metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­chlorido[(4E,11E)-5,7,12,14-tetra­benzyl-7,14-di­methyl-1,4,8,11-tetra­aza­cyclo­tetra­deca-4,11-diene]cobalt(III) perchlorate

aDepartment of Chemistry, University of Chittagong, Chittagong 4331, Bangladesh, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 1 November 2011; accepted 3 November 2011; online 9 November 2011)

The CoIII atom in the title complex, [CoCl2(C40H48N4)]ClO4, is octa­hedrally coordinated within a trans-Cl2N4 donor set provided by the tetra­dentate macrocylic ligand and two chloride ions. The N—H atoms, which are orientated to one side of the N4 plane, form hydrogen bonds with chloride ions and perchlorate-O atoms. These along with C—H⋯O inter­actions consolidate the three-dimensional crystal structure. One of the benzene rings was disordered. This was resolved over two positions with the major component of the disorder having a site-occupancy factor of 0.672 (4).

Related literature

For background to the synthesis, characterization, kinetic studies and biological activity of 14-membered methyl-substituted tetra­aza­macrocyclic ligands, their N-substituted derivatives and metal complexes, see: Bembi et al. (1990[Bembi, R., Roy, T. G., Jhanji, A. K. & Maheswari, A. (1990). J. Chem. Soc. Dalton Trans. pp. 3531-3534.]); Roy et al. (2007[Roy, T. G., Hazari, S. K. S., Dey, B. K., Miah, H. A., Olbrich, F. & Rehder, D. (2007). Inorg. Chem. 46, 5372-5380.], 2011a[Roy, T. G., Hazari, S. K. S., Dey, B. K., Nath, B. C., Dutta, A., Olbrich, F. & Rehder, D. (2011a). Inorg. Chim. Acta, 371, 63-70.]); Hazari et al. (2008[Hazari, S. K. S., Roy, T. G., Barua, K. K. & Tiekink, E. R. T. (2008). J. Chem. Crystallogr. 38, 1-8.]). For a related structure, see: Roy et al. (2011b[Roy, T. G., Hazari, S. K. S., Nath, B. C., Ng, S. W. & Tiekink, E. R. T. (2011b). Acta Cryst. E67, m1581-m1582.]).

[Scheme 1]

Experimental

Crystal data
  • [CoCl2(C40H48N4)]ClO4

  • Mr = 814.10

  • Triclinic, [P \overline 1]

  • a = 10.8111 (7) Å

  • b = 13.835 (2) Å

  • c = 14.868 (3) Å

  • α = 73.66 (3)°

  • β = 70.06 (3)°

  • γ = 68.65 (2)°

  • V = 1915.6 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.70 mm−1

  • T = 153 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Rigaku AFC12/SATURN724 diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.627, Tmax = 1.000

  • 20336 measured reflections

  • 7470 independent reflections

  • 6940 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.142

  • S = 1.05

  • 7470 reflections

  • 476 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.72 e Å−3

  • Δρmin = −0.50 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2n⋯O1 0.88 (3) 2.24 (3) 3.063 (4) 155 (2)
N4—H4n⋯Cl2i 0.88 (3) 2.64 (2) 3.432 (2) 150 (3)
C10—H10a⋯O3ii 0.99 2.50 3.437 (4) 159
C19—H19b⋯O1iii 0.99 2.54 3.409 (4) 147
C38a—H38a⋯O4iv 0.95 2.57 3.480 (3) 160
Symmetry codes: (i) -x, -y+1, -z+1; (ii) x-1, y, z; (iii) -x+1, -y, -z+1; (iv) x-1, y, z+1.

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC. (2005). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: PATTY in DIRDIF92 (Beurskens et al., 1992[Beurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., Garcia-Granda, S., Gould, R. O., Smits, J. M. M. & Smykalla, C. (1992). The DIRDIF Program System. Technical Report. Crystallography Laboratory, University of Nijmegen, The Netherlands.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) & DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

In continuation of on-going studies of the synthesis, characterization and biological activities of substituted tetraazamacrocyclic ligands and their metal complexes (Bembi et al., 1990; Roy et al., 2007; Hazari et al., 2008; Roy et al., 2011a; Roy et al. 2011b), the synthesis and crystal structure of the title complex, (I), was investigated.

In (I), Fig. 1, the CoIII atom exists within a trans-Cl2N4 donor set defined by the four nitrogen atoms of the macrocyclic ligand and two chlorido atoms. The coordination geometry is based on an octahedron, with the greatest angular distortion manifested in the N2—Co—N3 angle of 83.81 (9)°. With respect to the central N4 plane, the rings adopt three distinct orientations. Two rings adopt similar orientations lying approximately perpendicular and parallel to the N4 plane: the dihedral angle between the N4 and the C12–C17 and C20–C25 planes are 86.928 (8) and 78.645 (10) °, respectively. The C27–C32 ring is also orientated in a perpendicular fashion (dihedral angle = 88.921 (10)°) but lies to one side of the N4 plane, with the C6—C26—C27—C28 torsion angle = 117.15 (4)°. The final ring is disordered over two positions. The major component is approximately planar with the N4 donor set, forming a dihedral angle of 20.644 (10)°, whereas the minor component forms a dihedral angle of 13.400 (9) °, i.e. even more co-planar. Within the N4 donor set, the two amine-H atoms are orientated to one side of the plane. The N2—H atom forms a contact with the perchlorate-O1 atom, and the N4—H forms an intramolecular N—H···Cl hydrogen bond, Table 2. These interactions along with several C—H···O contacts lead to the formation of supramolecular arrays in the ab plane. The layers stack along the c axis with the closest connection being of the type C—H···O, involving the perchlorate-O4 atom (Fig. 2 and Table 1).

Related literature top

For background to the synthesis, characterization, kinetic studies and biological activity of 14-membered methyl-substituted tetraazamacrocyclic ligands, their N-substituted derivatives and metal complexes, see: Bembi et al. (1990); Roy et al. (2007, 2011a); Hazari et al. (2008). For a related structure, see: Roy et al. (2011b).

Experimental top

The macrocyclic ligand, (4E,11E)-5,7,12,14-tetrabenzyl-7,14-dimethyl- 1,4,8,11-tetraazacyclotetradeca-4,11-diene (0.783 g, 1.0 mmol) was suspended in methanol (30 ml). Separately, cobaltous acetate (0.248 g, 1.0 mmol) was dissolved in methanol (30 ml). The combined solutions were heated on a water bath until the solution turned red. Concentrated HCl was added drop-wise so that the solution turned green. Then, about 1 ml HClO4 was added whereupon a green product started to appear. The mixture was heated in order to reduce the volume to 15 ml. The resulting solution was kept at room temperature for about 1 h. The solid product, (I), was separated by filtration, washed with dry ethanol, followed by diethylether and dried in a vacuum desiccator over silica-gel. The yield was about 50%. The same complex was also prepared by using the acetonitrile as the solvent instead of methanol. However, the yield was about 42%. Green crystals of (I) were isolated from the slow evaporation of its methanol solution.

Refinement top

The H-atoms were placed in calculated positions (C—H = 0.95–0.99 Å) and were included in the refinement in the riding model approximation, with Uiso(H) = 1.2–1.5Ueq(C). The N—H atoms were located from a difference map and refined with N—H = 0.88±0.01 Å, and with Uiso(H)= 1.2Uequiv(N). The C35–C40 phenyl ring was found to be disordered over two positions with a dihedral angle of 24.9 (3) Å between the orientations. After anisotropic refinement (pairs of atoms were constrained to have equivalent anisotropic displacement parameters), the major component had a site occupancy = 0.672 (4). A number of reflections, i.e. (3 2 11), (6 0 6), (10 5 0), (3 2 10), (2 1 12) and (2 2 11), were omitted from the final refinement owing to poor agreement.

Structure description top

In continuation of on-going studies of the synthesis, characterization and biological activities of substituted tetraazamacrocyclic ligands and their metal complexes (Bembi et al., 1990; Roy et al., 2007; Hazari et al., 2008; Roy et al., 2011a; Roy et al. 2011b), the synthesis and crystal structure of the title complex, (I), was investigated.

In (I), Fig. 1, the CoIII atom exists within a trans-Cl2N4 donor set defined by the four nitrogen atoms of the macrocyclic ligand and two chlorido atoms. The coordination geometry is based on an octahedron, with the greatest angular distortion manifested in the N2—Co—N3 angle of 83.81 (9)°. With respect to the central N4 plane, the rings adopt three distinct orientations. Two rings adopt similar orientations lying approximately perpendicular and parallel to the N4 plane: the dihedral angle between the N4 and the C12–C17 and C20–C25 planes are 86.928 (8) and 78.645 (10) °, respectively. The C27–C32 ring is also orientated in a perpendicular fashion (dihedral angle = 88.921 (10)°) but lies to one side of the N4 plane, with the C6—C26—C27—C28 torsion angle = 117.15 (4)°. The final ring is disordered over two positions. The major component is approximately planar with the N4 donor set, forming a dihedral angle of 20.644 (10)°, whereas the minor component forms a dihedral angle of 13.400 (9) °, i.e. even more co-planar. Within the N4 donor set, the two amine-H atoms are orientated to one side of the plane. The N2—H atom forms a contact with the perchlorate-O1 atom, and the N4—H forms an intramolecular N—H···Cl hydrogen bond, Table 2. These interactions along with several C—H···O contacts lead to the formation of supramolecular arrays in the ab plane. The layers stack along the c axis with the closest connection being of the type C—H···O, involving the perchlorate-O4 atom (Fig. 2 and Table 1).

For background to the synthesis, characterization, kinetic studies and biological activity of 14-membered methyl-substituted tetraazamacrocyclic ligands, their N-substituted derivatives and metal complexes, see: Bembi et al. (1990); Roy et al. (2007, 2011a); Hazari et al. (2008). For a related structure, see: Roy et al. (2011b).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: PATTY in DIRDIF92 (Beurskens et al., 1992); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) & DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level. Only the major orientation of the disordered C35—C40 ring is shown.
[Figure 2] Fig. 2. A view of the unit-cell contents in projection down the b axis in (I). The N—H···O(perchlorate), N—H···Cl, C—H···O(intra-layer) and C—H···O(inter-layer) interactions are shown as blue, orange, pink and brown dashed lines, respectively.
Dichlorido[(4E,11E)-5,7,12,14-tetrabenzyl-7,14-dimethyl- 1,4,8,11-tetraazacyclotetradeca-4,11-diene]cobalt(III) perchlorate top
Crystal data top
[CoCl2(C40H48N4)]ClO4Z = 2
Mr = 814.10F(000) = 852
Triclinic, P1Dx = 1.411 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.8111 (7) ÅCell parameters from 6113 reflections
b = 13.835 (2) Åθ = 2.2–30.4°
c = 14.868 (3) ŵ = 0.70 mm1
α = 73.66 (3)°T = 153 K
β = 70.06 (3)°Prism, green
γ = 68.65 (2)°0.30 × 0.20 × 0.10 mm
V = 1915.6 (5) Å3
Data collection top
Rigaku AFC12K/SATURN724
diffractometer
7470 independent reflections
Radiation source: fine-focus sealed tube6940 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω scansθmax = 26.0°, θmin = 2.2°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1313
Tmin = 0.627, Tmax = 1.000k = 1517
20336 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0779P)2 + 2.2391P]
where P = (Fo2 + 2Fc2)/3
7470 reflections(Δ/σ)max = 0.001
476 parametersΔρmax = 0.72 e Å3
2 restraintsΔρmin = 0.50 e Å3
Crystal data top
[CoCl2(C40H48N4)]ClO4γ = 68.65 (2)°
Mr = 814.10V = 1915.6 (5) Å3
Triclinic, P1Z = 2
a = 10.8111 (7) ÅMo Kα radiation
b = 13.835 (2) ŵ = 0.70 mm1
c = 14.868 (3) ÅT = 153 K
α = 73.66 (3)°0.30 × 0.20 × 0.10 mm
β = 70.06 (3)°
Data collection top
Rigaku AFC12K/SATURN724
diffractometer
7470 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
6940 reflections with I > 2σ(I)
Tmin = 0.627, Tmax = 1.000Rint = 0.027
20336 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0482 restraints
wR(F2) = 0.142H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.72 e Å3
7470 reflectionsΔρmin = 0.50 e Å3
476 parameters
Special details top

Experimental. Microanalysis: Calculated for C40H48Cl3CoN4O4, C, 59.09; H, 5.78; N, 6.89; Co, 7.25%. Found, C, 59.25; H, 5.65; N, 6.89; Co, 7.05%. IR (cm-1): 3161 ν(N—H); 3024 ν(Ar—H); 2949 and 2978 ν(C—H); 1393 ν(CH3); 1095 and 622 ν(ClO4-); 550 ν(Co—N).

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Co0.03217 (3)0.25958 (2)0.57912 (2)0.01928 (12)
Cl10.08339 (7)0.13989 (5)0.64106 (5)0.02986 (17)
Cl20.14748 (6)0.38188 (5)0.51694 (4)0.02299 (15)
N10.0314 (2)0.29843 (17)0.46384 (16)0.0230 (4)
N20.2055 (2)0.15227 (16)0.52957 (15)0.0219 (4)
H2N0.265 (2)0.186 (2)0.518 (2)0.026*
N30.0985 (2)0.22239 (16)0.69411 (16)0.0227 (4)
N40.1336 (2)0.37339 (17)0.62547 (15)0.0217 (4)
H4N0.105 (3)0.4285 (16)0.5924 (19)0.026*
C10.0414 (3)0.2780 (2)0.3799 (2)0.0272 (6)
C20.1919 (3)0.2166 (2)0.36292 (19)0.0263 (5)
H2A0.24300.26360.36210.032*
H2B0.22500.19750.29760.032*
C30.2289 (3)0.1159 (2)0.43667 (19)0.0235 (5)
C40.2349 (3)0.0693 (2)0.61436 (19)0.0268 (6)
H4A0.32980.02150.59660.032*
H4B0.16960.02710.63670.032*
C50.2186 (3)0.1249 (2)0.69361 (19)0.0269 (6)
H5A0.20380.07750.75750.032*
H5B0.30340.14380.68210.032*
C60.0646 (3)0.2809 (2)0.75664 (19)0.0248 (5)
C70.0518 (3)0.3823 (2)0.75592 (19)0.0258 (5)
H7A0.01410.43810.70910.031*
H7B0.08230.40140.82110.031*
C80.1801 (3)0.3860 (2)0.73077 (19)0.0264 (6)
C90.2421 (3)0.3776 (2)0.5824 (2)0.0279 (6)
H9A0.31760.44460.58880.033*
H9B0.28110.31830.61630.033*
C100.1742 (3)0.3700 (2)0.4760 (2)0.0261 (5)
H10A0.22770.34300.45180.031*
H10B0.17290.44100.43750.031*
C110.0180 (3)0.3201 (3)0.2918 (2)0.0397 (7)
H11A0.11910.33320.31500.048*
H11B0.00060.38860.25890.048*
C120.0400 (3)0.2479 (2)0.2186 (2)0.0331 (6)
C130.1397 (4)0.2649 (3)0.1340 (2)0.0432 (8)
H130.16900.32570.12000.052*
C140.1982 (4)0.1960 (3)0.0691 (2)0.0521 (9)
H140.26690.20940.01120.063*
C150.1565 (5)0.1085 (3)0.0888 (3)0.0630 (12)
H150.19670.06040.04470.076*
C160.0565 (6)0.0897 (3)0.1725 (3)0.0714 (13)
H160.02780.02870.18600.086*
C170.0029 (4)0.1600 (3)0.2374 (2)0.0534 (9)
H170.07290.14730.29470.064*
C180.1422 (3)0.0454 (2)0.4501 (2)0.0305 (6)
H18A0.17010.01960.49580.046*
H18B0.15560.02800.38730.046*
H18C0.04470.08240.47580.046*
C190.3844 (3)0.0560 (2)0.4032 (2)0.0274 (6)
H19A0.43840.10150.40100.033*
H19B0.40630.00790.45280.033*
C200.4313 (3)0.0230 (2)0.3052 (2)0.0281 (6)
C210.4946 (3)0.0826 (3)0.2235 (2)0.0398 (7)
H210.50670.14520.22890.048*
C220.5411 (4)0.0521 (3)0.1329 (3)0.0528 (9)
H220.58440.09380.07710.063*
C230.5241 (4)0.0387 (3)0.1248 (3)0.0519 (10)
H230.55570.05980.06330.062*
C240.4615 (3)0.0988 (3)0.2055 (3)0.0451 (8)
H240.44930.16110.19950.054*
C250.4161 (3)0.0692 (2)0.2956 (2)0.0349 (6)
H250.37430.11190.35120.042*
C260.1434 (3)0.2615 (2)0.8307 (2)0.0298 (6)
H26A0.08010.25780.89710.036*
H26B0.21730.19330.82750.036*
C270.2058 (3)0.3502 (2)0.8096 (2)0.0291 (6)
C280.1666 (3)0.4162 (2)0.8764 (2)0.0355 (7)
H280.09960.40580.93640.043*
C290.2248 (4)0.4971 (3)0.8560 (3)0.0450 (8)
H290.19790.54140.90220.054*
C300.3218 (3)0.5132 (3)0.7689 (3)0.0441 (8)
H300.36160.56830.75520.053*
C310.3605 (3)0.4491 (3)0.7019 (3)0.0388 (7)
H310.42650.46070.64170.047*
C320.3035 (3)0.3676 (2)0.7217 (2)0.0340 (6)
H320.33120.32350.67520.041*
C330.2828 (3)0.4958 (2)0.7397 (2)0.0336 (6)
H33A0.36780.49980.72680.050*
H33B0.24270.54910.69240.050*
H33C0.30380.50880.80550.050*
Cl30.54134 (7)0.26751 (5)0.43796 (5)0.03305 (18)
O10.4658 (2)0.20304 (16)0.51435 (16)0.0382 (5)
O20.5109 (3)0.36627 (18)0.4651 (2)0.0499 (6)
O30.6847 (2)0.2140 (2)0.4224 (2)0.0592 (7)
O40.4999 (3)0.2853 (2)0.35077 (18)0.0575 (7)
C34A0.2460 (18)0.2928 (8)0.8000 (11)0.0270 (17)0.672 (3)
H34A0.32050.29230.77580.032*0.672 (3)
H34B0.17400.22380.79540.032*0.672 (3)
C35A0.3028 (3)0.3053 (3)0.90364 (18)0.0331 (9)0.672 (3)
C36A0.4428 (3)0.3556 (3)0.9363 (2)0.0439 (11)0.672 (3)
H36A0.49860.38350.89220.053*0.672 (3)
C37A0.5011 (3)0.3649 (3)1.0337 (2)0.0550 (13)0.672 (3)
H37A0.59680.39931.05600.066*0.672 (3)
C38A0.4194 (4)0.3240 (3)1.09829 (16)0.0597 (16)0.672 (3)
H38A0.45930.33041.16480.072*0.672 (3)
C39A0.2795 (4)0.2738 (3)1.0656 (2)0.0600 (16)0.672 (3)
H39A0.22360.24581.10980.072*0.672 (3)
C40A0.2212 (3)0.2644 (3)0.9683 (2)0.0477 (13)0.672 (3)
H40A0.12550.23000.94590.057*0.672 (3)
C34B0.245 (4)0.314 (2)0.789 (3)0.0270 (17)0.328 (3)
H34C0.33640.33540.77590.032*0.328 (3)
H34D0.19230.24580.76620.032*0.328 (3)
C35B0.2705 (8)0.2912 (6)0.9041 (4)0.0331 (9)0.328 (3)
C36B0.3766 (7)0.3593 (5)0.9616 (5)0.0439 (11)0.328 (3)
H36B0.44170.41630.93350.053*0.328 (3)
C37B0.3876 (8)0.3441 (6)1.0601 (5)0.0550 (13)0.328 (3)
H37B0.46010.39071.09940.066*0.328 (3)
C38B0.2923 (10)0.2607 (7)1.1012 (4)0.0597 (16)0.328 (3)
H38B0.29980.25031.16860.07 (4)*0.328 (3)
C39B0.1861 (8)0.1926 (6)1.0438 (5)0.0600 (16)0.328 (3)
H39B0.12100.13561.07190.072*0.328 (3)
C40B0.1752 (7)0.2078 (6)0.9452 (5)0.0477 (13)0.328 (3)
H40B0.10270.16130.90600.057*0.328 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co0.01748 (19)0.0189 (2)0.02131 (19)0.00528 (14)0.00556 (14)0.00311 (13)
Cl10.0289 (3)0.0277 (3)0.0344 (4)0.0131 (3)0.0044 (3)0.0063 (3)
Cl20.0211 (3)0.0206 (3)0.0262 (3)0.0075 (2)0.0044 (2)0.0033 (2)
N10.0188 (10)0.0235 (11)0.0259 (11)0.0040 (8)0.0070 (9)0.0053 (9)
N20.0227 (11)0.0197 (10)0.0241 (11)0.0051 (8)0.0084 (9)0.0041 (8)
N30.0197 (10)0.0214 (11)0.0266 (11)0.0068 (8)0.0066 (9)0.0022 (8)
N40.0195 (10)0.0238 (11)0.0209 (10)0.0072 (8)0.0039 (8)0.0034 (8)
C10.0277 (14)0.0248 (13)0.0302 (14)0.0046 (10)0.0121 (11)0.0055 (11)
C20.0238 (13)0.0283 (14)0.0251 (13)0.0045 (10)0.0056 (11)0.0075 (11)
C30.0206 (12)0.0228 (13)0.0286 (13)0.0025 (10)0.0090 (11)0.0093 (10)
C40.0270 (13)0.0225 (13)0.0273 (13)0.0023 (10)0.0099 (11)0.0023 (10)
C50.0255 (13)0.0254 (13)0.0267 (13)0.0023 (10)0.0106 (11)0.0026 (10)
C60.0247 (13)0.0274 (13)0.0236 (12)0.0118 (10)0.0064 (10)0.0012 (10)
C70.0289 (14)0.0254 (13)0.0229 (12)0.0085 (11)0.0045 (11)0.0063 (10)
C80.0247 (13)0.0288 (14)0.0233 (13)0.0063 (11)0.0034 (11)0.0071 (10)
C90.0175 (12)0.0323 (14)0.0323 (14)0.0053 (10)0.0062 (11)0.0064 (11)
C100.0202 (13)0.0262 (13)0.0317 (14)0.0016 (10)0.0110 (11)0.0071 (11)
C110.0395 (17)0.0425 (17)0.0331 (16)0.0050 (13)0.0184 (14)0.0131 (13)
C120.0319 (15)0.0384 (16)0.0264 (14)0.0027 (12)0.0128 (12)0.0058 (12)
C130.0477 (19)0.0477 (19)0.0307 (16)0.0109 (15)0.0127 (14)0.0036 (14)
C140.054 (2)0.058 (2)0.0284 (16)0.0016 (17)0.0061 (15)0.0110 (15)
C150.093 (3)0.047 (2)0.039 (2)0.000 (2)0.023 (2)0.0148 (17)
C160.125 (4)0.056 (3)0.048 (2)0.045 (3)0.026 (3)0.0022 (19)
C170.070 (3)0.070 (3)0.0291 (16)0.036 (2)0.0096 (17)0.0064 (16)
C180.0267 (14)0.0287 (14)0.0398 (15)0.0083 (11)0.0094 (12)0.0109 (12)
C190.0214 (13)0.0280 (14)0.0320 (14)0.0033 (10)0.0078 (11)0.0087 (11)
C200.0196 (12)0.0307 (14)0.0306 (14)0.0020 (10)0.0076 (11)0.0118 (11)
C210.0331 (16)0.0392 (17)0.0391 (17)0.0060 (13)0.0028 (13)0.0097 (13)
C220.045 (2)0.057 (2)0.0339 (17)0.0023 (16)0.0015 (15)0.0065 (16)
C230.046 (2)0.064 (2)0.0354 (17)0.0091 (17)0.0118 (15)0.0256 (17)
C240.0412 (18)0.0457 (19)0.050 (2)0.0034 (15)0.0164 (16)0.0280 (16)
C250.0323 (15)0.0325 (15)0.0393 (16)0.0025 (12)0.0100 (13)0.0144 (13)
C260.0348 (15)0.0318 (14)0.0255 (13)0.0103 (12)0.0115 (12)0.0044 (11)
C270.0285 (14)0.0307 (14)0.0303 (14)0.0081 (11)0.0144 (12)0.0018 (11)
C280.0411 (17)0.0379 (16)0.0324 (15)0.0121 (13)0.0155 (13)0.0061 (12)
C290.057 (2)0.0374 (17)0.054 (2)0.0145 (15)0.0316 (18)0.0073 (15)
C300.0443 (18)0.0365 (17)0.063 (2)0.0184 (14)0.0333 (17)0.0064 (15)
C310.0281 (15)0.0401 (17)0.0474 (18)0.0133 (13)0.0167 (14)0.0059 (14)
C320.0292 (15)0.0380 (16)0.0352 (15)0.0082 (12)0.0139 (12)0.0027 (12)
C330.0285 (14)0.0323 (15)0.0311 (14)0.0018 (11)0.0012 (12)0.0103 (12)
Cl30.0299 (4)0.0291 (4)0.0425 (4)0.0119 (3)0.0124 (3)0.0022 (3)
O10.0405 (12)0.0344 (11)0.0437 (12)0.0187 (9)0.0179 (10)0.0050 (9)
O20.0455 (13)0.0350 (12)0.0713 (17)0.0174 (10)0.0075 (12)0.0154 (11)
O30.0303 (12)0.0483 (15)0.093 (2)0.0083 (11)0.0085 (13)0.0182 (14)
O40.0720 (18)0.0681 (17)0.0413 (14)0.0345 (14)0.0223 (13)0.0043 (12)
C34A0.0324 (16)0.021 (5)0.023 (4)0.018 (4)0.001 (2)0.005 (4)
C35A0.038 (3)0.0297 (19)0.0295 (15)0.0150 (18)0.0039 (16)0.0024 (13)
C36A0.041 (3)0.046 (2)0.033 (2)0.011 (2)0.0013 (19)0.0047 (19)
C37A0.061 (3)0.051 (3)0.035 (2)0.015 (3)0.011 (2)0.012 (2)
C38A0.097 (5)0.060 (4)0.029 (2)0.051 (3)0.002 (3)0.005 (2)
C39A0.079 (4)0.082 (4)0.037 (3)0.054 (3)0.022 (3)0.011 (3)
C40A0.042 (3)0.053 (3)0.043 (3)0.023 (3)0.010 (2)0.010 (2)
C34B0.0324 (16)0.021 (5)0.023 (4)0.018 (4)0.001 (2)0.005 (4)
C35B0.038 (3)0.0297 (19)0.0295 (15)0.0150 (18)0.0039 (16)0.0024 (13)
C36B0.041 (3)0.046 (2)0.033 (2)0.011 (2)0.0013 (19)0.0047 (19)
C37B0.061 (3)0.051 (3)0.035 (2)0.015 (3)0.011 (2)0.012 (2)
C38B0.097 (5)0.060 (4)0.029 (2)0.051 (3)0.002 (3)0.005 (2)
C39B0.079 (4)0.082 (4)0.037 (3)0.054 (3)0.022 (3)0.011 (3)
C40B0.042 (3)0.053 (3)0.043 (3)0.023 (3)0.010 (2)0.010 (2)
Geometric parameters (Å, º) top
Co—N11.927 (2)C20—C211.381 (4)
Co—N31.943 (2)C20—C251.394 (4)
Co—N41.969 (2)C21—C221.396 (5)
Co—N21.977 (2)C21—H210.9500
Co—Cl12.2395 (9)C22—C231.377 (6)
Co—Cl22.2676 (8)C22—H220.9500
N1—C11.274 (4)C23—C241.373 (5)
N1—C101.482 (3)C23—H230.9500
N2—C41.484 (3)C24—C251.384 (4)
N2—C31.511 (3)C24—H240.9500
N2—H2N0.877 (10)C25—H250.9500
N3—C61.276 (3)C26—C271.519 (4)
N3—C51.493 (3)C26—H26A0.9900
N4—C91.494 (3)C26—H26B0.9900
N4—C81.512 (3)C27—C281.393 (4)
N4—H4N0.878 (10)C27—C321.396 (4)
C1—C21.506 (4)C28—C291.390 (5)
C1—C111.530 (4)C28—H280.9500
C2—C31.529 (4)C29—C301.381 (5)
C2—H2A0.9900C29—H290.9500
C2—H2B0.9900C30—C311.377 (5)
C3—C181.517 (4)C30—H300.9500
C3—C191.552 (3)C31—C321.390 (4)
C4—C51.511 (4)C31—H310.9500
C4—H4A0.9900C32—H320.9500
C4—H4B0.9900C33—H33A0.9800
C5—H5A0.9900C33—H33B0.9800
C5—H5B0.9900C33—H33C0.9800
C6—C71.506 (4)Cl3—O31.421 (2)
C6—C261.522 (4)Cl3—O21.425 (2)
C7—C81.535 (4)Cl3—O41.441 (3)
C7—H7A0.9900Cl3—O11.442 (2)
C7—H7B0.9900C34A—C35A1.486 (17)
C8—C331.531 (4)C34A—H34A0.9900
C8—C34B1.36 (3)C34A—H34B0.9900
C8—C34A1.629 (10)C35A—C36A1.3900
C9—C101.515 (4)C35A—C40A1.3900
C9—H9A0.9900C36A—C37A1.3900
C9—H9B0.9900C36A—H36A0.9500
C10—H10A0.9900C37A—C38A1.3900
C10—H10B0.9900C37A—H37A0.9500
C11—C121.505 (4)C38A—C39A1.3900
C11—H11A0.9900C38A—H38A0.9500
C11—H11B0.9900C39A—C40A1.3900
C12—C131.375 (4)C39A—H39A0.9500
C12—C171.379 (5)C40A—H40A0.9500
C13—C141.380 (5)C34B—C35B1.60 (4)
C13—H130.9500C34B—H34C0.9900
C14—C151.365 (6)C34B—H34D0.9900
C14—H140.9500C35B—C36B1.3900
C15—C161.374 (6)C35B—C40B1.3900
C15—H150.9500C36B—C37B1.3900
C16—C171.393 (6)C36B—H36B0.9500
C16—H160.9500C37B—C38B1.3900
C17—H170.9500C37B—H37B0.9500
C18—H18A0.9800C38B—C39B1.3900
C18—H18B0.9800C38B—H38B0.9500
C18—H18C0.9800C39B—C40B1.3900
C19—C201.514 (4)C39B—H39B0.9500
C19—H19A0.9900C40B—H40B0.9500
C19—H19B0.9900
N1—Co—N3178.83 (9)C3—C18—H18A109.5
N1—Co—N484.22 (9)C3—C18—H18B109.5
N3—Co—N495.83 (9)H18A—C18—H18B109.5
N1—Co—N296.07 (9)C3—C18—H18C109.5
N3—Co—N283.80 (9)H18A—C18—H18C109.5
N4—Co—N2176.17 (9)H18B—C18—H18C109.5
N1—Co—Cl189.85 (7)C20—C19—C3115.3 (2)
N3—Co—Cl191.32 (7)C20—C19—H19A108.4
N4—Co—Cl191.81 (7)C3—C19—H19A108.4
N2—Co—Cl192.00 (7)C20—C19—H19B108.4
N1—Co—Cl290.11 (7)C3—C19—H19B108.4
N3—Co—Cl288.72 (7)H19A—C19—H19B107.5
N4—Co—Cl287.68 (7)C21—C20—C25118.6 (3)
N2—Co—Cl288.50 (7)C21—C20—C19120.0 (3)
Cl1—Co—Cl2179.50 (3)C25—C20—C19121.3 (3)
C1—N1—C10119.7 (2)C20—C21—C22120.8 (3)
C1—N1—Co126.26 (18)C20—C21—H21119.6
C10—N1—Co113.59 (17)C22—C21—H21119.6
C4—N2—C3117.1 (2)C23—C22—C21119.7 (3)
C4—N2—Co106.90 (16)C23—C22—H22120.2
C3—N2—Co119.99 (15)C21—C22—H22120.2
C4—N2—H2N103 (2)C24—C23—C22120.0 (3)
C3—N2—H2N107 (2)C24—C23—H23120.0
Co—N2—H2N100 (2)C22—C23—H23120.0
C6—N3—C5120.0 (2)C23—C24—C25120.4 (3)
C6—N3—Co126.05 (18)C23—C24—H24119.8
C5—N3—Co112.83 (16)C25—C24—H24119.8
C9—N4—C8116.6 (2)C24—C25—C20120.4 (3)
C9—N4—Co107.52 (16)C24—C25—H25119.8
C8—N4—Co120.35 (16)C20—C25—H25119.8
C9—N4—H4N105 (2)C27—C26—C6109.7 (2)
C8—N4—H4N105 (2)C27—C26—H26A109.7
Co—N4—H4N100 (2)C6—C26—H26A109.7
N1—C1—C2120.8 (2)C27—C26—H26B109.7
N1—C1—C11121.6 (2)C6—C26—H26B109.7
C2—C1—C11117.5 (2)H26A—C26—H26B108.2
C1—C2—C3116.3 (2)C28—C27—C32118.8 (3)
C1—C2—H2A108.2C28—C27—C26121.1 (3)
C3—C2—H2A108.2C32—C27—C26120.1 (3)
C1—C2—H2B108.2C29—C28—C27120.4 (3)
C3—C2—H2B108.2C29—C28—H28119.8
H2A—C2—H2B107.4C27—C28—H28119.8
N2—C3—C18112.3 (2)C30—C29—C28120.2 (3)
N2—C3—C2105.6 (2)C30—C29—H29119.9
C18—C3—C2111.0 (2)C28—C29—H29119.9
N2—C3—C19107.4 (2)C31—C30—C29119.9 (3)
C18—C3—C19110.3 (2)C31—C30—H30120.0
C2—C3—C19109.9 (2)C29—C30—H30120.0
N2—C4—C5106.9 (2)C30—C31—C32120.4 (3)
N2—C4—H4A110.3C30—C31—H31119.8
C5—C4—H4A110.3C32—C31—H31119.8
N2—C4—H4B110.3C31—C32—C27120.3 (3)
C5—C4—H4B110.3C31—C32—H32119.9
H4A—C4—H4B108.6C27—C32—H32119.9
N3—C5—C4109.4 (2)C8—C33—H33A109.5
N3—C5—H5A109.8C8—C33—H33B109.5
C4—C5—H5A109.8H33A—C33—H33B109.5
N3—C5—H5B109.8C8—C33—H33C109.5
C4—C5—H5B109.8H33A—C33—H33C109.5
H5A—C5—H5B108.2H33B—C33—H33C109.5
N3—C6—C7121.2 (2)O3—Cl3—O2109.85 (16)
N3—C6—C26124.3 (2)O3—Cl3—O4110.38 (19)
C7—C6—C26114.3 (2)O2—Cl3—O4109.29 (17)
C6—C7—C8118.6 (2)O3—Cl3—O1108.94 (15)
C6—C7—H7A107.7O2—Cl3—O1109.77 (15)
C8—C7—H7A107.7O4—Cl3—O1108.59 (14)
C6—C7—H7B107.7C35A—C34A—C8113.0 (10)
C8—C7—H7B107.7C35A—C34A—H34A109.0
H7A—C7—H7B107.1C8—C34A—H34A109.0
N4—C8—C33108.7 (2)C35A—C34A—H34B109.0
N4—C8—C7106.2 (2)C8—C34A—H34B109.0
C33—C8—C7107.4 (2)H34A—C34A—H34B107.8
N4—C8—C34B111.2 (18)C36A—C35A—C40A120.0
C33—C8—C34B107.7 (16)C36A—C35A—C34A118.2 (7)
C7—C8—C34B115.3 (17)C40A—C35A—C34A121.8 (7)
N4—C8—C34A110.5 (7)C35A—C36A—C37A120.0
C33—C8—C34A112.0 (6)C35A—C36A—H36A120.0
C7—C8—C34A111.8 (6)C37A—C36A—H36A120.0
N4—C9—C10107.3 (2)C38A—C37A—C36A120.0
N4—C9—H9A110.3C38A—C37A—H37A120.0
C10—C9—H9A110.3C36A—C37A—H37A120.0
N4—C9—H9B110.3C37A—C38A—C39A120.0
C10—C9—H9B110.3C37A—C38A—H38A120.0
H9A—C9—H9B108.5C39A—C38A—H38A120.0
N1—C10—C9110.0 (2)C38A—C39A—C40A120.0
N1—C10—H10A109.7C38A—C39A—H39A120.0
C9—C10—H10A109.7C40A—C39A—H39A120.0
N1—C10—H10B109.7C39A—C40A—C35A120.0
C9—C10—H10B109.7C39A—C40A—H40A120.0
H10A—C10—H10B108.2C35A—C40A—H40A120.0
C12—C11—C1114.6 (2)C35B—C34B—C8121 (3)
C12—C11—H11A108.6C35B—C34B—H34C107.1
C1—C11—H11A108.6C8—C34B—H34C107.1
C12—C11—H11B108.6C35B—C34B—H34D107.1
C1—C11—H11B108.6C8—C34B—H34D107.1
H11A—C11—H11B107.6H34C—C34B—H34D106.8
C13—C12—C17118.5 (3)C36B—C35B—C40B120.0
C13—C12—C11121.5 (3)C36B—C35B—C34B121.1 (14)
C17—C12—C11119.9 (3)C40B—C35B—C34B118.5 (14)
C12—C13—C14121.7 (4)C37B—C36B—C35B120.0
C12—C13—H13119.1C37B—C36B—H36B120.0
C14—C13—H13119.1C35B—C36B—H36B120.0
C15—C14—C13119.4 (4)C36B—C37B—C38B120.0
C15—C14—H14120.3C36B—C37B—H37B120.0
C13—C14—H14120.3C38B—C37B—H37B120.0
C14—C15—C16120.1 (4)C39B—C38B—C37B120.0
C14—C15—H15119.9C39B—C38B—H38B120.0
C16—C15—H15119.9C37B—C38B—H38B120.0
C15—C16—C17120.2 (4)C38B—C39B—C40B120.0
C15—C16—H16119.9C38B—C39B—H39B120.0
C17—C16—H16119.9C40B—C39B—H39B120.0
C12—C17—C16120.0 (4)C39B—C40B—C35B120.0
C12—C17—H17120.0C39B—C40B—H40B120.0
C16—C17—H17120.0C35B—C40B—H40B120.0
N4—Co—N1—C1159.7 (2)C6—C7—C8—C34A54.4 (7)
N2—Co—N1—C116.4 (2)C8—N4—C9—C10176.6 (2)
Cl1—Co—N1—C1108.4 (2)Co—N4—C9—C1044.8 (2)
Cl2—Co—N1—C172.1 (2)C1—N1—C10—C9177.0 (2)
N4—Co—N1—C1012.12 (17)Co—N1—C10—C910.5 (3)
N2—Co—N1—C10171.72 (17)N4—C9—C10—N135.8 (3)
Cl1—Co—N1—C1079.72 (17)N1—C1—C11—C12146.9 (3)
Cl2—Co—N1—C1099.78 (17)C2—C1—C11—C1236.6 (4)
N1—Co—N2—C4147.55 (17)C1—C11—C12—C13100.9 (4)
N3—Co—N2—C433.62 (16)C1—C11—C12—C1776.4 (4)
Cl1—Co—N2—C457.49 (16)C17—C12—C13—C140.8 (5)
Cl2—Co—N2—C4122.50 (16)C11—C12—C13—C14176.6 (3)
N1—Co—N2—C311.10 (19)C12—C13—C14—C150.0 (5)
N3—Co—N2—C3170.07 (19)C13—C14—C15—C160.3 (6)
Cl1—Co—N2—C378.97 (18)C14—C15—C16—C170.1 (7)
Cl2—Co—N2—C3101.05 (18)C13—C12—C17—C161.2 (5)
N4—Co—N3—C620.2 (2)C11—C12—C17—C16176.2 (4)
N2—Co—N3—C6156.0 (2)C15—C16—C17—C120.9 (7)
Cl1—Co—N3—C6112.1 (2)N2—C3—C19—C20173.9 (2)
Cl2—Co—N3—C667.4 (2)C18—C3—C19—C2063.4 (3)
N4—Co—N3—C5172.08 (17)C2—C3—C19—C2059.5 (3)
N2—Co—N3—C511.75 (17)C3—C19—C20—C2199.1 (3)
Cl1—Co—N3—C580.12 (16)C3—C19—C20—C2583.0 (3)
Cl2—Co—N3—C5100.38 (16)C25—C20—C21—C220.7 (4)
N1—Co—N4—C932.08 (16)C19—C20—C21—C22178.6 (3)
N3—Co—N4—C9149.10 (16)C20—C21—C22—C230.2 (5)
Cl1—Co—N4—C957.59 (16)C21—C22—C23—C240.0 (5)
Cl2—Co—N4—C9122.43 (16)C22—C23—C24—C250.5 (5)
N1—Co—N4—C8168.8 (2)C23—C24—C25—C201.0 (5)
N3—Co—N4—C812.35 (19)C21—C20—C25—C241.1 (4)
Cl1—Co—N4—C879.16 (18)C19—C20—C25—C24179.0 (3)
Cl2—Co—N4—C8100.83 (18)N3—C6—C26—C27114.5 (3)
C10—N1—C1—C2172.4 (2)C7—C6—C26—C2760.0 (3)
Co—N1—C1—C21.0 (4)C6—C26—C27—C28117.1 (3)
C10—N1—C1—C114.0 (4)C6—C26—C27—C3262.3 (3)
Co—N1—C1—C11175.4 (2)C32—C27—C28—C290.6 (4)
N1—C1—C2—C347.3 (4)C26—C27—C28—C29179.9 (3)
C11—C1—C2—C3136.2 (3)C27—C28—C29—C300.4 (5)
C4—N2—C3—C1859.2 (3)C28—C29—C30—C310.2 (5)
Co—N2—C3—C1873.0 (2)C29—C30—C31—C320.6 (4)
C4—N2—C3—C2179.6 (2)C30—C31—C32—C270.4 (4)
Co—N2—C3—C248.2 (2)C28—C27—C32—C310.2 (4)
C4—N2—C3—C1962.3 (3)C26—C27—C32—C31179.7 (2)
Co—N2—C3—C19165.48 (17)N4—C8—C34A—C35A175.9 (8)
C1—C2—C3—N270.3 (3)C33—C8—C34A—C35A54.6 (11)
C1—C2—C3—C1851.6 (3)C7—C8—C34A—C35A66.0 (11)
C1—C2—C3—C19174.0 (2)C8—C34A—C35A—C36A95.3 (10)
C3—N2—C4—C5174.1 (2)C8—C34A—C35A—C40A87.4 (9)
Co—N2—C4—C548.0 (2)C40A—C35A—C36A—C37A0.0
C6—N3—C5—C4178.9 (2)C34A—C35A—C36A—C37A177.3 (6)
Co—N3—C5—C412.5 (3)C35A—C36A—C37A—C38A0.0
N2—C4—C5—N339.2 (3)C36A—C37A—C38A—C39A0.0
C5—N3—C6—C7177.1 (2)C37A—C38A—C39A—C40A0.0
Co—N3—C6—C710.1 (4)C38A—C39A—C40A—C35A0.0
C5—N3—C6—C263.0 (4)C36A—C35A—C40A—C39A0.0
Co—N3—C6—C26163.99 (19)C34A—C35A—C40A—C39A177.2 (6)
N3—C6—C7—C837.7 (4)N4—C8—C34B—C35B165 (2)
C26—C6—C7—C8147.7 (2)C33—C8—C34B—C35B76 (3)
C9—N4—C8—C3362.9 (3)C7—C8—C34B—C35B43 (3)
Co—N4—C8—C33164.00 (18)C8—C34B—C35B—C36B79 (3)
C9—N4—C8—C7178.2 (2)C8—C34B—C35B—C40B95 (3)
Co—N4—C8—C748.7 (3)C40B—C35B—C36B—C37B0.0
C9—N4—C8—C34B55.5 (17)C34B—C35B—C36B—C37B173.2 (16)
Co—N4—C8—C34B77.6 (17)C35B—C36B—C37B—C38B0.0
C9—N4—C8—C34A60.3 (7)C36B—C37B—C38B—C39B0.0
Co—N4—C8—C34A72.8 (6)C37B—C38B—C39B—C40B0.0
C6—C7—C8—N466.1 (3)C38B—C39B—C40B—C35B0.0
C6—C7—C8—C33177.7 (2)C36B—C35B—C40B—C39B0.0
C6—C7—C8—C34B57.6 (19)C34B—C35B—C40B—C39B173.3 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2n···O10.88 (3)2.24 (3)3.063 (4)155 (2)
N4—H4n···Cl2i0.88 (3)2.64 (2)3.432 (2)150 (3)
C10—H10a···O3ii0.992.503.437 (4)159
C19—H19b···O1iii0.992.543.409 (4)147
C38a—H38a···O4iv0.952.573.480 (3)160
Symmetry codes: (i) x, y+1, z+1; (ii) x1, y, z; (iii) x+1, y, z+1; (iv) x1, y, z+1.

Experimental details

Crystal data
Chemical formula[CoCl2(C40H48N4)]ClO4
Mr814.10
Crystal system, space groupTriclinic, P1
Temperature (K)153
a, b, c (Å)10.8111 (7), 13.835 (2), 14.868 (3)
α, β, γ (°)73.66 (3), 70.06 (3), 68.65 (2)
V3)1915.6 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.70
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerRigaku AFC12K/SATURN724
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.627, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
20336, 7470, 6940
Rint0.027
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.142, 1.05
No. of reflections7470
No. of parameters476
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.72, 0.50

Computer programs: CrystalClear (Rigaku/MSC, 2005), PATTY in DIRDIF92 (Beurskens et al., 1992), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) & DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2n···O10.88 (3)2.24 (3)3.063 (4)155 (2)
N4—H4n···Cl2i0.88 (3)2.64 (2)3.432 (2)150 (3)
C10—H10a···O3ii0.992.503.437 (4)159
C19—H19b···O1iii0.992.543.409 (4)147
C38a—H38a···O4iv0.952.573.480 (3)160
Symmetry codes: (i) x, y+1, z+1; (ii) x1, y, z; (iii) x+1, y, z+1; (iv) x1, y, z+1.
 

Footnotes

Additional correspondence author, e-mail: tapashir@yahoo.com.

Acknowledgements

The authors are grateful to the University Grant Commission (UGC), Bangladesh, for the award of a research grant to TGR.

References

First citationBembi, R., Roy, T. G., Jhanji, A. K. & Maheswari, A. (1990). J. Chem. Soc. Dalton Trans. pp. 3531–3534.  CrossRef Web of Science Google Scholar
First citationBeurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., Garcia-Granda, S., Gould, R. O., Smits, J. M. M. & Smykalla, C. (1992). The DIRDIF Program System. Technical Report. Crystallography Laboratory, University of Nijmegen, The Netherlands.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHazari, S. K. S., Roy, T. G., Barua, K. K. & Tiekink, E. R. T. (2008). J. Chem. Crystallogr. 38, 1–8.  Web of Science CrossRef CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC. (2005). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRoy, T. G., Hazari, S. K. S., Dey, B. K., Miah, H. A., Olbrich, F. & Rehder, D. (2007). Inorg. Chem. 46, 5372–5380.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRoy, T. G., Hazari, S. K. S., Dey, B. K., Nath, B. C., Dutta, A., Olbrich, F. & Rehder, D. (2011a). Inorg. Chim. Acta, 371, 63–70.  CAS Google Scholar
First citationRoy, T. G., Hazari, S. K. S., Nath, B. C., Ng, S. W. & Tiekink, E. R. T. (2011b). Acta Cryst. E67, m1581–m1582.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds