metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[aqua­{μ3-5-[(pyridin-2-ylmeth­yl)amino]­isophthalato-κ5N,N′:O1,O1′:O3}cobalt(II)]

aFaculty of Life Science and Chemical Engineering, Huaiyin Institute of Technology, Huaian 223003, People's Republic of China
*Correspondence e-mail: hgzhuxh@yeah.net

(Received 29 October 2011; accepted 23 November 2011; online 30 November 2011)

In the title polymer, {[Co(C14H10N2O4)(H2O)]·3.5H2O}n, the Co2+ ion is coordinated by three carboxyl­ate O atoms from two 5-[(pyridin-2-ylmeth­yl)amino]­isophthalate anions, two N atoms from a (pyridin-2-ylmeth­yl)amino group and an O atom from a water mol­ecule, furnishing a distorted CoO4N2 octa­hedral geometry. Each anion acts as a μ3-bridge, linking cobalt ions into a two-dimensional layer parallel to (100). The asymmetric unit also contains three and a half solvent water mol­ecules, which could not be modeled. Therefore, the diffraction contribution of the solvent water mol­ecules was removed by the subroutine SQUEEZE in PLATON [Spek (2009). Acta Cryst. D65, 148–155]. The crystal structure is stabilized by O—H⋯O hydrogen bonds in which the coordinated water mol­ecule acts as donor and the carboxyl­ate O atoms as acceptors.

Related literature

For related structures, see: Kuai et al. (2011[Kuai, H.-W., Cheng, X.-C., Feng, L.-D. & Zhu, X.-H. (2011). Z. Anorg. Allg. Chem. 637, 1560-1565.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C14H10N2O4)(H2O)]·3.5H2O

  • Mr = 410.24

  • Monoclinic, P 21 /c

  • a = 11.0926 (11) Å

  • b = 9.8735 (10) Å

  • c = 17.4317 (15) Å

  • β = 116.533 (5)°

  • V = 1708.1 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.05 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.821, Tmax = 0.821

  • 11993 measured reflections

  • 4259 independent reflections

  • 3809 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.124

  • S = 1.11

  • 4259 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.81 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Selected bond lengths (Å)

Co1—O3i 1.9999 (19)
Co1—N2ii 2.090 (2)
Co1—O5 2.110 (2)
Co1—O1 2.132 (2)
Co1—O2 2.195 (2)
Co1—N1ii 2.275 (2)
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) -x+2, -y+1, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5WA⋯O4i 0.87 2.25 2.946 (3) 137
O5—H5WA⋯O1iii 0.87 2.42 3.047 (3) 130
O5—H5W⋯O4iv 0.93 1.90 2.819 (3) 168
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) -x+2, -y, -z+1; (iv) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2000[Brandenburg, K. (2000). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

5-(Pyridin-2-ylmethyl)aminoisophthalic acid possesses some peculiar features in the assembly of coordination compounds due to its unique molecular structure. Herein, we report the crystal structure of the title complex. The asymmetric unit consists of one cobalt ion, one 5-(pyridin-2-ylmethyl)aminoisophthalate anion, one coordinated water molecule, and 3.5 lattice water molecules. However, the solvent water molecules could not be modeled as discrete atomic sites. We employed SQUEEZE subroutine in PLATON (Spek, 2009) to exclude the diffraction contribution of the solvent water molecules.

In the title polymer, each Co ion is coordinated by three carboxylate O atoms from two different 5-(pyridin-2-ylmethyl)aminoisophthalate anions, two N atoms from (pyridin-2-ylmethyl)amino group and one O atom from a coordinated water molecule, to furnish a distorted CoO4N2 octahedral geometry (Fig. 1). Each anion acts as a µ3-bridge, linking cobalt ions to form a two-dimensional layer. In the crystal structure, there exist O—H···O hydrogen bonds (Table 1). Coordinated water molecule and carboxylate oxygen atoms act as donors or acceptors in the formation of these hydrogen bonding interactions.

Related literature top

For related structures, see: Kuai et al. (2011).

Experimental top

A mixture of cobalt nitrate hexahydrate (58.2 mg, 0.2 mmol), 5-(pyridin-2-ylmethyl)aminoisophthalic acid (54.4 mg, 0.2 mmol), and 3 ml N,N-dimethylformamide in H2O (12 ml) was sealed in a 16 ml Teflon-lined stainless steel container and heated to 373 K for 3 days. After cooling the container to the room temperature, red block crystals of the title complex were obtained.

Refinement top

The hydrogen atoms bonded to C atoms were included in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.93 and 0.97 Å for aryl and methylene H-atoms with Uiso(H) = 1.2Ueq(C). The hydrogen atoms bonded to N1 and O5 were located from a difference Fourier map and fixed at those positions with Uiso(H) = 1.2Ueq(N or O)]. The structure contains three and a half molecules of water of hydration, which could not be modeled as discrete atomic sites. We employed SQUEEZE in PLATON (Spek, 2009) to remove the diffraction contribution of the solvent water molecules.

Structure description top

5-(Pyridin-2-ylmethyl)aminoisophthalic acid possesses some peculiar features in the assembly of coordination compounds due to its unique molecular structure. Herein, we report the crystal structure of the title complex. The asymmetric unit consists of one cobalt ion, one 5-(pyridin-2-ylmethyl)aminoisophthalate anion, one coordinated water molecule, and 3.5 lattice water molecules. However, the solvent water molecules could not be modeled as discrete atomic sites. We employed SQUEEZE subroutine in PLATON (Spek, 2009) to exclude the diffraction contribution of the solvent water molecules.

In the title polymer, each Co ion is coordinated by three carboxylate O atoms from two different 5-(pyridin-2-ylmethyl)aminoisophthalate anions, two N atoms from (pyridin-2-ylmethyl)amino group and one O atom from a coordinated water molecule, to furnish a distorted CoO4N2 octahedral geometry (Fig. 1). Each anion acts as a µ3-bridge, linking cobalt ions to form a two-dimensional layer. In the crystal structure, there exist O—H···O hydrogen bonds (Table 1). Coordinated water molecule and carboxylate oxygen atoms act as donors or acceptors in the formation of these hydrogen bonding interactions.

For related structures, see: Kuai et al. (2011).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2000); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. : The coordination environment of Co ion in the title complex with the ellipsoids drawn at the 30% probability level. The hydrogen atoms have been omitted for clarity. Symmetry codes: A = -x + 2, -y + 1, -z + 1; B = x, -y + 1/2, z - 1/2; C = x, -y + 1/2, z + 1/2.
Poly[aqua{µ3-5-[(pyridin-2-ylmethyl)amino]isophthalato- κ5N,N':O1,O1':O3}cobalt(II)] top
Crystal data top
[Co(C14H10N2O4)(H2O)]·3.5H2OF(000) = 846
Mr = 410.24Dx = 1.593 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6314 reflections
a = 11.0926 (11) Åθ = 2.4–28.4°
b = 9.8735 (10) ŵ = 1.05 mm1
c = 17.4317 (15) ÅT = 293 K
β = 116.533 (5)°Block, red
V = 1708.1 (3) Å30.20 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD
diffractometer
4259 independent reflections
Radiation source: fine-focus sealed tube3809 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
φ and ω scansθmax = 28.4°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1412
Tmin = 0.821, Tmax = 0.821k = 1310
11993 measured reflectionsl = 2223
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0407P)2 + 3.8921P]
where P = (Fo2 + 2Fc2)/3
4259 reflections(Δ/σ)max = 0.001
199 parametersΔρmax = 0.81 e Å3
0 restraintsΔρmin = 0.43 e Å3
Crystal data top
[Co(C14H10N2O4)(H2O)]·3.5H2OV = 1708.1 (3) Å3
Mr = 410.24Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.0926 (11) ŵ = 1.05 mm1
b = 9.8735 (10) ÅT = 293 K
c = 17.4317 (15) Å0.20 × 0.20 × 0.20 mm
β = 116.533 (5)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
4259 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3809 reflections with I > 2σ(I)
Tmin = 0.821, Tmax = 0.821Rint = 0.021
11993 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.124H-atom parameters constrained
S = 1.11Δρmax = 0.81 e Å3
4259 reflectionsΔρmin = 0.43 e Å3
199 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8386 (3)0.5358 (3)0.59337 (16)0.0210 (5)
C20.8790 (3)0.5330 (3)0.68135 (17)0.0225 (5)
H20.83440.58580.70480.027*
C30.9868 (3)0.4503 (3)0.73445 (16)0.0217 (5)
C41.0543 (3)0.3722 (3)0.70059 (16)0.0214 (5)
H41.12730.31950.73640.026*
C51.0122 (3)0.3726 (3)0.61166 (16)0.0216 (5)
C60.9043 (3)0.4529 (3)0.55925 (17)0.0231 (5)
H60.87520.45140.50030.028*
C71.0840 (3)0.2913 (3)0.57301 (17)0.0232 (5)
C81.0286 (3)0.4465 (3)0.82983 (17)0.0242 (5)
C90.6291 (3)0.6616 (3)0.55952 (19)0.0291 (6)
H9A0.66850.70560.61510.035*
H9B0.58060.58190.56300.035*
C100.5346 (3)0.7568 (3)0.49261 (18)0.0261 (5)
C110.3962 (3)0.7546 (3)0.4660 (2)0.0375 (7)
H110.35870.69260.48940.045*
C120.3154 (3)0.8459 (4)0.4045 (3)0.0453 (9)
H120.22260.84560.38560.054*
C130.3740 (3)0.9382 (4)0.3709 (2)0.0419 (8)
H130.32161.00100.32970.050*
C140.5124 (3)0.9341 (3)0.4002 (2)0.0333 (6)
H140.55230.99540.37810.040*
Co11.20146 (4)0.17514 (4)0.49770 (2)0.02074 (11)
N10.7352 (2)0.6226 (2)0.53540 (15)0.0239 (5)
H1N0.68760.58620.48220.029*
N20.5908 (2)0.8448 (2)0.45967 (15)0.0243 (5)
O11.0210 (2)0.2537 (2)0.49556 (13)0.0298 (4)
O21.2068 (2)0.2644 (2)0.61450 (14)0.0318 (5)
O31.1274 (2)0.3701 (2)0.87308 (12)0.0270 (4)
O40.9694 (3)0.5200 (3)0.86000 (15)0.0454 (6)
O51.1716 (2)0.0155 (2)0.54116 (15)0.0337 (5)
H5WA1.10690.05870.49950.040*
H5W1.13670.00120.57990.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0250 (12)0.0200 (12)0.0202 (12)0.0001 (10)0.0119 (10)0.0011 (9)
C20.0271 (13)0.0227 (12)0.0222 (12)0.0027 (10)0.0151 (10)0.0014 (10)
C30.0277 (13)0.0225 (12)0.0175 (11)0.0013 (10)0.0123 (10)0.0010 (9)
C40.0258 (12)0.0208 (12)0.0190 (11)0.0020 (10)0.0113 (10)0.0015 (9)
C50.0289 (13)0.0210 (12)0.0196 (12)0.0015 (10)0.0150 (10)0.0012 (9)
C60.0297 (13)0.0236 (12)0.0182 (11)0.0003 (10)0.0127 (10)0.0004 (10)
C70.0330 (14)0.0202 (12)0.0232 (12)0.0004 (10)0.0187 (11)0.0002 (10)
C80.0338 (14)0.0241 (13)0.0202 (12)0.0003 (11)0.0170 (11)0.0002 (10)
C90.0282 (14)0.0330 (15)0.0322 (15)0.0032 (12)0.0188 (12)0.0063 (12)
C100.0263 (13)0.0258 (13)0.0275 (13)0.0020 (11)0.0133 (11)0.0011 (11)
C110.0260 (14)0.0339 (16)0.051 (2)0.0013 (12)0.0157 (14)0.0028 (14)
C120.0244 (15)0.0425 (19)0.064 (2)0.0062 (14)0.0155 (15)0.0073 (17)
C130.0323 (16)0.0419 (18)0.0445 (19)0.0135 (14)0.0110 (14)0.0100 (15)
C140.0347 (15)0.0333 (15)0.0318 (15)0.0097 (13)0.0149 (13)0.0072 (12)
Co10.02195 (19)0.0267 (2)0.01563 (17)0.00285 (14)0.01024 (13)0.00087 (13)
N10.0257 (11)0.0274 (11)0.0203 (10)0.0046 (9)0.0117 (9)0.0020 (9)
N20.0241 (11)0.0259 (11)0.0234 (11)0.0032 (9)0.0110 (9)0.0016 (9)
O10.0366 (11)0.0365 (11)0.0191 (9)0.0087 (9)0.0150 (8)0.0012 (8)
O20.0298 (10)0.0399 (12)0.0307 (11)0.0009 (9)0.0179 (9)0.0085 (9)
O30.0306 (10)0.0348 (11)0.0181 (9)0.0023 (9)0.0131 (8)0.0022 (8)
O40.0668 (16)0.0505 (15)0.0279 (11)0.0300 (13)0.0293 (12)0.0095 (10)
O50.0338 (11)0.0296 (11)0.0398 (12)0.0010 (9)0.0183 (10)0.0026 (9)
Geometric parameters (Å, º) top
C1—C21.393 (4)C10—C111.391 (4)
C1—C61.394 (4)C11—C121.381 (5)
C1—N11.427 (3)C11—H110.9300
C2—C31.402 (4)C12—C131.392 (5)
C2—H20.9300C12—H120.9300
C3—C41.377 (4)C13—C141.384 (5)
C3—C81.514 (3)C13—H130.9300
C4—C51.405 (3)C14—N21.343 (4)
C4—H40.9300C14—H140.9300
C5—C61.385 (4)Co1—O3i1.9999 (19)
C5—C71.488 (3)Co1—N2ii2.090 (2)
C6—H60.9300Co1—O52.110 (2)
C7—O21.252 (4)Co1—O12.132 (2)
C7—O11.267 (3)Co1—O22.195 (2)
C8—O41.242 (3)Co1—N1ii2.275 (2)
C8—O31.265 (3)N1—Co1ii2.275 (2)
C9—N11.468 (3)N1—H1N0.9118
C9—C101.500 (4)N2—Co1ii2.090 (2)
C9—H9A0.9700O3—Co1iii1.9999 (19)
C9—H9B0.9700O5—H5WA0.8710
C10—N21.339 (4)O5—H5W0.9279
C2—C1—C6119.1 (2)C13—C12—H12120.3
C2—C1—N1123.6 (2)C14—C13—C12118.3 (3)
C6—C1—N1117.3 (2)C14—C13—H13120.8
C1—C2—C3119.9 (2)C12—C13—H13120.8
C1—C2—H2120.1N2—C14—C13122.3 (3)
C3—C2—H2120.1N2—C14—H14118.9
C4—C3—C2120.7 (2)C13—C14—H14118.9
C4—C3—C8119.9 (2)O3i—Co1—N2ii102.58 (9)
C2—C3—C8119.4 (2)O3i—Co1—O597.84 (9)
C3—C4—C5119.6 (2)N2ii—Co1—O596.50 (9)
C3—C4—H4120.2O3i—Co1—O197.79 (8)
C5—C4—H4120.2N2ii—Co1—O1156.61 (9)
C6—C5—C4119.5 (2)O5—Co1—O191.96 (8)
C6—C5—C7119.3 (2)O3i—Co1—O2157.69 (8)
C4—C5—C7121.1 (2)N2ii—Co1—O298.01 (9)
C5—C6—C1121.1 (2)O5—Co1—O288.21 (9)
C5—C6—H6119.4O1—Co1—O260.40 (8)
C1—C6—H6119.4O3i—Co1—N1ii86.81 (8)
O2—C7—O1119.6 (2)N2ii—Co1—N1ii75.91 (9)
O2—C7—C5121.1 (2)O5—Co1—N1ii171.88 (9)
O1—C7—C5119.2 (2)O1—Co1—N1ii94.02 (8)
O4—C8—O3125.3 (3)O2—Co1—N1ii89.96 (8)
O4—C8—C3119.4 (3)C1—N1—C9116.7 (2)
O3—C8—C3115.3 (2)C1—N1—Co1ii117.72 (17)
N1—C9—C10108.2 (2)C9—N1—Co1ii102.74 (17)
N1—C9—H9A110.1C1—N1—H1N113.6
C10—C9—H9A110.1C9—N1—H1N102.8
N1—C9—H9B110.1Co1ii—N1—H1N101.1
C10—C9—H9B110.1C10—N2—C14119.4 (3)
H9A—C9—H9B108.4C10—N2—Co1ii115.93 (18)
N2—C10—C11121.6 (3)C14—N2—Co1ii124.6 (2)
N2—C10—C9116.2 (2)C7—O1—Co191.19 (17)
C11—C10—C9122.2 (3)C7—O2—Co188.71 (16)
C12—C11—C10119.0 (3)C8—O3—Co1iii127.34 (17)
C12—C11—H11120.5Co1—O5—H5WA110.0
C10—C11—H11120.5Co1—O5—H5W108.0
C11—C12—C13119.4 (3)H5WA—O5—H5W103.0
C11—C12—H12120.3
C6—C1—C2—C31.8 (4)C6—C1—N1—C9153.4 (3)
N1—C1—C2—C3176.3 (2)C2—C1—N1—Co1ii94.4 (3)
C1—C2—C3—C40.4 (4)C6—C1—N1—Co1ii83.8 (3)
C1—C2—C3—C8179.2 (2)C10—C9—N1—C1177.6 (2)
C2—C3—C4—C51.7 (4)C10—C9—N1—Co1ii47.3 (3)
C8—C3—C4—C5177.9 (2)C11—C10—N2—C140.7 (4)
C3—C4—C5—C60.7 (4)C9—C10—N2—C14179.2 (3)
C3—C4—C5—C7179.0 (2)C11—C10—N2—Co1ii176.5 (2)
C4—C5—C6—C11.6 (4)C9—C10—N2—Co1ii3.6 (3)
C7—C5—C6—C1176.7 (2)C13—C14—N2—C100.5 (5)
C2—C1—C6—C52.8 (4)C13—C14—N2—Co1ii176.4 (3)
N1—C1—C6—C5175.4 (2)O2—C7—O1—Co13.4 (3)
C6—C5—C7—O2149.9 (3)C5—C7—O1—Co1173.6 (2)
C4—C5—C7—O228.4 (4)O3i—Co1—O1—C7173.06 (16)
C6—C5—C7—O127.1 (4)N2ii—Co1—O1—C722.6 (3)
C4—C5—C7—O1154.7 (3)O5—Co1—O1—C788.75 (17)
C4—C3—C8—O4178.1 (3)O2—Co1—O1—C71.93 (15)
C2—C3—C8—O42.3 (4)N1ii—Co1—O1—C785.74 (17)
C4—C3—C8—O30.9 (4)O1—C7—O2—Co13.3 (3)
C2—C3—C8—O3179.5 (2)C5—C7—O2—Co1173.6 (2)
N1—C9—C10—N237.2 (4)O3i—Co1—O2—C711.2 (3)
N1—C9—C10—C11142.9 (3)N2ii—Co1—O2—C7168.46 (17)
N2—C10—C11—C120.3 (5)O5—Co1—O2—C795.23 (17)
C9—C10—C11—C12179.6 (3)O1—Co1—O2—C71.95 (16)
C10—C11—C12—C130.4 (6)N1ii—Co1—O2—C792.69 (17)
C11—C12—C13—C140.5 (6)O4—C8—O3—Co1iii9.0 (4)
C12—C13—C14—N20.1 (5)C3—C8—O3—Co1iii174.00 (17)
C2—C1—N1—C928.5 (4)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+2, y+1, z+1; (iii) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5WA···O4i0.872.252.946 (3)137
O5—H5WA···O1iv0.872.423.047 (3)130
O5—H5W···O4v0.931.902.819 (3)168
Symmetry codes: (i) x, y+1/2, z1/2; (iv) x+2, y, z+1; (v) x+2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Co(C14H10N2O4)(H2O)]·3.5H2O
Mr410.24
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)11.0926 (11), 9.8735 (10), 17.4317 (15)
β (°) 116.533 (5)
V3)1708.1 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.05
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.821, 0.821
No. of measured, independent and
observed [I > 2σ(I)] reflections
11993, 4259, 3809
Rint0.021
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.124, 1.11
No. of reflections4259
No. of parameters199
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.81, 0.43

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2000), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Co1—O3i1.9999 (19)Co1—O12.132 (2)
Co1—N2ii2.090 (2)Co1—O22.195 (2)
Co1—O52.110 (2)Co1—N1ii2.275 (2)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5WA···O4i0.872.252.946 (3)136.5
O5—H5WA···O1iii0.872.423.047 (3)129.8
O5—H5W···O4iv0.931.902.819 (3)168.3
Symmetry codes: (i) x, y+1/2, z1/2; (iii) x+2, y, z+1; (iv) x+2, y1/2, z+3/2.
 

References

First citationBrandenburg, K. (2000). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, wisconsin, USA.  Google Scholar
First citationKuai, H.-W., Cheng, X.-C., Feng, L.-D. & Zhu, X.-H. (2011). Z. Anorg. Allg. Chem. 637, 1560–1565.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds