online 5 November 2011)

In the title complex, [Cd(C6H4N3O3S)2(C10H8N2)], the Cd2+ cation is located on a twofold rotation axis and is coordinated by two N and two O atoms from two symmetry-related benzotriazole-4-sulfonate anions and two N atoms from a 2,2-bipyridyl ligand, displaying a distorted CdN4O2 octa­hedral geometry. The crystal structure is stabilized by N—H⋯O and C—H⋯O hydrogen-bonding inter­actions.

Related literature

For a related structure, see: Xia et al. (2010[Xia, M.-Z., Lei, W., Wang, F.-Y., Jin, Z.-W. & Yang, T.-H. (2010). Asian J. Chem. 22, 3741-3744.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(C6H4N3O3S)2(C10H8N2)]

  • Mr = 664.95

  • Monoclinic, C 2/c

  • a = 8.148 (4) Å

  • b = 17.207 (7) Å

  • c = 17.720 (8) Å

  • β = 103.29 (1)°

  • V = 2417.8 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.14 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.805, Tmax = 0.805

  • 8519 measured reflections

  • 3009 independent reflections

  • 2866 reflections with I > 2σ(I)

  • Rint = 0.073

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.075

  • S = 1.05

  • 3009 reflections

  • 177 parameters

  • H-atom parameters constrained

  • Δρmax = 0.82 e Å−3

  • Δρmin = −0.64 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3N⋯O2i 0.93 1.86 2.776 (3) 167
C3—H3⋯O3ii 0.93 2.55 3.255 (3) 133
C7—H7⋯O2iii 0.93 2.56 3.204 (3) 127
Symmetry codes: (i) x+1, y, z; (ii) [-x-{\script{1\over 2}}, -y-{\script{1\over 2}}, -z]; (iii) [-x, y, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2000[Brandenburg, K. (2000). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Benzotriazole-4-sulfonic acid is often used as a ligand to synthesize complexes for its variable coordination modes. Herein, we report the crystal structure of title complex. The asymmetric unit consists of half of a cadmium ion, half of a 2,2-bipyridyl molecule, and a benzotriazole-4-sulfonate anion. The Cd ion is located on a two fold axis and coordinated by two N atoms from two different benzotriazole-4-sulfonate anions, two N atoms from 2,2-bipyridyl molecule, and two sulfonate O atoms from two different benzotriazole-4-sulfonate anions, displaying a distorted CdN4O2 octahedral geometry (Fig. 1). Both benzotriazole-4-sulfonate and 2,2-bipyridyl display bidentate chelating coordinating mode. In the crystal structure, there exist O—H···N and C—H···O hydrogen bonds (Table 1). Sulfonate O atoms as hydrogen bonding acceptor play a very important role in the formation of these hydrogen bonding interactions.

Related literature top

For a related structure, see: Xia et al. (2010).

Experimental top

A mixture of cadmium perchlorate hexahydrate (83.9 mg, 0.2 mmol), benzotriazole-4-sulfonic acid (39.8 mg, 0.2 mmol), 2,2-bipyridyl (31.2 mg, 0.2 mmol) and potassium hydroxide (11.2 mg, 0.2 mmol) in 12 ml H2O was sealed in a 16 ml Teflon-lined stainless steel container and heated to 393 K for 3 days. After cooling to room temperature, colorless block crystals of the title complex were obtained.

Refinement top

The hydrogen atoms bonded to C atoms were located in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). The hydrogen atom bonded to N3 was found from a difference Fourier map and fixed at that positio with Uiso(H) = 1.2Ueq(N).

Structure description top

Benzotriazole-4-sulfonic acid is often used as a ligand to synthesize complexes for its variable coordination modes. Herein, we report the crystal structure of title complex. The asymmetric unit consists of half of a cadmium ion, half of a 2,2-bipyridyl molecule, and a benzotriazole-4-sulfonate anion. The Cd ion is located on a two fold axis and coordinated by two N atoms from two different benzotriazole-4-sulfonate anions, two N atoms from 2,2-bipyridyl molecule, and two sulfonate O atoms from two different benzotriazole-4-sulfonate anions, displaying a distorted CdN4O2 octahedral geometry (Fig. 1). Both benzotriazole-4-sulfonate and 2,2-bipyridyl display bidentate chelating coordinating mode. In the crystal structure, there exist O—H···N and C—H···O hydrogen bonds (Table 1). Sulfonate O atoms as hydrogen bonding acceptor play a very important role in the formation of these hydrogen bonding interactions.

For a related structure, see: Xia et al. (2010).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2000); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The coordination environment of Cd ion in the title complex with the ellipsoids drawn at the 30% probability level. The hydrogen atoms have been omitted for clarity. symmetry code: a: -x, y, -z+1/2.
Bis(1H-benzotriazole-4-sulfonato-κ2N3,O)(2,2'- bipyridyl-κ2N,N')cadmium top
Crystal data top
[Cd(C6H4N3O3S)2(C10H8N2)]F(000) = 1328
Mr = 664.95Dx = 1.827 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 6866 reflections
a = 8.148 (4) Åθ = 2.4–28.4°
b = 17.207 (7) ŵ = 1.14 mm1
c = 17.720 (8) ÅT = 293 K
β = 103.29 (1)°Block, colorless
V = 2417.8 (19) Å30.20 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD
diffractometer
3009 independent reflections
Radiation source: fine-focus sealed tube2866 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.073
phi and ω scansθmax = 28.4°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 910
Tmin = 0.805, Tmax = 0.805k = 2222
8519 measured reflectionsl = 2317
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0361P)2 + 1.8012P]
where P = (Fo2 + 2Fc2)/3
3009 reflections(Δ/σ)max < 0.001
177 parametersΔρmax = 0.82 e Å3
0 restraintsΔρmin = 0.64 e Å3
Crystal data top
[Cd(C6H4N3O3S)2(C10H8N2)]V = 2417.8 (19) Å3
Mr = 664.95Z = 4
Monoclinic, C2/cMo Kα radiation
a = 8.148 (4) ŵ = 1.14 mm1
b = 17.207 (7) ÅT = 293 K
c = 17.720 (8) Å0.20 × 0.20 × 0.20 mm
β = 103.29 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
3009 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2866 reflections with I > 2σ(I)
Tmin = 0.805, Tmax = 0.805Rint = 0.073
8519 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.075H-atom parameters constrained
S = 1.05Δρmax = 0.82 e Å3
3009 reflectionsΔρmin = 0.64 e Å3
177 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0973 (2)0.10519 (11)0.06169 (11)0.0286 (3)
C20.1066 (3)0.15816 (14)0.00234 (12)0.0388 (4)
H20.20590.18600.01500.047*
C30.0298 (3)0.17160 (14)0.03310 (13)0.0449 (5)
H30.01790.20850.07240.054*
C40.1784 (3)0.13203 (14)0.01131 (12)0.0400 (5)
H40.26830.14090.03440.048*
C50.1872 (2)0.07701 (12)0.04815 (11)0.0297 (4)
C60.0555 (2)0.06363 (10)0.08486 (10)0.0252 (3)
C70.3344 (3)0.12261 (16)0.31089 (13)0.0445 (5)
H70.38580.07420.32060.053*
C80.4326 (4)0.18893 (19)0.32763 (15)0.0573 (7)
H80.54720.18550.35040.069*
C90.3560 (4)0.26011 (18)0.30959 (19)0.0681 (9)
H90.41970.30550.31800.082*
C100.1860 (4)0.26376 (15)0.27930 (18)0.0601 (7)
H100.13310.31160.26760.072*
C110.0927 (3)0.19536 (12)0.26615 (11)0.0376 (4)
Cd10.00000.017130 (9)0.25000.02575 (8)
N10.1089 (2)0.00941 (9)0.14217 (10)0.0281 (3)
N20.2645 (2)0.01101 (11)0.14125 (11)0.0340 (4)
N30.3117 (2)0.02916 (11)0.08527 (10)0.0329 (3)
H3N0.41720.02470.07380.039*
N40.1685 (2)0.12587 (10)0.28136 (10)0.0338 (3)
O10.18547 (17)0.07919 (9)0.19035 (8)0.0335 (3)
O20.3547 (2)0.02209 (10)0.07349 (10)0.0410 (4)
O30.3666 (2)0.16108 (11)0.09518 (10)0.0492 (4)
S10.26613 (5)0.09167 (3)0.10818 (3)0.02965 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0243 (8)0.0342 (9)0.0272 (8)0.0016 (7)0.0055 (6)0.0006 (7)
C20.0396 (11)0.0449 (11)0.0311 (9)0.0085 (9)0.0066 (8)0.0059 (8)
C30.0592 (14)0.0445 (12)0.0351 (10)0.0033 (10)0.0190 (10)0.0119 (9)
C40.0450 (11)0.0463 (11)0.0340 (10)0.0051 (9)0.0200 (9)0.0028 (9)
C50.0265 (8)0.0363 (9)0.0277 (8)0.0035 (7)0.0090 (7)0.0043 (7)
C60.0231 (8)0.0290 (8)0.0239 (7)0.0021 (6)0.0062 (6)0.0020 (6)
C70.0413 (11)0.0528 (13)0.0381 (10)0.0126 (10)0.0065 (9)0.0050 (9)
C80.0529 (15)0.0773 (19)0.0404 (12)0.0292 (14)0.0078 (11)0.0097 (12)
C90.082 (2)0.0547 (17)0.0692 (18)0.0351 (15)0.0195 (16)0.0240 (14)
C100.082 (2)0.0328 (11)0.0678 (17)0.0149 (12)0.0225 (15)0.0123 (11)
C110.0582 (13)0.0297 (9)0.0283 (9)0.0072 (9)0.0169 (8)0.0039 (7)
Cd10.02654 (11)0.02444 (11)0.02832 (11)0.0000.01050 (7)0.000
N10.0234 (7)0.0339 (8)0.0281 (7)0.0031 (6)0.0082 (6)0.0019 (6)
N20.0260 (8)0.0460 (10)0.0319 (8)0.0047 (6)0.0104 (6)0.0015 (7)
N30.0233 (7)0.0456 (9)0.0318 (8)0.0004 (6)0.0108 (6)0.0007 (7)
N40.0384 (8)0.0337 (8)0.0301 (7)0.0077 (7)0.0094 (6)0.0010 (6)
O10.0291 (7)0.0433 (8)0.0283 (6)0.0103 (6)0.0074 (5)0.0003 (5)
O20.0244 (7)0.0578 (11)0.0427 (8)0.0073 (6)0.0117 (6)0.0099 (7)
O30.0450 (9)0.0546 (10)0.0499 (9)0.0275 (8)0.0149 (7)0.0115 (8)
S10.0219 (2)0.0385 (2)0.0286 (2)0.00741 (16)0.00572 (16)0.00111 (17)
Geometric parameters (Å, º) top
C1—C21.381 (3)C9—H90.9300
C1—C61.412 (2)C10—C111.391 (3)
C1—S11.774 (2)C10—H100.9300
C2—C31.415 (3)C11—N41.344 (3)
C2—H20.9300C11—C11i1.487 (5)
C3—C41.365 (3)Cd1—N42.3114 (18)
C3—H30.9300Cd1—N4i2.3114 (18)
C4—C51.406 (3)Cd1—O12.3267 (15)
C4—H40.9300Cd1—O1i2.3267 (15)
C5—N31.354 (3)Cd1—N12.3293 (19)
C5—C61.397 (3)Cd1—N1i2.3293 (19)
C6—N11.374 (2)N1—N21.319 (2)
C7—N41.334 (3)N2—N31.336 (3)
C7—C81.386 (3)N3—H3N0.9310
C7—H70.9300O1—S11.4690 (15)
C8—C91.378 (5)O2—S11.4587 (17)
C8—H80.9300O3—S11.4363 (16)
C9—C101.367 (5)
C2—C1—C6116.48 (18)N4—Cd1—N4i71.91 (10)
C2—C1—S1121.87 (15)N4—Cd1—O1166.80 (5)
C6—C1—S1121.63 (14)N4i—Cd1—O1100.35 (7)
C1—C2—C3122.3 (2)N4—Cd1—O1i100.35 (7)
C1—C2—H2118.8N4i—Cd1—O1i166.80 (5)
C3—C2—H2118.8O1—Cd1—O1i89.15 (8)
C4—C3—C2121.9 (2)N4—Cd1—N192.23 (6)
C4—C3—H3119.0N4i—Cd1—N1106.18 (6)
C2—C3—H3119.0O1—Cd1—N179.50 (6)
C3—C4—C5115.9 (2)O1i—Cd1—N184.43 (6)
C3—C4—H4122.0N4—Cd1—N1i106.18 (6)
C5—C4—H4122.0N4i—Cd1—N1i92.23 (6)
N3—C5—C6104.12 (17)O1—Cd1—N1i84.43 (6)
N3—C5—C4132.63 (19)O1i—Cd1—N1i79.50 (6)
C6—C5—C4123.20 (18)N1—Cd1—N1i157.38 (8)
N1—C6—C5108.02 (16)N2—N1—C6108.28 (16)
N1—C6—C1131.83 (17)N2—N1—Cd1120.41 (13)
C5—C6—C1120.12 (17)C6—N1—Cd1128.60 (12)
N4—C7—C8122.2 (3)N1—N2—N3108.25 (16)
N4—C7—H7118.9N2—N3—C5111.32 (17)
C8—C7—H7118.9N2—N3—H3N123.9
C9—C8—C7118.3 (3)C5—N3—H3N124.8
C9—C8—H8120.9C7—N4—C11119.6 (2)
C7—C8—H8120.9C7—N4—Cd1123.54 (16)
C10—C9—C8119.7 (2)C11—N4—Cd1116.87 (15)
C10—C9—H9120.1S1—O1—Cd1130.56 (8)
C8—C9—H9120.1O3—S1—O2113.99 (11)
C9—C10—C11119.5 (3)O3—S1—O1112.90 (10)
C9—C10—H10120.3O2—S1—O1111.29 (10)
C11—C10—H10120.3O3—S1—C1106.89 (10)
N4—C11—C10120.7 (2)O2—S1—C1105.86 (9)
N4—C11—C11i117.13 (12)O1—S1—C1105.16 (9)
C10—C11—C11i122.13 (17)
C6—C1—C2—C31.0 (3)Cd1—N1—N2—N3162.45 (12)
S1—C1—C2—C3177.47 (18)N1—N2—N3—C50.0 (2)
C1—C2—C3—C40.9 (4)C6—C5—N3—N20.4 (2)
C2—C3—C4—C50.3 (3)C4—C5—N3—N2177.0 (2)
C3—C4—C5—N3178.3 (2)C8—C7—N4—C110.8 (3)
C3—C4—C5—C61.4 (3)C8—C7—N4—Cd1178.65 (18)
N3—C5—C6—N10.6 (2)C10—C11—N4—C71.4 (3)
C4—C5—C6—N1177.08 (18)C11i—C11—N4—C7179.5 (2)
N3—C5—C6—C1179.00 (16)C10—C11—N4—Cd1176.55 (19)
C4—C5—C6—C11.3 (3)C11i—C11—N4—Cd12.5 (3)
C2—C1—C6—N1177.84 (19)N4i—Cd1—N4—C7178.8 (2)
S1—C1—C6—N10.6 (3)O1—Cd1—N4—C7123.2 (3)
C2—C1—C6—C50.1 (3)O1i—Cd1—N4—C712.25 (18)
S1—C1—C6—C5178.54 (14)N1—Cd1—N4—C772.49 (17)
N4—C7—C8—C93.0 (4)N1i—Cd1—N4—C794.20 (17)
C7—C8—C9—C102.9 (5)N4i—Cd1—N4—C110.92 (11)
C8—C9—C10—C110.8 (5)O1—Cd1—N4—C1154.7 (3)
C9—C10—C11—N41.4 (4)O1i—Cd1—N4—C11169.89 (14)
C9—C10—C11—C11i179.6 (3)N1—Cd1—N4—C11105.37 (15)
C5—C6—N1—N20.7 (2)N1i—Cd1—N4—C1187.93 (15)
C1—C6—N1—N2178.77 (19)N4—Cd1—O1—S19.9 (3)
C5—C6—N1—Cd1160.36 (13)N4i—Cd1—O1—S162.73 (12)
C1—C6—N1—Cd117.7 (3)O1i—Cd1—O1—S1126.49 (14)
N4—Cd1—N1—N229.31 (15)N1—Cd1—O1—S141.99 (12)
N4i—Cd1—N1—N2101.12 (15)N1i—Cd1—O1—S1153.99 (12)
O1—Cd1—N1—N2161.04 (16)Cd1—O1—S1—O3176.99 (11)
O1i—Cd1—N1—N270.88 (15)Cd1—O1—S1—O253.35 (14)
N1i—Cd1—N1—N2115.61 (15)Cd1—O1—S1—C160.81 (13)
N4—Cd1—N1—C6171.67 (16)C2—C1—S1—O321.9 (2)
N4i—Cd1—N1—C699.86 (16)C6—C1—S1—O3156.48 (16)
O1—Cd1—N1—C62.02 (15)C2—C1—S1—O299.96 (19)
O1i—Cd1—N1—C688.15 (16)C6—C1—S1—O281.66 (17)
N1i—Cd1—N1—C643.42 (15)C2—C1—S1—O1142.14 (17)
C6—N1—N2—N30.4 (2)C6—C1—S1—O136.25 (18)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···O2ii0.931.862.776 (3)167
C3—H3···O3iii0.932.553.255 (3)133
C7—H7···O2i0.932.563.204 (3)127
Symmetry codes: (i) x, y, z+1/2; (ii) x+1, y, z; (iii) x1/2, y1/2, z.

Experimental details

Crystal data
Chemical formula[Cd(C6H4N3O3S)2(C10H8N2)]
Mr664.95
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)8.148 (4), 17.207 (7), 17.720 (8)
β (°) 103.29 (1)
V3)2417.8 (19)
Z4
Radiation typeMo Kα
µ (mm1)1.14
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.805, 0.805
No. of measured, independent and
observed [I > 2σ(I)] reflections
8519, 3009, 2866
Rint0.073
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.075, 1.05
No. of reflections3009
No. of parameters177
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.82, 0.64

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2000), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···O2i0.931.862.776 (3)167.0
C3—H3···O3ii0.932.553.255 (3)133.0
C7—H7···O2iii0.932.563.204 (3)127.0
Symmetry codes: (i) x+1, y, z; (ii) x1/2, y1/2, z; (iii) x, y, z+1/2.
 

Acknowledgements

The authors gratefully acknowledge the Natural Science Foundation of Jiangsu Province of China (BK2008195) for financial support of this work.

References

First citationBrandenburg, K. (2000). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXia, M.-Z., Lei, W., Wang, F.-Y., Jin, Z.-W. & Yang, T.-H. (2010). Asian J. Chem. 22, 3741–3744.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds