metal-organic compounds
Tetraaquabis{5-[4-(imidazol-1-yl-κN3)phenyl]tetrazolido}manganese(II)
aFaculty of Life Science and Chemical Engineering, Huaiyin Institute of Technology, Huaian 223003, People's Republic of China
*Correspondence e-mail: shxycheng@163.com
In the title complex, [Mn(C10H7N6)2(H2O)4], the Mn2+ cation is located on a twofold rotation axis and is coordinated by two N atoms from two 5-[4-(imidazol-1-yl)phenyl]tetrazolide ligands and four O atoms from four water molecules, displaying a distorted MnN2O4 octahedral geometry. The is stabilized by intermolecular O—H⋯N hydrogen bonds involving the coordinated water molecules and the N atoms of the tetrazolide group.
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2008); cell SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2000); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).
Supporting information
https://doi.org/10.1107/S1600536811047428/pv2481sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536811047428/pv2481Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S1600536811047428/pv2481Isup4.cdx
Reaction mixture of manganese perchlorate hexahydrate (72.3 mg, 0.2 mmol), 1-(5-tetrazolyl)-4-(imidazol-1-yl)benzene (21.2 mg, 0.1 mmol), and potassium hydroxide (5.61 mg, 0.1 mmol) in 12 ml H2O was sealed in a 16 ml Teflon-lined stainless steel container and heated to 393 K for 3 days. After cooling the stainless steel container to the room temperature, colorless block crystals of the title complex were obtained.
The hydrogen atoms in all C atoms were located in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). The hydrogen atoms of water molecules were found from a difference Fourier map and fixed at those positions with Uiso(H) = 1.2Ueq(O).
Multidentate ligand, 1-(5-tetrazolyl)-4-(imidazol-1-yl)benzene, may be used to synthesize complexes for its variable coordination modes. Herein, we report the
of the title complex wherein the Mn ion is located on a two fold rotation axis and is coordinated by two N atoms from two ligand molecules and four O atoms from four coordinated water molecules, displaying a distorted MnN2O4 octahedral geometry (Fig. 1). The ligand displays a monodentate coordinating mode and acts as counteranion due to the deprotonation of tetrazolyl group. In the there exist O—H···N hydrogen bonds (Table 1). Coordinated water molecules and N atoms of tetrazolyl group as donor or acceptor play very important role in the formation of these hydrogen bonds and stabilize the crystal structure.For related structures, see: Huang et al. (2009).
Data collection: APEX2 (Bruker, 2008); cell
SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2000); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Mn(C10H7N6)2(H2O)4] | Z = 1 |
Mr = 549.44 | F(000) = 283 |
Triclinic, P1 | Dx = 1.536 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 8.415 (3) Å | Cell parameters from 2041 reflections |
b = 8.458 (3) Å | θ = 2.4–28.3° |
c = 8.722 (3) Å | µ = 0.61 mm−1 |
α = 80.758 (5)° | T = 293 K |
β = 75.880 (4)° | Block, colorless |
γ = 88.791 (5)° | 0.20 × 0.20 × 0.20 mm |
V = 594.1 (4) Å3 |
Bruker SMART APEXII CCD diffractometer | 2198 independent reflections |
Radiation source: fine-focus sealed tube | 2027 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.014 |
φ and ω scans | θmax = 25.6°, θmin = 2.4° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −9→10 |
Tmin = 0.888, Tmax = 0.888 | k = −5→10 |
3143 measured reflections | l = −10→10 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.033 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.088 | H-atom parameters constrained |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0442P)2 + 0.2267P] where P = (Fo2 + 2Fc2)/3 |
2198 reflections | (Δ/σ)max < 0.001 |
169 parameters | Δρmax = 0.23 e Å−3 |
0 restraints | Δρmin = −0.30 e Å−3 |
[Mn(C10H7N6)2(H2O)4] | γ = 88.791 (5)° |
Mr = 549.44 | V = 594.1 (4) Å3 |
Triclinic, P1 | Z = 1 |
a = 8.415 (3) Å | Mo Kα radiation |
b = 8.458 (3) Å | µ = 0.61 mm−1 |
c = 8.722 (3) Å | T = 293 K |
α = 80.758 (5)° | 0.20 × 0.20 × 0.20 mm |
β = 75.880 (4)° |
Bruker SMART APEXII CCD diffractometer | 2198 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 2027 reflections with I > 2σ(I) |
Tmin = 0.888, Tmax = 0.888 | Rint = 0.014 |
3143 measured reflections |
R[F2 > 2σ(F2)] = 0.033 | 0 restraints |
wR(F2) = 0.088 | H-atom parameters constrained |
S = 1.07 | Δρmax = 0.23 e Å−3 |
2198 reflections | Δρmin = −0.30 e Å−3 |
169 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.7451 (2) | 0.5606 (2) | 0.7075 (2) | 0.0361 (4) | |
C2 | 0.8080 (3) | 0.6654 (3) | 0.5691 (3) | 0.0486 (5) | |
H2 | 0.9208 | 0.6794 | 0.5304 | 0.058* | |
C3 | 0.7036 (2) | 0.7498 (3) | 0.4877 (3) | 0.0443 (5) | |
H3 | 0.7472 | 0.8196 | 0.3934 | 0.053* | |
C4 | 0.5364 (2) | 0.7327 (2) | 0.5431 (2) | 0.0324 (4) | |
C5 | 0.4748 (3) | 0.6291 (3) | 0.6838 (3) | 0.0557 (6) | |
H5 | 0.3620 | 0.6169 | 0.7239 | 0.067* | |
C6 | 0.5787 (3) | 0.5430 (3) | 0.7659 (3) | 0.0550 (6) | |
H6 | 0.5357 | 0.4734 | 0.8605 | 0.066* | |
C7 | 0.4287 (2) | 0.8208 (2) | 0.4509 (2) | 0.0310 (4) | |
C8 | 0.8260 (3) | 0.3192 (2) | 0.8712 (2) | 0.0396 (4) | |
H8 | 0.7257 | 0.2651 | 0.8954 | 0.048* | |
C9 | 1.0742 (3) | 0.3767 (3) | 0.8576 (3) | 0.0541 (6) | |
H9 | 1.1804 | 0.3691 | 0.8713 | 0.065* | |
C10 | 1.0145 (3) | 0.5054 (3) | 0.7786 (3) | 0.0583 (7) | |
H10 | 1.0707 | 0.6004 | 0.7280 | 0.070* | |
Mn1 | 1.0000 | 0.0000 | 1.0000 | 0.02857 (14) | |
N1 | 0.9560 (2) | 0.25905 (19) | 0.9145 (2) | 0.0393 (4) | |
N2 | 0.8541 (2) | 0.46819 (19) | 0.7876 (2) | 0.0382 (4) | |
N3 | 0.48043 (19) | 0.8941 (2) | 0.29971 (18) | 0.0366 (4) | |
N4 | 0.3458 (2) | 0.9572 (2) | 0.25971 (18) | 0.0392 (4) | |
N5 | 0.21984 (19) | 0.9230 (2) | 0.38155 (19) | 0.0413 (4) | |
N6 | 0.26763 (19) | 0.8368 (2) | 0.50521 (18) | 0.0386 (4) | |
O1 | 0.74178 (16) | −0.05589 (19) | 1.03254 (16) | 0.0461 (4) | |
H1WA | 0.6635 | −0.0665 | 1.1168 | 0.055* | |
H1W | 0.6996 | −0.0410 | 0.9438 | 0.055* | |
O2 | 1.03428 (16) | −0.04640 (18) | 0.75458 (15) | 0.0415 (3) | |
H2W | 0.9801 | −0.0074 | 0.6872 | 0.050* | |
H2WA | 1.1108 | −0.0900 | 0.6996 | 0.050* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0377 (10) | 0.0331 (10) | 0.0391 (11) | 0.0082 (8) | −0.0168 (8) | 0.0006 (8) |
C2 | 0.0297 (10) | 0.0528 (13) | 0.0558 (14) | 0.0005 (9) | −0.0126 (9) | 0.0164 (10) |
C3 | 0.0347 (10) | 0.0464 (12) | 0.0438 (12) | −0.0013 (9) | −0.0098 (9) | 0.0166 (9) |
C4 | 0.0314 (9) | 0.0353 (9) | 0.0294 (9) | 0.0071 (7) | −0.0086 (7) | −0.0006 (7) |
C5 | 0.0304 (11) | 0.0787 (17) | 0.0436 (12) | 0.0086 (10) | −0.0024 (9) | 0.0214 (11) |
C6 | 0.0427 (12) | 0.0678 (15) | 0.0411 (12) | 0.0094 (11) | −0.0057 (10) | 0.0229 (11) |
C7 | 0.0281 (9) | 0.0377 (9) | 0.0259 (9) | 0.0050 (7) | −0.0064 (7) | −0.0018 (7) |
C8 | 0.0394 (10) | 0.0348 (10) | 0.0434 (11) | 0.0055 (8) | −0.0155 (9) | 0.0049 (8) |
C9 | 0.0471 (13) | 0.0433 (12) | 0.0767 (17) | 0.0004 (10) | −0.0358 (12) | 0.0085 (11) |
C10 | 0.0505 (13) | 0.0410 (12) | 0.0866 (19) | −0.0056 (10) | −0.0392 (13) | 0.0158 (12) |
Mn1 | 0.0232 (2) | 0.0344 (2) | 0.0247 (2) | 0.00559 (15) | −0.00588 (15) | 0.00465 (15) |
N1 | 0.0427 (9) | 0.0342 (8) | 0.0419 (9) | 0.0069 (7) | −0.0179 (8) | 0.0015 (7) |
N2 | 0.0398 (9) | 0.0337 (8) | 0.0434 (9) | 0.0063 (7) | −0.0202 (8) | 0.0022 (7) |
N3 | 0.0278 (8) | 0.0523 (10) | 0.0270 (8) | 0.0062 (7) | −0.0069 (6) | 0.0015 (7) |
N4 | 0.0318 (8) | 0.0579 (11) | 0.0259 (8) | 0.0081 (7) | −0.0097 (7) | 0.0019 (7) |
N5 | 0.0303 (8) | 0.0630 (11) | 0.0277 (8) | 0.0126 (8) | −0.0077 (7) | 0.0008 (8) |
N6 | 0.0294 (8) | 0.0560 (10) | 0.0268 (8) | 0.0117 (7) | −0.0060 (6) | 0.0015 (7) |
O1 | 0.0231 (6) | 0.0790 (11) | 0.0296 (7) | 0.0009 (6) | −0.0052 (5) | 0.0090 (7) |
O2 | 0.0329 (7) | 0.0649 (9) | 0.0247 (7) | 0.0167 (6) | −0.0066 (5) | −0.0037 (6) |
C1—C6 | 1.371 (3) | C9—N1 | 1.367 (3) |
C1—C2 | 1.374 (3) | C9—H9 | 0.9300 |
C1—N2 | 1.431 (2) | C10—N2 | 1.373 (3) |
C2—C3 | 1.379 (3) | C10—H10 | 0.9300 |
C2—H2 | 0.9300 | Mn1—O1 | 2.1737 (15) |
C3—C4 | 1.374 (3) | Mn1—O1i | 2.1737 (15) |
C3—H3 | 0.9300 | Mn1—O2 | 2.1870 (15) |
C4—C5 | 1.381 (3) | Mn1—O2i | 2.1870 (15) |
C4—C7 | 1.469 (2) | Mn1—N1 | 2.2514 (17) |
C5—C6 | 1.385 (3) | Mn1—N1i | 2.2514 (17) |
C5—H5 | 0.9300 | N3—N4 | 1.340 (2) |
C6—H6 | 0.9300 | N4—N5 | 1.305 (2) |
C7—N6 | 1.334 (2) | N5—N6 | 1.343 (2) |
C7—N3 | 1.334 (2) | O1—H1WA | 0.8528 |
C8—N1 | 1.310 (2) | O1—H1W | 0.9171 |
C8—N2 | 1.345 (3) | O2—H2W | 0.8511 |
C8—H8 | 0.9300 | O2—H2WA | 0.8226 |
C9—C10 | 1.348 (3) | ||
C6—C1—C2 | 119.82 (18) | O1—Mn1—O2 | 86.80 (5) |
C6—C1—N2 | 120.54 (18) | O1i—Mn1—O2 | 93.20 (5) |
C2—C1—N2 | 119.62 (18) | O1—Mn1—O2i | 93.20 (5) |
C1—C2—C3 | 119.91 (19) | O1i—Mn1—O2i | 86.80 (5) |
C1—C2—H2 | 120.0 | O2—Mn1—O2i | 180.0 |
C3—C2—H2 | 120.0 | O1—Mn1—N1 | 90.17 (6) |
C4—C3—C2 | 121.27 (19) | O1i—Mn1—N1 | 89.83 (6) |
C4—C3—H3 | 119.4 | O2—Mn1—N1 | 89.07 (6) |
C2—C3—H3 | 119.4 | O2i—Mn1—N1 | 90.93 (6) |
C3—C4—C5 | 118.23 (18) | O1—Mn1—N1i | 89.83 (6) |
C3—C4—C7 | 119.87 (17) | O1i—Mn1—N1i | 90.17 (6) |
C5—C4—C7 | 121.88 (17) | O2—Mn1—N1i | 90.93 (6) |
C4—C5—C6 | 120.9 (2) | O2i—Mn1—N1i | 89.07 (6) |
C4—C5—H5 | 119.5 | N1—Mn1—N1i | 180.0 |
C6—C5—H5 | 119.5 | C8—N1—C9 | 105.09 (17) |
C1—C6—C5 | 119.8 (2) | C8—N1—Mn1 | 127.28 (14) |
C1—C6—H6 | 120.1 | C9—N1—Mn1 | 125.60 (14) |
C5—C6—H6 | 120.1 | C8—N2—C10 | 106.15 (16) |
N6—C7—N3 | 111.17 (16) | C8—N2—C1 | 126.58 (17) |
N6—C7—C4 | 125.02 (17) | C10—N2—C1 | 126.85 (17) |
N3—C7—C4 | 123.81 (16) | C7—N3—N4 | 105.15 (15) |
N1—C8—N2 | 112.29 (19) | N5—N4—N3 | 109.18 (15) |
N1—C8—H8 | 123.9 | N4—N5—N6 | 109.87 (15) |
N2—C8—H8 | 123.9 | C7—N6—N5 | 104.64 (15) |
C10—C9—N1 | 110.2 (2) | Mn1—O1—H1WA | 130.2 |
C10—C9—H9 | 124.9 | Mn1—O1—H1W | 118.1 |
N1—C9—H9 | 124.9 | H1WA—O1—H1W | 109.5 |
C9—C10—N2 | 106.3 (2) | Mn1—O2—H2W | 127.1 |
C9—C10—H10 | 126.8 | Mn1—O2—H2WA | 129.2 |
N2—C10—H10 | 126.8 | H2W—O2—H2WA | 102.8 |
O1—Mn1—O1i | 180.0 | ||
C6—C1—C2—C3 | −1.4 (4) | O2i—Mn1—N1—C8 | −107.15 (18) |
N2—C1—C2—C3 | 177.3 (2) | N1i—Mn1—N1—C8 | 144 (100) |
C1—C2—C3—C4 | 0.7 (4) | O1—Mn1—N1—C9 | −175.28 (19) |
C2—C3—C4—C5 | 0.4 (3) | O1i—Mn1—N1—C9 | 4.72 (19) |
C2—C3—C4—C7 | −178.2 (2) | O2—Mn1—N1—C9 | −88.48 (19) |
C3—C4—C5—C6 | −0.8 (4) | O2i—Mn1—N1—C9 | 91.52 (19) |
C7—C4—C5—C6 | 177.7 (2) | N1i—Mn1—N1—C9 | −17 (100) |
C2—C1—C6—C5 | 1.0 (4) | N1—C8—N2—C10 | −0.5 (3) |
N2—C1—C6—C5 | −177.7 (2) | N1—C8—N2—C1 | 172.43 (18) |
C4—C5—C6—C1 | 0.1 (4) | C9—C10—N2—C8 | −0.1 (3) |
C3—C4—C7—N6 | −167.3 (2) | C9—C10—N2—C1 | −173.0 (2) |
C5—C4—C7—N6 | 14.2 (3) | C6—C1—N2—C8 | 31.4 (3) |
C3—C4—C7—N3 | 13.6 (3) | C2—C1—N2—C8 | −147.2 (2) |
C5—C4—C7—N3 | −164.9 (2) | C6—C1—N2—C10 | −157.1 (2) |
N1—C9—C10—N2 | 0.6 (3) | C2—C1—N2—C10 | 24.2 (3) |
N2—C8—N1—C9 | 0.8 (3) | N6—C7—N3—N4 | −0.1 (2) |
N2—C8—N1—Mn1 | −163.53 (14) | C4—C7—N3—N4 | 179.14 (17) |
C10—C9—N1—C8 | −0.9 (3) | C7—N3—N4—N5 | 0.0 (2) |
C10—C9—N1—Mn1 | 163.81 (18) | N3—N4—N5—N6 | 0.1 (2) |
O1—Mn1—N1—C8 | −13.94 (18) | N3—C7—N6—N5 | 0.2 (2) |
O1i—Mn1—N1—C8 | 166.06 (18) | C4—C7—N6—N5 | −179.05 (18) |
O2—Mn1—N1—C8 | 72.85 (18) | N4—N5—N6—C7 | −0.2 (2) |
Symmetry code: (i) −x+2, −y, −z+2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2W···N5ii | 0.85 | 2.00 | 2.796 (2) | 155 |
O2—H2WA···N6iii | 0.82 | 2.05 | 2.844 (2) | 161 |
O1—H1W···N4ii | 0.92 | 1.93 | 2.819 (2) | 163 |
O1—H1WA···N3iv | 0.85 | 1.92 | 2.769 (2) | 175 |
Symmetry codes: (ii) −x+1, −y+1, −z+1; (iii) x+1, y−1, z; (iv) x, y−1, z+1. |
Experimental details
Crystal data | |
Chemical formula | [Mn(C10H7N6)2(H2O)4] |
Mr | 549.44 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 8.415 (3), 8.458 (3), 8.722 (3) |
α, β, γ (°) | 80.758 (5), 75.880 (4), 88.791 (5) |
V (Å3) | 594.1 (4) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 0.61 |
Crystal size (mm) | 0.20 × 0.20 × 0.20 |
Data collection | |
Diffractometer | Bruker SMART APEXII CCD |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.888, 0.888 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3143, 2198, 2027 |
Rint | 0.014 |
(sin θ/λ)max (Å−1) | 0.608 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.033, 0.088, 1.07 |
No. of reflections | 2198 |
No. of parameters | 169 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.23, −0.30 |
Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2000), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2W···N5i | 0.85 | 2.00 | 2.796 (2) | 155.2 |
O2—H2WA···N6ii | 0.82 | 2.05 | 2.844 (2) | 161.4 |
O1—H1W···N4i | 0.92 | 1.93 | 2.819 (2) | 163.4 |
O1—H1WA···N3iii | 0.85 | 1.92 | 2.769 (2) | 174.9 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x+1, y−1, z; (iii) x, y−1, z+1. |
References
Brandenburg, K. (2000). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Huang, R.-Y., Zhu, K., Chen, H., Liu, G.-X. & Ren, X.-M. (2009). Wuji Huaxue Xuebao, 25, 162–165. CAS Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Multidentate ligand, 1-(5-tetrazolyl)-4-(imidazol-1-yl)benzene, may be used to synthesize complexes for its variable coordination modes. Herein, we report the crystal structure of the title complex wherein the Mn ion is located on a two fold rotation axis and is coordinated by two N atoms from two ligand molecules and four O atoms from four coordinated water molecules, displaying a distorted MnN2O4 octahedral geometry (Fig. 1). The ligand displays a monodentate coordinating mode and acts as counteranion due to the deprotonation of tetrazolyl group. In the crystal structure, there exist O—H···N hydrogen bonds (Table 1). Coordinated water molecules and N atoms of tetrazolyl group as donor or acceptor play very important role in the formation of these hydrogen bonds and stabilize the crystal structure.