organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-[(1H-Benzimidazol-1-yl)meth­yl]benzene-1,3-dicarb­­oxy­lic acid

aFaculty of Life Science and Chemical Engineering, Huaiyin Institute of Technology, Huaian 223003, People's Republic of China
*Correspondence e-mail: shxycheng@163.com

(Received 4 November 2011; accepted 9 November 2011; online 12 November 2011)

Crystals of the title compound, C16H12N2O4, were obtained accidentally from a hydro­thermal reaction of 5-[(1H-benzimidazol-1-yl)meth­yl]isophthalic acid with manganese bromide in the presence of N,N′-dimethyl­formamide. In the title mol­ecule, the benzimidazole ring system is almost planar, with a maximum deviation from the mean plane of 0.010 (2) Å. The benzimidazole and central benzene rings are inclined at a dihedral angle of 71.7 (6)°. The crystal structure is stabilized by O—H⋯N and O—H⋯O hydrogen bonds.

Related literature

For background information on the title compound, see: Das & Bharadwaj (2009[Das, M. C. & Bharadwaj, P. K. (2009). J. Am. Chem. Soc. 131, 10942-10943.]). For a related structure, see: Kuai & Cheng (2011[Kuai, H.-W. & Cheng, X.-C. (2011). Acta Cryst. E67, o2787.]).

[Scheme 1]

Experimental

Crystal data
  • C16H12N2O4

  • Mr = 296.28

  • Triclinic, [P \overline 1]

  • a = 7.7159 (11) Å

  • b = 8.4559 (12) Å

  • c = 10.9742 (15) Å

  • α = 97.286 (2)°

  • β = 104.928 (2)°

  • γ = 98.029 (2)°

  • V = 675.07 (16) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.979, Tmax = 0.979

  • 3620 measured reflections

  • 2499 independent reflections

  • 1401 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.098

  • S = 0.84

  • 2499 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H12⋯O2i 0.82 1.84 2.574 (2) 147
O1—H11⋯N2ii 0.82 1.76 2.553 (2) 162
Symmetry codes: (i) x, y-1, z; (ii) x-1, y, z-1.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2000[Brandenburg, K. (2000). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

The title compound is regarded as an excellent candidate for building block in molecular self-assembly engineering due to its variable conformation and coordination modes (Das & Bharadwaj, 2009). During preparation of coordination polymers, we accidentally obtained single crystals of the title compound by the hydrothermal reaction at 393 K of 5-((1H-benzo[d]imidazol-1-yl)methyl)isophthalic acid with manganese bromide in the presence of N,N'-dimethylformamide.

Although crystallized from an alkaline solution, the title compound retained the carboxylic groups in the crystal structure (Fig. 1). The benzimidazolyl ring and the central benzene ring are inclined at a dihedral angle of 71.7 (6) °. In the crystal structure, there exist O—H···N and O—H···O hydrogen bonds (Table 1). The carboxylate groups and the N atom in the benzimidazolyl group as donor or acceptor play very important role in the formation of these hydrogen bonds.

Related literature top

For background information on the title compound, see: Das & Bharadwaj (2009). For a related structure, see: Kuai & Cheng (2011).

Experimental top

A mixture of MnBr2 (21.5 mg, 0.1 mmol), 5-((1H-benzo[d]imidazol-1-yl)methyl)isophthalic acid (29.6 mg, 0.1 mmol) and 2 ml N,N'-dimethylformamide (DMF) in 10 ml H2O was sealed in a 16 ml Teflon-lined stainless steel container and heated to 393 K for 3 days. After cooling the stain-less steel container to room temperature, colorless block crystals of the title compound were obtained.

Refinement top

All hydrogen atoms were included at geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.93 or 0.97, O—H = 0.82 Å and Uiso(H) = 1.2Ueq(C/O).

Structure description top

The title compound is regarded as an excellent candidate for building block in molecular self-assembly engineering due to its variable conformation and coordination modes (Das & Bharadwaj, 2009). During preparation of coordination polymers, we accidentally obtained single crystals of the title compound by the hydrothermal reaction at 393 K of 5-((1H-benzo[d]imidazol-1-yl)methyl)isophthalic acid with manganese bromide in the presence of N,N'-dimethylformamide.

Although crystallized from an alkaline solution, the title compound retained the carboxylic groups in the crystal structure (Fig. 1). The benzimidazolyl ring and the central benzene ring are inclined at a dihedral angle of 71.7 (6) °. In the crystal structure, there exist O—H···N and O—H···O hydrogen bonds (Table 1). The carboxylate groups and the N atom in the benzimidazolyl group as donor or acceptor play very important role in the formation of these hydrogen bonds.

For background information on the title compound, see: Das & Bharadwaj (2009). For a related structure, see: Kuai & Cheng (2011).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2000); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. : The crystal structure of the title compound showing 30% probability displacement ellipsoids.
5-[(1H-Benzimidazol-1-yl)methyl]benzene-1,3-dicarboxylic acid top
Crystal data top
C16H12N2O4Z = 2
Mr = 296.28F(000) = 308
Triclinic, P1Dx = 1.458 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.7159 (11) ÅCell parameters from 796 reflections
b = 8.4559 (12) Åθ = 2.8–25.0°
c = 10.9742 (15) ŵ = 0.11 mm1
α = 97.286 (2)°T = 293 K
β = 104.928 (2)°Block, colorless
γ = 98.029 (2)°0.20 × 0.20 × 0.20 mm
V = 675.07 (16) Å3
Data collection top
Bruker SMART APEXII CCD
diffractometer
2499 independent reflections
Radiation source: fine-focus sealed tube1401 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
φ and ω scansθmax = 25.6°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 89
Tmin = 0.979, Tmax = 0.979k = 109
3620 measured reflectionsl = 1113
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H-atom parameters constrained
S = 0.84 w = 1/[σ2(Fo2) + (0.0392P)2]
where P = (Fo2 + 2Fc2)/3
2499 reflections(Δ/σ)max < 0.001
199 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C16H12N2O4γ = 98.029 (2)°
Mr = 296.28V = 675.07 (16) Å3
Triclinic, P1Z = 2
a = 7.7159 (11) ÅMo Kα radiation
b = 8.4559 (12) ŵ = 0.11 mm1
c = 10.9742 (15) ÅT = 293 K
α = 97.286 (2)°0.20 × 0.20 × 0.20 mm
β = 104.928 (2)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
2499 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1401 reflections with I > 2σ(I)
Tmin = 0.979, Tmax = 0.979Rint = 0.024
3620 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.098H-atom parameters constrained
S = 0.84Δρmax = 0.18 e Å3
2499 reflectionsΔρmin = 0.17 e Å3
199 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8649 (3)0.3096 (2)0.61209 (17)0.0400 (5)
C20.7615 (3)0.3686 (2)0.50979 (18)0.0426 (5)
H10.76490.47960.51440.051*
C30.6533 (3)0.2632 (2)0.40097 (17)0.0378 (5)
C40.6482 (3)0.0979 (2)0.39490 (17)0.0386 (5)
H20.57570.02680.32220.046*
C50.7503 (3)0.0376 (2)0.49609 (17)0.0368 (5)
C60.8591 (3)0.1451 (2)0.60419 (18)0.0414 (5)
H30.92890.10520.67200.050*
C70.5439 (3)0.3280 (3)0.29147 (18)0.0442 (6)
C80.7429 (3)0.1397 (3)0.4906 (2)0.0443 (6)
C90.9807 (3)0.4336 (3)0.72598 (18)0.0572 (7)
H51.08830.48330.70530.069*
H40.91210.51800.74170.069*
C101.2110 (3)0.3646 (3)0.9087 (2)0.0513 (6)
H61.31270.40670.88470.062*
C111.0403 (3)0.2516 (2)1.01338 (19)0.0470 (6)
C120.9243 (3)0.2953 (3)0.9078 (2)0.0462 (6)
C130.7369 (3)0.2658 (3)0.8840 (2)0.0618 (7)
H70.66040.29640.81400.074*
C140.6703 (4)0.1887 (3)0.9698 (3)0.0737 (8)
H80.54480.16520.95680.088*
C150.7851 (4)0.1444 (3)1.0760 (2)0.0706 (8)
H90.73400.09331.13200.085*
C160.9705 (4)0.1743 (3)1.0997 (2)0.0580 (7)
H101.04650.14431.17020.070*
N11.0380 (2)0.3660 (2)0.84266 (15)0.0468 (5)
N21.2195 (2)0.2965 (2)1.01142 (15)0.0500 (5)
O10.44624 (19)0.21783 (16)0.19787 (12)0.0559 (5)
H110.38970.26060.14100.067*
O20.5500 (2)0.47226 (18)0.29074 (14)0.0763 (6)
O30.6485 (2)0.22162 (17)0.37611 (13)0.0693 (5)
H120.64650.31890.37590.083*
O40.8127 (2)0.20331 (17)0.57734 (14)0.0627 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0523 (13)0.0322 (12)0.0251 (11)0.0059 (10)0.0061 (10)0.0038 (9)
C20.0582 (14)0.0295 (12)0.0301 (11)0.0073 (10)0.0053 (10)0.0060 (9)
C30.0472 (12)0.0316 (12)0.0269 (11)0.0057 (10)0.0024 (9)0.0049 (9)
C40.0488 (12)0.0319 (12)0.0260 (11)0.0045 (10)0.0026 (9)0.0024 (9)
C50.0457 (12)0.0308 (11)0.0285 (11)0.0074 (10)0.0006 (10)0.0056 (9)
C60.0524 (13)0.0375 (13)0.0277 (11)0.0109 (10)0.0040 (10)0.0103 (9)
C70.0560 (14)0.0338 (13)0.0306 (12)0.0073 (11)0.0087 (10)0.0049 (10)
C80.0558 (14)0.0362 (13)0.0347 (12)0.0078 (11)0.0015 (11)0.0072 (10)
C90.0806 (16)0.0403 (14)0.0310 (12)0.0045 (12)0.0160 (12)0.0063 (10)
C100.0565 (14)0.0437 (14)0.0379 (13)0.0015 (11)0.0093 (11)0.0046 (11)
C110.0629 (16)0.0365 (13)0.0314 (12)0.0094 (11)0.0025 (11)0.0016 (10)
C120.0590 (15)0.0357 (13)0.0322 (12)0.0090 (11)0.0042 (11)0.0013 (10)
C130.0595 (17)0.0625 (18)0.0514 (16)0.0143 (13)0.0037 (13)0.0015 (13)
C140.0649 (17)0.080 (2)0.0678 (19)0.0068 (15)0.0142 (16)0.0015 (16)
C150.084 (2)0.0659 (19)0.0587 (18)0.0081 (16)0.0218 (16)0.0031 (14)
C160.0863 (19)0.0445 (15)0.0366 (14)0.0116 (14)0.0055 (14)0.0072 (11)
N10.0584 (12)0.0393 (11)0.0279 (10)0.0077 (9)0.0126 (9)0.0047 (8)
N20.0597 (12)0.0471 (12)0.0320 (10)0.0092 (10)0.0076 (9)0.0081 (9)
O10.0717 (10)0.0413 (9)0.0345 (8)0.0105 (8)0.0204 (8)0.0056 (7)
O20.1136 (14)0.0305 (9)0.0515 (10)0.0101 (9)0.0338 (9)0.0070 (7)
O30.1078 (13)0.0281 (9)0.0467 (10)0.0108 (9)0.0202 (9)0.0025 (7)
O40.0939 (12)0.0384 (9)0.0431 (9)0.0145 (9)0.0078 (9)0.0142 (7)
Geometric parameters (Å, º) top
C1—C61.377 (3)C9—H40.9700
C1—C21.392 (2)C10—N21.320 (3)
C1—C91.513 (2)C10—N11.347 (2)
C2—C31.387 (2)C10—H60.9300
C2—H10.9300C11—N21.388 (3)
C3—C41.386 (2)C11—C161.391 (3)
C3—C71.493 (3)C11—C121.395 (3)
C4—C51.385 (2)C12—C131.382 (3)
C4—H20.9300C12—N11.387 (3)
C5—C61.392 (2)C13—C141.374 (4)
C5—C81.485 (3)C13—H70.9300
C6—H30.9300C14—C151.398 (3)
C7—O21.215 (2)C14—H80.9300
C7—O11.286 (2)C15—C161.367 (3)
C8—O41.197 (2)C15—H90.9300
C8—O31.325 (2)C16—H100.9300
C9—N11.458 (3)O1—H110.8200
C9—H50.9700O3—H120.8200
C6—C1—C2119.24 (17)H5—C9—H4107.7
C6—C1—C9123.83 (17)N2—C10—N1112.3 (2)
C2—C1—C9116.92 (18)N2—C10—H6123.9
C3—C2—C1120.61 (19)N1—C10—H6123.9
C3—C2—H1119.7N2—C11—C16130.2 (2)
C1—C2—H1119.7N2—C11—C12109.0 (2)
C4—C3—C2119.40 (18)C16—C11—C12120.8 (2)
C4—C3—C7120.48 (17)C13—C12—N1132.3 (2)
C2—C3—C7120.12 (18)C13—C12—C11122.4 (2)
C5—C4—C3120.58 (17)N1—C12—C11105.34 (19)
C5—C4—H2119.7C14—C13—C12116.1 (2)
C3—C4—H2119.7C14—C13—H7122.0
C4—C5—C6119.27 (18)C12—C13—H7122.0
C4—C5—C8120.67 (17)C13—C14—C15122.1 (3)
C6—C5—C8120.06 (17)C13—C14—H8119.0
C1—C6—C5120.90 (17)C15—C14—H8119.0
C1—C6—H3119.6C16—C15—C14121.7 (3)
C5—C6—H3119.6C16—C15—H9119.1
O2—C7—O1123.42 (18)C14—C15—H9119.1
O2—C7—C3122.59 (18)C15—C16—C11116.9 (2)
O1—C7—C3113.98 (18)C15—C16—H10121.5
O4—C8—O3123.1 (2)C11—C16—H10121.5
O4—C8—C5125.28 (19)C10—N1—C12107.49 (17)
O3—C8—C5111.58 (18)C10—N1—C9126.3 (2)
N1—C9—C1113.68 (18)C12—N1—C9126.15 (19)
N1—C9—H5108.8C10—N2—C11105.86 (18)
C1—C9—H5108.8C7—O1—H11109.5
N1—C9—H4108.8C8—O3—H12109.5
C1—C9—H4108.8
C6—C1—C2—C30.1 (3)N2—C11—C12—C13179.95 (18)
C9—C1—C2—C3179.18 (19)C16—C11—C12—C130.5 (3)
C1—C2—C3—C40.2 (3)N2—C11—C12—N10.4 (2)
C1—C2—C3—C7179.6 (2)C16—C11—C12—N1179.05 (19)
C2—C3—C4—C50.1 (3)N1—C12—C13—C14178.6 (2)
C7—C3—C4—C5179.7 (2)C11—C12—C13—C140.8 (3)
C3—C4—C5—C60.3 (3)C12—C13—C14—C150.8 (4)
C3—C4—C5—C8179.06 (19)C13—C14—C15—C160.6 (4)
C2—C1—C6—C50.6 (3)C14—C15—C16—C110.3 (4)
C9—C1—C6—C5179.6 (2)N2—C11—C16—C15179.5 (2)
C4—C5—C6—C10.7 (3)C12—C11—C16—C150.2 (3)
C8—C5—C6—C1178.7 (2)N2—C10—N1—C120.8 (2)
C4—C3—C7—O2177.0 (2)N2—C10—N1—C9179.20 (18)
C2—C3—C7—O22.9 (3)C13—C12—N1—C10179.8 (2)
C4—C3—C7—O11.7 (3)C11—C12—N1—C100.7 (2)
C2—C3—C7—O1178.42 (18)C13—C12—N1—C91.4 (4)
C4—C5—C8—O4172.8 (2)C11—C12—N1—C9179.11 (18)
C6—C5—C8—O46.6 (3)C1—C9—N1—C10118.4 (2)
C4—C5—C8—O37.3 (3)C1—C9—N1—C1263.5 (3)
C6—C5—C8—O3173.30 (18)N1—C10—N2—C110.5 (2)
C6—C1—C9—N119.5 (3)C16—C11—N2—C10179.4 (2)
C2—C1—C9—N1161.5 (2)C12—C11—N2—C100.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H12···O2i0.821.842.574 (2)147
O1—H11···N2ii0.821.762.553 (2)162
Symmetry codes: (i) x, y1, z; (ii) x1, y, z1.

Experimental details

Crystal data
Chemical formulaC16H12N2O4
Mr296.28
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.7159 (11), 8.4559 (12), 10.9742 (15)
α, β, γ (°)97.286 (2), 104.928 (2), 98.029 (2)
V3)675.07 (16)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.979, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
3620, 2499, 1401
Rint0.024
(sin θ/λ)max1)0.608
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.098, 0.84
No. of reflections2499
No. of parameters199
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.17

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2000), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H12···O2i0.821.842.574 (2)147.4
O1—H11···N2ii0.821.762.553 (2)162.2
Symmetry codes: (i) x, y1, z; (ii) x1, y, z1.
 

References

First citationBrandenburg, K. (2000). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDas, M. C. & Bharadwaj, P. K. (2009). J. Am. Chem. Soc. 131, 10942–10943.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKuai, H.-W. & Cheng, X.-C. (2011). Acta Cryst. E67, o2787.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds