organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-[(4-Bromo­phen­yl)diazen­yl]-2-eth­­oxy­aniline

aDepartment of Chemistry, Islamic Azad University, Karaj Branch, Karaj, Iran, and bFaculty of Chemistry, Tarbiat Moallem University, Tehran, Iran
*Correspondence e-mail: m.melardi@kiau.ac.ir

(Received 28 October 2011; accepted 16 November 2011; online 23 November 2011)

The title compound, C14H14BrN3O, exhibits a trans geometry about the –N=N– double bond. The dihedral angle between the benzene rings is 24.01 (5)°. An intra­molecular N—H⋯O hydrogen bond occurs. In the crystal, inter­molecular N—H⋯N hydrogen bonds between the amine groups lead to the formation of a C(8) polymeric chain along [101].

Related literature

For the synthesis and crystal structures of similar diazenyl compounds, see: de Wit et al. (2008[Wit, J. de, Alberda van Ekenstein, G. O. R., Brinke, G. ten & Meetsma, A. (2008). Acta Cryst. E64, o1048.]); Yazici et al. (2006[Yazıcı, S., Albayrak, C., Ağar, E., Şenel, I. & Büyükgüngör, O. (2006). Acta Cryst. E62, o521-o522.]). For crystal structure of a chloro analogue of the title compound, see: Rofouei et al. (2011[Rofouei, M. K., Ghalami, Z., Attar Gharamaleki, J., Bruno, G. & Amiri Rudbari, H. (2011). Acta Cryst. E67, o1852.]). For graph-set motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C14H14BrN3O

  • Mr = 320.19

  • Monoclinic, P 21 /n

  • a = 13.219 (2) Å

  • b = 8.8289 (17) Å

  • c = 13.506 (2) Å

  • β = 118.855 (6)°

  • V = 1380.6 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.97 mm−1

  • T = 200 K

  • 0.40 × 0.20 × 0.10 mm

Data collection
  • Bruker SMART X2S benchtop diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SMART X2S, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA]) Tmin = 0.383, Tmax = 0.755

  • 8299 measured reflections

  • 2408 independent reflections

  • 1775 reflections with I > 2Σ(I)

  • Rint = 0.075

Refinement
  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.198

  • S = 1.00

  • 2408 reflections

  • 178 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.98 e Å−3

  • Δρmin = −1.11 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯N2i 0.88 (1) 2.38 (2) 3.228 (6) 163 (5)
N3—H3B⋯O1 0.88 (1) 2.28 (5) 2.628 (5) 103 (4)
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART X2S (Bruker, 2009[Bruker (2009). SMART X2S, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SMART X2S, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

We have recenly reported the crystal structure of 4-[(4-chlorophenyl)diazenyl]-3-methoxyaniline (Rofouei et al., 2011), a chloro analogue of the title compound. Diazenyl compounds characterized by having a diazo group (—NN—) commonly adopt the trans configuration in the ground state. In continuation to our work in this field, we now report the crystal structure of the title compound.

The title molecule (Fig. 1) adopts a trans configuration about the –N1N2– double bond and the C1—N1—N2—C9 dihedral angle is 177.3 (4)°. The molecular dimensions in the title compound are similar to the corresponding dimensions reported in other azo compounds (Yazici et al., 2006; de Wit et al., 2008; Rofouei et al., 2011).

In the structure of the title compound, the molecules are linked into chain-like polymers along the c axis, with C(8) graph set motif (Bernstein et al., 1995), through N3—H3A···N2i hydrogen bonds with D···A separation of 3.228 (6) Å (Fig. 2 and Tab. 1). The structure is further consolidated by N3—H3A···O1 intramolecular hydrogen bond with D···A separation of 2.628 (5) Å.

Related literature top

For the synthesis and crystal structures of similar diazenyl compounds, see: de Wit et al. (2008); Yazici et al. (2006). For crystal structure of a chloro analogue of the title compound, see: Rofouei et al. (2011). For graph-set motifs, see: Bernstein et al. (1995).

Experimental top

To a 100 ml flask in an ice bath, was added (0.349 g, 2 mmol) p-boromoaniline and (3.65 g, 0.1 mol) of HCl (d = 1.18 g.ml-1). To the obtained solution, was added dropwise a solution of sodium nitrite (0.14 g in 5 ml H2O). Then, a diluted solution of o-ethoxyaniline (0.244 g, 2 mmol) in methanol (5 ml) was added to the above solution. The pH of the solution was adjusted at about 6–7 by adding a solution of 10% of sodium acetate. The solution was stirred for about an hour, giving an orange precipitate. It was then filtered off and dried in vacuum. After dissolving in diethylether and recrystallization, red crystals of the title compound were obtained. M.p. 373–376 K.

Refinement top

Hydrogen atoms bonded to carbon were included at geometrically idealized positions and refined in riding mode with distances H—C = 0.95, 0.98 and 0.99 Å for aryl, methyl and methylene type H-atoms, respectively with Uiso(H) set to 1.2(1.5 for methyl)Ueq(C). Hydrogen atoms bonded to N were located from a difference Fourier map and refined with the N—H distances restrained to 0.88 (1) Å and Uiso(H) = 1.2Ueq(N).

Structure description top

We have recenly reported the crystal structure of 4-[(4-chlorophenyl)diazenyl]-3-methoxyaniline (Rofouei et al., 2011), a chloro analogue of the title compound. Diazenyl compounds characterized by having a diazo group (—NN—) commonly adopt the trans configuration in the ground state. In continuation to our work in this field, we now report the crystal structure of the title compound.

The title molecule (Fig. 1) adopts a trans configuration about the –N1N2– double bond and the C1—N1—N2—C9 dihedral angle is 177.3 (4)°. The molecular dimensions in the title compound are similar to the corresponding dimensions reported in other azo compounds (Yazici et al., 2006; de Wit et al., 2008; Rofouei et al., 2011).

In the structure of the title compound, the molecules are linked into chain-like polymers along the c axis, with C(8) graph set motif (Bernstein et al., 1995), through N3—H3A···N2i hydrogen bonds with D···A separation of 3.228 (6) Å (Fig. 2 and Tab. 1). The structure is further consolidated by N3—H3A···O1 intramolecular hydrogen bond with D···A separation of 2.628 (5) Å.

For the synthesis and crystal structures of similar diazenyl compounds, see: de Wit et al. (2008); Yazici et al. (2006). For crystal structure of a chloro analogue of the title compound, see: Rofouei et al. (2011). For graph-set motifs, see: Bernstein et al. (1995).

Computing details top

Data collection: SMART X2S (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, displacement ellipsoids are drawn at 50% probability level.
[Figure 2] Fig. 2. A part of the unit cell showing N3—H3A···N2 hydrogen bonds, to produce polymeric chain of the title molecules along the c axis.
4-[(4-Bromophenyl)diazenyl]-2-ethoxyaniline top
Crystal data top
C14H14BrN3OF(000) = 648
Mr = 320.19Dx = 1.540 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2935 reflections
a = 13.219 (2) Åθ = 2.9–24.8°
b = 8.8289 (17) ŵ = 2.97 mm1
c = 13.506 (2) ÅT = 200 K
β = 118.855 (6)°Block, yellow
V = 1380.6 (4) Å30.40 × 0.20 × 0.10 mm
Z = 4
Data collection top
Bruker SMART X2S benchtop
diffractometer
2408 independent reflections
Radiation source: fine-focus sealed tube1775 reflections with I > 2Σ(I)
Graphite monochromatorRint = 0.075
Detector resolution: 8.33 pixels mm-1θmax = 25.0°, θmin = 1.8°
ω scansh = 1513
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 1010
Tmin = 0.383, Tmax = 0.755l = 1616
8299 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.198H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.1373P)2]
where P = (Fo2 + 2Fc2)/3
2408 reflections(Δ/σ)max < 0.001
178 parametersΔρmax = 0.98 e Å3
2 restraintsΔρmin = 1.11 e Å3
Crystal data top
C14H14BrN3OV = 1380.6 (4) Å3
Mr = 320.19Z = 4
Monoclinic, P21/nMo Kα radiation
a = 13.219 (2) ŵ = 2.97 mm1
b = 8.8289 (17) ÅT = 200 K
c = 13.506 (2) Å0.40 × 0.20 × 0.10 mm
β = 118.855 (6)°
Data collection top
Bruker SMART X2S benchtop
diffractometer
2408 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
1775 reflections with I > 2Σ(I)
Tmin = 0.383, Tmax = 0.755Rint = 0.075
8299 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0652 restraints
wR(F2) = 0.198H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.98 e Å3
2408 reflectionsΔρmin = 1.11 e Å3
178 parameters
Special details top

Experimental. 1H NMR (300 MHz, d6-DMSO): 1.31 (3H, CH3), 4.10 (2H, OCH2), 6.72–7.68 (7H, aromatic ring) and 5.87 (2H, NH2 groups). 13C NMR (100 MHz, DMSO): 14.63 (CH3), 63.44 (OCH2), 101.60–151.34 (C atoms of aromatic rings).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.62107 (6)0.84573 (8)0.08362 (5)0.0740 (4)
O10.1368 (3)0.1305 (4)0.0555 (3)0.0469 (9)
N10.1207 (4)0.4681 (5)0.1255 (3)0.0441 (10)
N20.1867 (4)0.4891 (4)0.0227 (3)0.0444 (10)
N30.2711 (4)0.1068 (5)0.2750 (4)0.0477 (11)
H3A0.296 (5)0.071 (6)0.343 (2)0.057*
H3B0.270 (5)0.039 (5)0.227 (3)0.057*
C10.0220 (4)0.3782 (5)0.1537 (4)0.0380 (11)
C20.0054 (4)0.3036 (5)0.0774 (4)0.0396 (11)
H20.04240.31610.00180.047*
C30.1012 (4)0.2134 (5)0.1179 (4)0.0364 (11)
C40.1750 (4)0.1953 (5)0.2364 (4)0.0368 (11)
C50.1446 (4)0.2697 (5)0.3088 (4)0.0399 (11)
H50.19170.25800.38810.048*
C60.0488 (5)0.3591 (5)0.2688 (4)0.0438 (13)
H60.03050.40890.32050.053*
C70.0682 (5)0.1345 (6)0.0658 (4)0.0454 (13)
H7A0.05980.23990.09370.054*
H7B0.00960.09230.09000.054*
C80.1313 (5)0.0403 (7)0.1108 (4)0.0601 (15)
H8A0.08760.03880.19360.090*
H8B0.13960.06330.08180.090*
H8C0.20790.08390.08640.090*
C90.2870 (4)0.5761 (5)0.0032 (4)0.0429 (12)
C100.3484 (5)0.6451 (5)0.0999 (4)0.0472 (13)
H100.32400.63460.15520.057*
C110.4442 (4)0.7285 (6)0.1237 (4)0.0461 (12)
H110.48410.77980.19400.055*
C120.4832 (4)0.7385 (6)0.0462 (4)0.0479 (13)
C130.4241 (6)0.6680 (7)0.0578 (5)0.0611 (17)
H130.45100.67460.11150.073*
C140.3252 (5)0.5878 (7)0.0819 (4)0.0566 (15)
H140.28290.54010.15340.068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0634 (5)0.0968 (6)0.0643 (5)0.0445 (4)0.0328 (4)0.0213 (3)
O10.043 (2)0.060 (2)0.0371 (17)0.0123 (17)0.0188 (17)0.0022 (15)
N10.046 (3)0.043 (2)0.040 (2)0.0016 (19)0.018 (2)0.0031 (17)
N20.049 (3)0.043 (2)0.043 (2)0.0051 (19)0.024 (2)0.0064 (18)
N30.045 (3)0.055 (3)0.041 (2)0.014 (2)0.019 (2)0.0120 (19)
C10.034 (3)0.037 (2)0.044 (3)0.002 (2)0.020 (2)0.0029 (19)
C20.031 (3)0.043 (2)0.039 (2)0.000 (2)0.012 (2)0.001 (2)
C30.031 (3)0.038 (2)0.042 (3)0.001 (2)0.019 (2)0.002 (2)
C40.032 (3)0.035 (2)0.043 (3)0.001 (2)0.018 (2)0.0042 (19)
C50.041 (3)0.043 (3)0.037 (3)0.001 (2)0.020 (2)0.005 (2)
C60.055 (3)0.036 (2)0.049 (3)0.000 (2)0.031 (3)0.002 (2)
C70.049 (3)0.049 (3)0.037 (3)0.001 (2)0.019 (2)0.001 (2)
C80.068 (4)0.060 (3)0.050 (3)0.010 (3)0.028 (3)0.005 (3)
C90.044 (3)0.043 (3)0.045 (3)0.000 (2)0.023 (2)0.005 (2)
C100.050 (3)0.049 (3)0.046 (3)0.004 (2)0.025 (3)0.002 (2)
C110.049 (3)0.047 (3)0.036 (3)0.004 (2)0.017 (2)0.000 (2)
C120.040 (3)0.054 (3)0.046 (3)0.012 (2)0.018 (2)0.001 (2)
C130.062 (4)0.081 (4)0.050 (3)0.034 (3)0.035 (3)0.016 (3)
C140.050 (3)0.068 (4)0.043 (3)0.014 (3)0.015 (3)0.010 (3)
Geometric parameters (Å, º) top
Br1—C121.893 (5)C6—H60.9500
O1—C31.361 (6)C7—C81.498 (8)
O1—C71.439 (6)C7—H7A0.9900
N1—N21.246 (5)C7—H7B0.9900
N1—C11.412 (6)C8—H8A0.9800
N2—C91.442 (7)C8—H8B0.9800
N3—C41.363 (7)C8—H8C0.9800
N3—H3A0.876 (10)C9—C101.371 (7)
N3—H3B0.879 (10)C9—C141.383 (8)
C1—C61.384 (7)C10—C111.363 (7)
C1—C21.410 (7)C10—H100.9500
C2—C31.367 (7)C11—C121.375 (7)
C2—H20.9500C11—H110.9500
C3—C41.424 (7)C12—C131.383 (7)
C4—C51.388 (7)C13—C141.380 (9)
C5—C61.363 (7)C13—H130.9500
C5—H50.9500C14—H140.9500
C3—O1—C7118.4 (4)O1—C7—H7B110.5
N2—N1—C1116.3 (4)C8—C7—H7B110.5
N1—N2—C9111.8 (4)H7A—C7—H7B108.7
C4—N3—H3A114 (4)C7—C8—H8A109.5
C4—N3—H3B116 (4)C7—C8—H8B109.5
H3A—N3—H3B113 (5)H8A—C8—H8B109.5
C6—C1—C2119.4 (4)C7—C8—H8C109.5
C6—C1—N1114.1 (4)H8A—C8—H8C109.5
C2—C1—N1126.5 (4)H8B—C8—H8C109.5
C3—C2—C1119.6 (4)C10—C9—C14119.4 (5)
C3—C2—H2120.2C10—C9—N2117.6 (5)
C1—C2—H2120.2C14—C9—N2123.0 (5)
O1—C3—C2126.5 (4)C11—C10—C9120.4 (5)
O1—C3—C4112.5 (4)C11—C10—H10119.8
C2—C3—C4121.0 (4)C9—C10—H10119.8
N3—C4—C5122.3 (4)C10—C11—C12120.2 (5)
N3—C4—C3120.0 (4)C10—C11—H11119.9
C5—C4—C3117.7 (4)C12—C11—H11119.9
C6—C5—C4121.6 (4)C11—C12—C13120.6 (5)
C6—C5—H5119.2C11—C12—Br1119.7 (4)
C4—C5—H5119.2C13—C12—Br1119.7 (4)
C5—C6—C1120.8 (5)C14—C13—C12118.4 (5)
C5—C6—H6119.6C14—C13—H13120.8
C1—C6—H6119.6C12—C13—H13120.8
O1—C7—C8106.3 (4)C13—C14—C9120.9 (5)
O1—C7—H7A110.5C13—C14—H14119.6
C8—C7—H7A110.5C9—C14—H14119.6
C1—N1—N2—C9177.3 (4)C2—C1—C6—C50.2 (7)
N2—N1—C1—C6179.6 (4)N1—C1—C6—C5177.1 (4)
N2—N1—C1—C23.8 (7)C3—O1—C7—C8177.1 (5)
C6—C1—C2—C30.2 (7)N1—N2—C9—C10161.2 (5)
N1—C1—C2—C3176.3 (5)N1—N2—C9—C1421.2 (7)
C7—O1—C3—C20.6 (7)C14—C9—C10—C112.1 (8)
C7—O1—C3—C4178.2 (4)N2—C9—C10—C11179.8 (4)
C1—C2—C3—O1177.6 (5)C9—C10—C11—C123.0 (8)
C1—C2—C3—C41.0 (7)C10—C11—C12—C131.9 (9)
O1—C3—C4—N32.2 (6)C10—C11—C12—Br1176.6 (4)
C2—C3—C4—N3178.9 (5)C11—C12—C13—C140.1 (10)
O1—C3—C4—C5177.4 (4)Br1—C12—C13—C14178.6 (5)
C2—C3—C4—C51.5 (7)C12—C13—C14—C91.0 (10)
N3—C4—C5—C6179.3 (5)C10—C9—C14—C130.1 (9)
C3—C4—C5—C61.1 (7)N2—C9—C14—C13177.6 (6)
C4—C5—C6—C10.3 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···N2i0.88 (1)2.38 (2)3.228 (6)163 (5)
N3—H3B···O10.88 (1)2.28 (5)2.628 (5)103 (4)
Symmetry code: (i) x1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC14H14BrN3O
Mr320.19
Crystal system, space groupMonoclinic, P21/n
Temperature (K)200
a, b, c (Å)13.219 (2), 8.8289 (17), 13.506 (2)
β (°) 118.855 (6)
V3)1380.6 (4)
Z4
Radiation typeMo Kα
µ (mm1)2.97
Crystal size (mm)0.40 × 0.20 × 0.10
Data collection
DiffractometerBruker SMART X2S benchtop
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.383, 0.755
No. of measured, independent and
observed [I > 2Σ(I)] reflections
8299, 2408, 1775
Rint0.075
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.198, 1.00
No. of reflections2408
No. of parameters178
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.98, 1.11

Computer programs: SMART X2S (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···N2i0.876 (10)2.38 (2)3.228 (6)163 (5)
N3—H3B···O10.879 (10)2.28 (5)2.628 (5)103 (4)
Symmetry code: (i) x1/2, y+1/2, z1/2.
 

Acknowledgements

JAG thanks the American Crystallographic Association for a scholarship to the ACA summer school, and Bruce C. Noll of Bruker AXS Inc., and Peter Müller of the Massachusetts Institute of Technology for their assistance in this work.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). SMART X2S, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA  Google Scholar
First citationRofouei, M. K., Ghalami, Z., Attar Gharamaleki, J., Bruno, G. & Amiri Rudbari, H. (2011). Acta Cryst. E67, o1852.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWit, J. de, Alberda van Ekenstein, G. O. R., Brinke, G. ten & Meetsma, A. (2008). Acta Cryst. E64, o1048.  Web of Science CrossRef IUCr Journals Google Scholar
First citationYazıcı, S., Albayrak, C., Ağar, E., Şenel, I. & Büyükgüngör, O. (2006). Acta Cryst. E62, o521–o522.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds