organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,3′-Bis(3-meth­­oxy­benz­yl)-1,1′-(ethane-1,2-diyl)­diimidazolium dibromide dihydrate

aDepartment of Chemistry, National Changhua University of Education, Changhua, Taiwan 50058
*Correspondence e-mail: leehm@cc.ncue.edu.tw

(Received 10 November 2011; accepted 22 November 2011; online 30 November 2011)

In the title compound, C24H28N4O22+·2Br·2H2O, the diimid­azo­lium cation is located on an inversion center. The imidazole and the benzene rings make a dihedral angle of 68.08 (04)°. In the crystal, O—H⋯Br, C—H⋯O and C—H⋯Br hydrogen bonds link the diimidazolium cations, the bromide anions and the water mol­ecules into a two-dimensional network.

Related literature

For the non-hydrated crystal structure of the title compound, see: Lee & Lu (2008[Lee, H. M. & Lu, C.-Y. (2008). Acta Cryst. E64, o2086.]). For preparation of the title compound, see: Lee et al. (2004[Lee, H. M., Lu, C. Y., Chen, C. Y., Chen, W. L., Lin, H. C., Chiu, P. L. & Cheng, P. Y. (2004). Tetrahedron, 60, 5807-5825.]).

[Scheme 1]

Experimental

Crystal data
  • C24H28N4O22+·2Br·2H2O

  • Mr = 600.36

  • Monoclinic, P 21 /c

  • a = 8.5879 (3) Å

  • b = 13.7822 (6) Å

  • c = 11.0964 (5) Å

  • β = 107.277 (2)°

  • V = 1254.11 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.27 mm−1

  • T = 150 K

  • 0.25 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.495, Tmax = 0.561

  • 9596 measured reflections

  • 2986 independent reflections

  • 2560 reflections with I > 2σ

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.059

  • S = 1.04

  • 2986 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H12⋯Br1i 0.74 2.63 3.3419 (13) 161.9
O2—H13⋯Br1 0.89 2.52 3.3362 (14) 153.2
C11—H1⋯O2ii 0.91 2.45 3.295 (2) 154.5
C1—H6⋯Br1ii 0.94 2.86 3.6743 (16) 145.5
C5—H4⋯O2ii 0.95 2.60 3.402 (2) 142.6
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) x+1, y, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS96 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL; software used to prepare material for publication: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]).

Supporting information


Comment top

The non-hydrated crystal structure of the same imidazolium bromide, has been published previously (Lee & Lu, 2008). The title compound is a dihydrated salt. The structure of the title compound (Fig. 1) is similar to the non-hydrated structure, wherein the bis(imidazolium) dication is also located on an inversion center with the two imidazole rings being parallel to each other. The imidazole and the benzene rings in the title compound make a dihedral angle of 68.08 (04)°, which is much smaller than 77.25 (16)° reported in the non-hydrated structure. Intermolecular hydrogen bonds of the type O—H···Br, C—H···O and C—H···Br link the imidazolium cations, bromide anions and water solvent molecules, forming a two-dimensional hydrogen-bonded network (Fig. 2 and Table 1).

Related literature top

For the non-hydrated crystal structure of the title compound, see: Lee & Lu (2008). For preparation of the title compound, see: Lee et al. (2004).

Experimental top

The compound was prepared according to the literature procedure (Lee et al., 2004). Suitable crystals were obtained by slow diffusion of diethyl ether into a wet DMF solution of the compound at room temperature.

Refinement top

The methyl hydrogen atoms were positioned geometrically and refined as riding atoms, with C—H = 0.98 Å with Uiso(H) = 1.5Ueq(C). The other hydrogen atoms are located from the difference Fourier maps, allowed to refine in the initial refinement cycles and then fixed at those positions during the final cycles of refinement.

Structure description top

The non-hydrated crystal structure of the same imidazolium bromide, has been published previously (Lee & Lu, 2008). The title compound is a dihydrated salt. The structure of the title compound (Fig. 1) is similar to the non-hydrated structure, wherein the bis(imidazolium) dication is also located on an inversion center with the two imidazole rings being parallel to each other. The imidazole and the benzene rings in the title compound make a dihedral angle of 68.08 (04)°, which is much smaller than 77.25 (16)° reported in the non-hydrated structure. Intermolecular hydrogen bonds of the type O—H···Br, C—H···O and C—H···Br link the imidazolium cations, bromide anions and water solvent molecules, forming a two-dimensional hydrogen-bonded network (Fig. 2 and Table 1).

For the non-hydrated crystal structure of the title compound, see: Lee & Lu (2008). For preparation of the title compound, see: Lee et al. (2004).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXSL96 (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: DIAMOND (Brandenburg, 2006).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing 50% probability displacement ellipsoids for the non-hydrogen atoms. The H atoms are dipicted by circles of an arbitrary radius. The unlabelled atoms of the imidazolium cation are related to the labelled ones by symmetry operation: 2 - x, -y, 1 - z; for the anion, the symmetry operation for Br1 is x, 1/2 - y, -1/2 + z.
[Figure 2] Fig. 2. Unit cell packing of the title compound showing hydrogen bonding interactions.
3,3'-Bis(3-methoxybenzyl)-1,1'-(ethane-1,2-diyl)diimidazolium dibromide dihydrate top
Crystal data top
C24H28N4O22+·2Br·2H2OF(000) = 612
Mr = 600.36Dx = 1.590 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4076 reflections
a = 8.5879 (3) Åθ = 2.4–27.8°
b = 13.7822 (6) ŵ = 3.27 mm1
c = 11.0964 (5) ÅT = 150 K
β = 107.277 (2)°Block, white
V = 1254.11 (9) Å30.25 × 0.20 × 0.20 mm
Z = 2
Data collection top
Bruker SMART APEXII
diffractometer
2986 independent reflections
Radiation source: fine-focus sealed tube2560 reflections with I > 2σ
Graphite monochromatorRint = 0.020
ω scansθmax = 27.9°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1111
Tmin = 0.495, Tmax = 0.561k = 1817
9596 measured reflectionsl = 1014
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.059H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0332P)2 + 0.2216P]
where P = (Fo2 + 2Fc2)/3
2986 reflections(Δ/σ)max = 0.004
154 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C24H28N4O22+·2Br·2H2OV = 1254.11 (9) Å3
Mr = 600.36Z = 2
Monoclinic, P21/cMo Kα radiation
a = 8.5879 (3) ŵ = 3.27 mm1
b = 13.7822 (6) ÅT = 150 K
c = 11.0964 (5) Å0.25 × 0.20 × 0.20 mm
β = 107.277 (2)°
Data collection top
Bruker SMART APEXII
diffractometer
2986 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2560 reflections with I > 2σ
Tmin = 0.495, Tmax = 0.561Rint = 0.020
9596 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0230 restraints
wR(F2) = 0.059H-atom parameters constrained
S = 1.04Δρmax = 0.34 e Å3
2986 reflectionsΔρmin = 0.26 e Å3
154 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.359161 (19)0.146752 (12)0.490121 (15)0.02394 (7)
C10.92203 (19)0.14465 (11)0.31701 (14)0.0160 (3)
C110.9179 (2)0.13818 (11)0.03275 (15)0.0177 (3)
C50.8031 (2)0.23349 (11)0.11436 (14)0.0184 (3)
C30.6531 (2)0.14528 (12)0.24893 (16)0.0209 (3)
C70.6246 (2)0.14644 (12)0.07555 (16)0.0222 (3)
C60.7804 (2)0.17085 (11)0.00127 (14)0.0168 (3)
C100.8960 (2)0.08036 (12)0.13955 (14)0.0193 (3)
C40.96949 (19)0.04905 (12)0.51517 (14)0.0180 (3)
C80.6059 (2)0.08805 (13)0.18098 (15)0.0236 (4)
C20.69825 (19)0.09468 (12)0.35762 (15)0.0204 (3)
C90.7400 (2)0.05481 (12)0.21304 (14)0.0225 (4)
N10.86714 (16)0.09507 (9)0.39930 (11)0.0157 (3)
N20.79482 (16)0.17629 (10)0.22518 (12)0.0154 (3)
O11.02188 (14)0.04640 (9)0.18024 (11)0.0257 (3)
O20.21749 (17)0.23175 (12)0.19624 (13)0.0436 (4)
C121.1839 (2)0.07413 (14)0.10897 (17)0.0264 (4)
H12A1.26230.04550.14720.040*
H12B1.20660.05090.02200.040*
H12C1.19340.14500.10890.040*
H11.01940.15400.01590.020*
H30.50230.07200.23140.021*
H20.53490.17040.05950.026*
H50.71890.28150.10190.015*
H40.90570.26480.13840.016*
H61.03290.15670.32550.017*
H70.54620.16220.19570.029*
H81.05860.09150.55350.025*
H90.90810.04080.56980.023*
H120.26850.25630.16230.059*
H130.28770.21290.26900.062*
H150.72530.01520.28630.031*
H160.63860.06240.40350.025*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02082 (10)0.02866 (11)0.02254 (10)0.00226 (7)0.00672 (7)0.00185 (7)
C10.0177 (7)0.0153 (8)0.0149 (7)0.0004 (6)0.0048 (6)0.0012 (6)
C110.0196 (8)0.0171 (8)0.0155 (7)0.0023 (6)0.0040 (6)0.0015 (6)
C50.0249 (8)0.0143 (8)0.0164 (7)0.0018 (7)0.0068 (6)0.0018 (6)
C30.0155 (7)0.0257 (9)0.0216 (8)0.0017 (7)0.0058 (6)0.0015 (7)
C70.0215 (8)0.0244 (9)0.0199 (8)0.0040 (7)0.0047 (7)0.0021 (7)
C60.0216 (8)0.0133 (8)0.0148 (7)0.0015 (6)0.0042 (6)0.0021 (6)
C100.0261 (8)0.0171 (8)0.0170 (7)0.0003 (7)0.0102 (7)0.0027 (6)
C40.0223 (8)0.0192 (8)0.0129 (7)0.0012 (7)0.0058 (6)0.0009 (6)
C80.0218 (8)0.0267 (9)0.0188 (8)0.0036 (7)0.0005 (6)0.0009 (7)
C20.0178 (8)0.0220 (9)0.0239 (8)0.0009 (7)0.0101 (7)0.0004 (7)
C90.0317 (9)0.0204 (9)0.0153 (7)0.0060 (7)0.0069 (7)0.0026 (6)
N10.0182 (6)0.0145 (7)0.0156 (6)0.0010 (5)0.0068 (5)0.0001 (5)
N20.0172 (6)0.0141 (6)0.0157 (6)0.0009 (5)0.0063 (5)0.0006 (5)
O10.0270 (6)0.0312 (7)0.0227 (6)0.0013 (5)0.0129 (5)0.0059 (5)
O20.0347 (8)0.0646 (11)0.0281 (7)0.0162 (7)0.0040 (6)0.0061 (7)
C120.0248 (9)0.0262 (9)0.0319 (9)0.0004 (7)0.0142 (7)0.0004 (7)
Geometric parameters (Å, º) top
C1—N21.327 (2)C10—C91.391 (2)
C1—N11.3337 (19)C4—N11.4686 (19)
C1—H60.9430C4—C4i1.523 (3)
C11—C101.394 (2)C4—H80.9571
C11—C61.401 (2)C4—H90.9209
C11—H10.9051C8—C91.381 (2)
C5—N21.4800 (19)C8—H30.9264
C5—C61.510 (2)C2—N11.385 (2)
C5—H50.9596C2—H160.9355
C5—H40.9459C9—H150.9552
C3—C21.347 (2)O1—C121.433 (2)
C3—N21.387 (2)O2—H120.7395
C3—H70.9616O2—H130.8910
C7—C61.388 (2)C12—H12A0.9800
C7—C81.389 (2)C12—H12B0.9800
C7—H20.9033C12—H12C0.9800
C10—O11.3720 (19)
N2—C1—N1108.44 (13)N1—C4—H9108.6
N2—C1—H6126.5C4i—C4—H9109.7
N1—C1—H6125.0H8—C4—H9108.8
C10—C11—C6118.97 (15)C9—C8—C7120.81 (15)
C10—C11—H1120.5C9—C8—H3119.4
C6—C11—H1120.5C7—C8—H3119.8
N2—C5—C6112.06 (13)C3—C2—N1106.92 (13)
N2—C5—H5105.5C3—C2—H16132.5
C6—C5—H5111.7N1—C2—H16120.6
N2—C5—H4106.2C8—C9—C10119.78 (15)
C6—C5—H4112.0C8—C9—H15119.9
H5—C5—H4109.0C10—C9—H15120.3
C2—C3—N2107.13 (14)C1—N1—C2108.74 (13)
C2—C3—H7130.1C1—N1—C4125.41 (13)
N2—C3—H7122.7C2—N1—C4125.85 (13)
C6—C7—C8119.38 (15)C1—N2—C3108.76 (13)
C6—C7—H2121.5C1—N2—C5125.55 (13)
C8—C7—H2119.0C3—N2—C5125.68 (13)
C7—C6—C11120.59 (15)C10—O1—C12117.28 (12)
C7—C6—C5120.07 (14)H12—O2—H13104.6
C11—C6—C5119.34 (15)O1—C12—H12A109.5
O1—C10—C9115.89 (14)O1—C12—H12B109.5
O1—C10—C11123.64 (15)H12A—C12—H12B109.5
C9—C10—C11120.47 (15)O1—C12—H12C109.5
N1—C4—C4i110.22 (15)H12A—C12—H12C109.5
N1—C4—H8108.5H12B—C12—H12C109.5
C4i—C4—H8111.0
Symmetry code: (i) x+2, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H12···Br1ii0.742.633.3419 (13)161.9
O2—H13···Br10.892.523.3362 (14)153.2
C11—H1···O2iii0.912.453.295 (2)154.5
C1—H6···Br1iii0.942.863.6743 (16)145.5
C5—H4···O2iii0.952.603.402 (2)142.6
Symmetry codes: (ii) x, y+1/2, z1/2; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC24H28N4O22+·2Br·2H2O
Mr600.36
Crystal system, space groupMonoclinic, P21/c
Temperature (K)150
a, b, c (Å)8.5879 (3), 13.7822 (6), 11.0964 (5)
β (°) 107.277 (2)
V3)1254.11 (9)
Z2
Radiation typeMo Kα
µ (mm1)3.27
Crystal size (mm)0.25 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART APEXII
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.495, 0.561
No. of measured, independent and
observed (I > 2σ) reflections
9596, 2986, 2560
Rint0.020
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.059, 1.04
No. of reflections2986
No. of parameters154
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.26

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXSL96 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), DIAMOND (Brandenburg, 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H12···Br1i0.742.633.3419 (13)161.9
O2—H13···Br10.892.523.3362 (14)153.2
C11—H1···O2ii0.912.453.295 (2)154.5
C1—H6···Br1ii0.942.863.6743 (16)145.5
C5—H4···O2ii0.952.603.402 (2)142.6
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y, z.
 

Acknowledgements

We thank the National Science Council of Taiwan for financial support of this work.

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLee, H. M. & Lu, C.-Y. (2008). Acta Cryst. E64, o2086.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLee, H. M., Lu, C. Y., Chen, C. Y., Chen, W. L., Lin, H. C., Chiu, P. L. & Cheng, P. Y. (2004). Tetrahedron, 60, 5807–5825.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds