metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(1H-benzotriazole-7-sulfonato-κO)bis­­(1,10-phenanthroline-κ2N,N′)cadmium dihydrate

aFaculty of Life Science and Chemical Engineering, Huaiyin Institute of Technology, Huaian 223003, People's Republic of China
*Correspondence e-mail: hgzhuxh@yeah.net

(Received 24 October 2011; accepted 1 November 2011; online 5 November 2011)

In the title complex, [Cd(C6H4N3O3S)2(C12H8N2)2]·2H2O, the Cd2+ cation is located on an inversion center and is coordinated by four N atoms from two symmetry-related 1,10-phenanthroline ligands and two sulfonate O atoms from two benzotriazole-7-sulfonate anions, displaying a distorted CdN4O2 octa­hedral geometry. In the crystal, O—H⋯N, O—H⋯O, N—H⋯O, C—H⋯N and C—H⋯O hydrogen bonds occur. The lattice water mol­ecules and sulfonate O atoms as donor or acceptor atoms play important roles in the formation of these inter­actions.

Related literature

For related structures, see: Xia et al. (2010[Xia, M.-Z., Lei, W., Wang, F.-Y., Jin, Z.-W. & Yang, T.-H. (2010). Asian J. Chem. 22, 3741-3744.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(C6H4N3O3S)2(C12H8N2)2]·2H2O

  • Mr = 905.20

  • Triclinic, [P \overline 1]

  • a = 7.5675 (16) Å

  • b = 10.238 (2) Å

  • c = 11.974 (2) Å

  • α = 79.852 (2)°

  • β = 77.948 (3)°

  • γ = 84.092 (3)°

  • V = 891.0 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.80 mm−1

  • T = 293 K

  • 0.20 × 0.12 × 0.12 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.856, Tmax = 0.910

  • 4887 measured reflections

  • 3431 independent reflections

  • 3174 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.092

  • S = 1.06

  • 3431 reflections

  • 235 parameters

  • H-atom parameters constrained

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.79 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯N5i 0.98 2.10 3.015 (4) 155
O1W—H1W⋯O3ii 0.98 2.00 2.934 (5) 158
N3—H3N⋯O1iii 0.90 2.21 3.009 (4) 148
C6—H6⋯O2 0.93 2.60 2.947 (4) 103
C8—H8⋯N4iv 0.93 2.42 3.306 (6) 159
C14—H14⋯O1W 0.93 2.51 3.414 (5) 164
Symmetry codes: (i) x, y+1, z-1; (ii) x, y, z-1; (iii) -x+1, -y, -z+2; (iv) x-1, y+1, z.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2000[Brandenburg, K. (2000). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Benzotriazole-7-sulfonic acid are often used as ligand to synthesize complexes for its variable coordination modes. Herein, we report the crystal structure of title complex. The asymmetric unit consists of half of one cadmium ion, one 1,10-phenanthroline molecule, one benzotriazole-7-sulfonate anion, and one lattice water molecule. The Cd ion is located on an inversion center and coordinated by four N atoms from two different 1,10-phenanthroline molecules and two sulfonate O atoms from two different benzotriazole-7-sulfonate anions, displaying a distorted CdN4O2 octahedral geometry (Fig. 1). Benzotriazole-7-sulfonate shows a monodentate coordinating mode, while 1,10-phenanthroline displays a bidentate chelating coordinating mode. In the crystal structure, there exist O—H···N, O—H···O, N—H···O, C—H···N, and C—H···O hydrogen bonds (Table 1). Lattice water molecules and sulfonate O atoms as donor or acceptor play very important roles in the formation of these hydrogen bonding interactions.

Related literature top

For related structures, see: Xia et al. (2010).

Experimental top

A mixture of cadmium perchlorate hexahydrate (83.9 mg, 0.2 mmol), benzotriazole-7-sulfonic acid (39.8 mg, 0.2 mmol), 1,10-phenanthroline (36.0 mg, 0.2 mmol) and potassium hydroxide (11.2 mg, 0.2 mmol) in 12 ml H2O was sealed in a 16 ml Teflon-lined stainless steel container and heated to 393 K for 3 days. After cooling to room temperature, colorless block crystals of the title complex were obtained.

Refinement top

The hydrogen atoms bonded to C atoms were located in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). The hydrogen atoms bonded to N3 and O1W were found from a difference Fourier map and fixed at those position with Uiso(H) = 1.2Ueq(N or O).

Structure description top

Benzotriazole-7-sulfonic acid are often used as ligand to synthesize complexes for its variable coordination modes. Herein, we report the crystal structure of title complex. The asymmetric unit consists of half of one cadmium ion, one 1,10-phenanthroline molecule, one benzotriazole-7-sulfonate anion, and one lattice water molecule. The Cd ion is located on an inversion center and coordinated by four N atoms from two different 1,10-phenanthroline molecules and two sulfonate O atoms from two different benzotriazole-7-sulfonate anions, displaying a distorted CdN4O2 octahedral geometry (Fig. 1). Benzotriazole-7-sulfonate shows a monodentate coordinating mode, while 1,10-phenanthroline displays a bidentate chelating coordinating mode. In the crystal structure, there exist O—H···N, O—H···O, N—H···O, C—H···N, and C—H···O hydrogen bonds (Table 1). Lattice water molecules and sulfonate O atoms as donor or acceptor play very important roles in the formation of these hydrogen bonding interactions.

For related structures, see: Xia et al. (2010).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2000); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The coordination environment of Cd ion in the title complex with the ellipsoids drawn at the 30% probability level. The hydrogen atoms have been omitted for clarity. Symmetry code: a = -x, -y, -z+2.
Bis(1H-benzotriazole-7-sulfonato-κO)bis(1,10-phenanthroline- κ2N,N')cadmium dihydrate top
Crystal data top
[Cd(C6H4N3O3S)2(C12H8N2)2]·2H2OZ = 1
Mr = 905.20F(000) = 458
Triclinic, P1Dx = 1.687 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.5675 (16) ÅCell parameters from 2099 reflections
b = 10.238 (2) Åθ = 2.5–25.3°
c = 11.974 (2) ŵ = 0.80 mm1
α = 79.852 (2)°T = 293 K
β = 77.948 (3)°Block, colorless
γ = 84.092 (3)°0.20 × 0.12 × 0.12 mm
V = 891.0 (3) Å3
Data collection top
Bruker SMART APEXII CCD
diffractometer
3431 independent reflections
Radiation source: fine-focus sealed tube3174 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
phi and ω scansθmax = 26.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.856, Tmax = 0.910k = 129
4887 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0459P)2 + 0.3547P]
where P = (Fo2 + 2Fc2)/3
3431 reflections(Δ/σ)max < 0.001
235 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = 0.79 e Å3
Crystal data top
[Cd(C6H4N3O3S)2(C12H8N2)2]·2H2Oγ = 84.092 (3)°
Mr = 905.20V = 891.0 (3) Å3
Triclinic, P1Z = 1
a = 7.5675 (16) ÅMo Kα radiation
b = 10.238 (2) ŵ = 0.80 mm1
c = 11.974 (2) ÅT = 293 K
α = 79.852 (2)°0.20 × 0.12 × 0.12 mm
β = 77.948 (3)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
3431 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3174 reflections with I > 2σ(I)
Tmin = 0.856, Tmax = 0.910Rint = 0.017
4887 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.092H-atom parameters constrained
S = 1.06Δρmax = 0.51 e Å3
3431 reflectionsΔρmin = 0.79 e Å3
235 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2876 (4)0.0551 (3)1.2678 (3)0.0391 (7)
C20.3840 (4)0.1707 (3)1.2340 (3)0.0411 (7)
C30.3952 (5)0.2877 (3)1.3118 (3)0.0486 (8)
C40.3135 (6)0.2931 (4)1.4286 (3)0.0617 (10)
H40.32370.37031.48160.074*
C50.2185 (6)0.1815 (4)1.4619 (3)0.0616 (10)
H50.16150.18301.53880.074*
C60.2047 (5)0.0634 (4)1.3821 (3)0.0503 (8)
H60.13770.01071.40770.060*
C70.1788 (6)0.2998 (4)1.0384 (4)0.0667 (11)
H70.21900.25931.11410.080*
C80.2256 (7)0.4350 (4)1.0076 (6)0.0888 (16)
H80.29560.48281.06250.107*
C90.1697 (8)0.4960 (4)0.8992 (6)0.094
H90.20120.58580.87820.113*
C100.0633 (7)0.4231 (4)0.8176 (5)0.0826 (11)
C110.0040 (7)0.4799 (4)0.7000 (5)0.0826 (11)
H110.02230.56980.67520.099*
C120.1031 (7)0.4063 (5)0.6261 (4)0.086
H120.14310.44610.55010.103*
C130.1509 (6)0.2687 (5)0.6583 (3)0.0669 (12)
C140.2591 (6)0.1892 (5)0.5828 (3)0.075
H140.30360.22580.50650.090*
C150.2986 (6)0.0608 (6)0.6201 (3)0.0778 (15)
H150.37000.00800.56990.093*
C160.2322 (5)0.0062 (4)0.7349 (3)0.0553 (9)
H160.25990.08350.75960.066*
C170.0889 (5)0.2084 (3)0.7731 (3)0.0442 (8)
C180.0206 (5)0.2869 (3)0.8538 (3)0.0446 (8)
Cd10.00000.00001.00000.03563 (12)
N10.0792 (4)0.2266 (2)0.9638 (2)0.0440 (6)
N20.1306 (4)0.0781 (3)0.8100 (2)0.0412 (6)
N30.4811 (4)0.2013 (3)1.1326 (3)0.0528 (7)
H3N0.51450.14631.06610.063*
N40.5466 (5)0.3294 (3)1.1468 (3)0.0649 (9)
N50.4973 (5)0.3827 (3)1.2536 (3)0.0609 (8)
O10.2630 (3)0.0480 (2)1.06094 (19)0.0507 (6)
O20.1125 (4)0.1690 (2)1.2157 (2)0.0639 (7)
O30.4397 (4)0.1563 (3)1.1556 (3)0.0694 (8)
O1W0.5025 (6)0.3191 (3)0.3203 (3)0.1043 (13)
H1W0.45360.28020.26470.125*
H1WA0.53820.40940.28700.125*
S10.27401 (12)0.09358 (8)1.16896 (7)0.0434 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0376 (18)0.0377 (16)0.0447 (17)0.0022 (13)0.0102 (14)0.0116 (13)
C20.0438 (19)0.0382 (17)0.0441 (17)0.0036 (14)0.0117 (14)0.0097 (14)
C30.049 (2)0.0364 (17)0.063 (2)0.0067 (15)0.0189 (17)0.0031 (15)
C40.070 (3)0.056 (2)0.057 (2)0.017 (2)0.016 (2)0.0095 (18)
C50.064 (3)0.073 (3)0.045 (2)0.014 (2)0.0032 (18)0.0050 (18)
C60.051 (2)0.054 (2)0.0463 (19)0.0015 (17)0.0062 (16)0.0147 (16)
C70.065 (3)0.048 (2)0.084 (3)0.0110 (19)0.000 (2)0.027 (2)
C80.075 (3)0.045 (2)0.154 (5)0.021 (2)0.028 (3)0.045 (3)
C90.1030.0270.1690.0130.0730.019
C100.104 (3)0.0401 (15)0.112 (3)0.0210 (16)0.064 (2)0.0255 (15)
C110.104 (3)0.0401 (15)0.112 (3)0.0210 (16)0.064 (2)0.0255 (15)
C120.1080.0790.0730.0520.0490.044
C130.076 (3)0.086 (3)0.0399 (19)0.044 (2)0.0207 (19)0.0185 (19)
C140.0810.1160.0330.0670.0060.005
C150.055 (3)0.140 (5)0.044 (2)0.036 (3)0.0090 (18)0.033 (2)
C160.043 (2)0.078 (3)0.0448 (19)0.0017 (18)0.0003 (15)0.0201 (18)
C170.048 (2)0.0476 (19)0.0391 (17)0.0175 (15)0.0180 (15)0.0062 (14)
C180.049 (2)0.0306 (16)0.058 (2)0.0073 (14)0.0262 (16)0.0029 (14)
Cd10.0452 (2)0.02687 (17)0.03025 (17)0.00340 (13)0.00184 (13)0.00229 (11)
N10.0470 (17)0.0291 (13)0.0531 (16)0.0042 (12)0.0065 (13)0.0072 (12)
N20.0385 (15)0.0498 (16)0.0335 (13)0.0028 (12)0.0031 (11)0.0065 (11)
N30.062 (2)0.0408 (16)0.0515 (17)0.0086 (14)0.0040 (14)0.0127 (13)
N40.075 (2)0.0414 (17)0.081 (2)0.0146 (16)0.0183 (19)0.0232 (17)
N50.069 (2)0.0371 (16)0.081 (2)0.0011 (15)0.0253 (18)0.0088 (16)
O10.0553 (15)0.0516 (14)0.0439 (13)0.0002 (11)0.0099 (11)0.0066 (10)
O20.0668 (18)0.0477 (14)0.0699 (17)0.0178 (13)0.0034 (14)0.0144 (12)
O30.0634 (18)0.0540 (16)0.093 (2)0.0199 (13)0.0242 (15)0.0015 (14)
O1W0.182 (4)0.066 (2)0.066 (2)0.025 (2)0.032 (2)0.0030 (16)
S10.0464 (5)0.0329 (4)0.0505 (5)0.0015 (3)0.0090 (4)0.0088 (3)
Geometric parameters (Å, º) top
C1—C61.373 (5)C13—C141.402 (7)
C1—C21.402 (4)C13—C171.408 (5)
C1—S11.764 (3)C14—C151.336 (7)
C2—N31.351 (4)C14—H140.9300
C2—C31.388 (4)C15—C161.397 (5)
C3—N51.375 (5)C15—H150.9300
C3—C41.400 (5)C16—N21.330 (4)
C4—C51.361 (6)C16—H160.9300
C4—H40.9300C17—N21.356 (4)
C5—C61.412 (5)C17—C181.438 (5)
C5—H50.9300C18—N11.356 (4)
C6—H60.9300Cd1—N2i2.319 (2)
C7—N11.329 (4)Cd1—N22.319 (2)
C7—C81.398 (6)Cd1—N12.323 (2)
C7—H70.9300Cd1—N1i2.323 (2)
C8—C91.339 (8)Cd1—O12.381 (2)
C8—H80.9300Cd1—O1i2.381 (2)
C9—C101.401 (8)N3—N41.349 (4)
C9—H90.9300N3—H3N0.8963
C10—C181.410 (5)N4—N51.291 (5)
C10—C111.434 (7)O1—S11.471 (2)
C11—C121.325 (7)O2—S11.441 (3)
C11—H110.9300O3—S11.434 (3)
C12—C131.423 (7)O1W—H1W0.9832
C12—H120.9300O1W—H1WA0.9813
C6—C1—C2116.5 (3)C16—C15—H15120.1
C6—C1—S1121.7 (3)N2—C16—C15122.2 (4)
C2—C1—S1121.8 (2)N2—C16—H16118.9
N3—C2—C3104.3 (3)C15—C16—H16118.9
N3—C2—C1133.9 (3)N2—C17—C13121.7 (4)
C3—C2—C1121.8 (3)N2—C17—C18119.0 (3)
N5—C3—C2108.4 (3)C13—C17—C18119.3 (3)
N5—C3—C4130.9 (3)N1—C18—C10121.9 (4)
C2—C3—C4120.7 (3)N1—C18—C17118.2 (3)
C5—C4—C3117.7 (3)C10—C18—C17119.9 (4)
C5—C4—H4121.1N2i—Cd1—N2180.0
C3—C4—H4121.1N2i—Cd1—N1107.73 (9)
C4—C5—C6121.4 (4)N2—Cd1—N172.27 (9)
C4—C5—H5119.3N2i—Cd1—N1i72.27 (9)
C6—C5—H5119.3N2—Cd1—N1i107.73 (9)
C1—C6—C5121.8 (3)N1—Cd1—N1i180.000 (1)
C1—C6—H6119.1N2i—Cd1—O190.25 (8)
C5—C6—H6119.1N2—Cd1—O189.75 (9)
N1—C7—C8122.7 (4)N1—Cd1—O189.33 (9)
N1—C7—H7118.7N1i—Cd1—O190.67 (9)
C8—C7—H7118.7N2i—Cd1—O1i89.75 (9)
C9—C8—C7120.0 (4)N2—Cd1—O1i90.25 (8)
C9—C8—H8120.0N1—Cd1—O1i90.67 (9)
C7—C8—H8120.0N1i—Cd1—O1i89.33 (9)
C8—C9—C10119.4 (4)O1—Cd1—O1i180.0
C8—C9—H9120.3C7—N1—C18118.1 (3)
C10—C9—H9120.3C7—N1—Cd1126.6 (3)
C9—C10—C18118.0 (4)C18—N1—Cd1115.3 (2)
C9—C10—C11123.4 (4)C16—N2—C17118.6 (3)
C18—C10—C11118.7 (5)C16—N2—Cd1126.2 (2)
C12—C11—C10120.9 (4)C17—N2—Cd1115.0 (2)
C12—C11—H11119.5N4—N3—C2110.1 (3)
C10—C11—H11119.5N4—N3—H3N121.2
C11—C12—C13122.7 (4)C2—N3—H3N128.2
C11—C12—H12118.7N5—N4—N3109.4 (3)
C13—C12—H12118.7N4—N5—C3107.9 (3)
C14—C13—C17117.6 (4)S1—O1—Cd1128.09 (14)
C14—C13—C12123.9 (4)H1W—O1W—H1WA110.4
C17—C13—C12118.5 (4)O3—S1—O2115.18 (18)
C15—C14—C13120.1 (3)O3—S1—O1110.29 (17)
C15—C14—H14119.9O2—S1—O1113.12 (16)
C13—C14—H14119.9O3—S1—C1107.12 (15)
C14—C15—C16119.8 (4)O2—S1—C1106.42 (16)
C14—C15—H15120.1O1—S1—C1103.81 (14)
C6—C1—C2—N3179.8 (4)N2—Cd1—N1—C7179.0 (3)
S1—C1—C2—N30.1 (5)N1i—Cd1—N1—C7167 (100)
C6—C1—C2—C30.1 (5)O1—Cd1—N1—C789.0 (3)
S1—C1—C2—C3179.8 (3)O1i—Cd1—N1—C791.0 (3)
N3—C2—C3—N50.3 (4)N2i—Cd1—N1—C18176.9 (2)
C1—C2—C3—N5179.8 (3)N2—Cd1—N1—C183.1 (2)
N3—C2—C3—C4178.2 (3)N1i—Cd1—N1—C1816 (100)
C1—C2—C3—C41.7 (5)O1—Cd1—N1—C1893.1 (2)
N5—C3—C4—C5179.8 (4)O1i—Cd1—N1—C1886.9 (2)
C2—C3—C4—C52.1 (6)C15—C16—N2—C170.7 (5)
C3—C4—C5—C60.9 (6)C15—C16—N2—Cd1177.0 (3)
C2—C1—C6—C51.1 (5)C13—C17—N2—C160.2 (5)
S1—C1—C6—C5178.6 (3)C18—C17—N2—C16179.9 (3)
C4—C5—C6—C10.7 (6)C13—C17—N2—Cd1176.9 (3)
N1—C7—C8—C90.0 (7)C18—C17—N2—Cd13.4 (4)
C7—C8—C9—C100.4 (8)N2i—Cd1—N2—C1648 (100)
C8—C9—C10—C180.5 (7)N1—Cd1—N2—C16179.8 (3)
C8—C9—C10—C11179.4 (5)N1i—Cd1—N2—C160.2 (3)
C9—C10—C11—C12179.5 (5)O1—Cd1—N2—C1690.8 (3)
C18—C10—C11—C120.6 (7)O1i—Cd1—N2—C1689.2 (3)
C10—C11—C12—C130.9 (7)N2i—Cd1—N2—C17135 (100)
C11—C12—C13—C14178.4 (4)N1—Cd1—N2—C173.4 (2)
C11—C12—C13—C170.5 (6)N1i—Cd1—N2—C17176.6 (2)
C17—C13—C14—C150.7 (6)O1—Cd1—N2—C1792.8 (2)
C12—C13—C14—C15179.6 (4)O1i—Cd1—N2—C1787.2 (2)
C13—C14—C15—C160.3 (6)C3—C2—N3—N40.6 (4)
C14—C15—C16—N20.5 (6)C1—C2—N3—N4179.6 (4)
C14—C13—C17—N20.5 (5)C2—N3—N4—N50.6 (4)
C12—C13—C17—N2179.4 (3)N3—N4—N5—C30.4 (4)
C14—C13—C17—C18179.2 (3)C2—C3—N5—N40.0 (4)
C12—C13—C17—C180.3 (5)C4—C3—N5—N4178.4 (4)
C9—C10—C18—N10.1 (6)N2i—Cd1—O1—S134.20 (17)
C11—C10—C18—N1179.8 (3)N2—Cd1—O1—S1145.80 (17)
C9—C10—C18—C17179.7 (4)N1—Cd1—O1—S173.52 (17)
C11—C10—C18—C170.2 (6)N1i—Cd1—O1—S1106.48 (17)
N2—C17—C18—N10.5 (5)O1i—Cd1—O1—S1113 (100)
C13—C17—C18—N1179.8 (3)Cd1—O1—S1—O3158.95 (16)
N2—C17—C18—C10179.1 (3)Cd1—O1—S1—O228.3 (2)
C13—C17—C18—C100.6 (5)Cd1—O1—S1—C186.59 (18)
C8—C7—N1—C180.4 (6)C6—C1—S1—O399.8 (3)
C8—C7—N1—Cd1177.5 (3)C2—C1—S1—O379.9 (3)
C10—C18—N1—C70.3 (5)C6—C1—S1—O223.9 (3)
C17—C18—N1—C7179.3 (3)C2—C1—S1—O2156.4 (3)
C10—C18—N1—Cd1177.8 (3)C6—C1—S1—O1143.5 (3)
C17—C18—N1—Cd12.6 (4)C2—C1—S1—O136.8 (3)
N2i—Cd1—N1—C71.0 (3)
Symmetry code: (i) x, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···N5ii0.982.103.015 (4)155
O1W—H1W···O3iii0.982.002.934 (5)158
N3—H3N···O1iv0.902.213.009 (4)148
C6—H6···O20.932.602.947 (4)103
C8—H8···N4v0.932.423.306 (6)159
C14—H14···O1W0.932.513.414 (5)164
Symmetry codes: (ii) x, y+1, z1; (iii) x, y, z1; (iv) x+1, y, z+2; (v) x1, y+1, z.

Experimental details

Crystal data
Chemical formula[Cd(C6H4N3O3S)2(C12H8N2)2]·2H2O
Mr905.20
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.5675 (16), 10.238 (2), 11.974 (2)
α, β, γ (°)79.852 (2), 77.948 (3), 84.092 (3)
V3)891.0 (3)
Z1
Radiation typeMo Kα
µ (mm1)0.80
Crystal size (mm)0.20 × 0.12 × 0.12
Data collection
DiffractometerBruker SMART APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.856, 0.910
No. of measured, independent and
observed [I > 2σ(I)] reflections
4887, 3431, 3174
Rint0.017
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.092, 1.06
No. of reflections3431
No. of parameters235
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.51, 0.79

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2000), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···N5i0.982.103.015 (4)155.0
O1W—H1W···O3ii0.982.002.934 (5)158.0
N3—H3N···O1iii0.902.213.009 (4)148.0
C6—H6···O20.932.602.947 (4)103.0
C8—H8···N4iv0.932.423.306 (6)159.0
C14—H14···O1W0.932.513.414 (5)164.0
Symmetry codes: (i) x, y+1, z1; (ii) x, y, z1; (iii) x+1, y, z+2; (iv) x1, y+1, z.
 

Acknowledgements

The authors gratefully acknowledge the Natural Science Foundation of Jiangsu Province of China (BK2008195) for financial support of this work.

References

First citationBrandenburg, K. (2000). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXia, M.-Z., Lei, W., Wang, F.-Y., Jin, Z.-W. & Yang, T.-H. (2010). Asian J. Chem. 22, 3741–3744.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds