organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Benzoyl-4-(4-methyl­phen­yl)phthal­azine

aSchool of Chemistry, Bharathidasan University, Thiruchirapalli, Tamil Nadu 620 024, India, and bDepartment of Advanced Technology Fusion, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143 701, Republic of Korea
*Correspondence e-mail: sams76@gmail.com

(Received 12 November 2011; accepted 25 November 2011; online 30 November 2011)

In the title mol­ecule, C22H16N2O, the tolyl and benzoyl rings make dihedral angles 50.2 (5) and 56.4 (5)°, respectively, with the phthalazine ring system while the dihedral angle between the tolyl and benzoyl rings is 0.70 (4)°. The crystal structure is stabilized by inter­molecular C—H⋯O and C—H⋯N hydrogen bonds, as well as weak C—H⋯π inter­actions.

Related literature

For the biological activity of phthalazine derivatives, see: Grasso et al. (2000[Grasso, S., De Sarro, G., De Sarro, A., Micale, N., Zappalà, M., Puja, G., Baraldi, M. & De Micheli, C. (2000). J. Med. Chem. 43, 2851-2859.]). For related structures, see: Dilek et al. (2004[Dilek, N., Gunes, B., Ide, S., Ozcan, Y. & Tezcan, H. (2004). Anal. Sci. 20, x157-x158.]); Rajnikant et al. (2006[Rajnikant, Dinesh, Kamni, & Deshmukh, M. B. (2006). Crystallogr. Rep. 51, 615-618.]).

[Scheme 1]

Experimental

Crystal data
  • C22H16N2O

  • Mr = 324.37

  • Monoclinic, P 21 /c

  • a = 12.4873 (2) Å

  • b = 8.8011 (1) Å

  • c = 15.4425 (2) Å

  • β = 92.458 (1)°

  • V = 1695.60 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.10 × 0.06 × 0.04 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • 30411 measured reflections

  • 3519 independent reflections

  • 2606 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.130

  • S = 1.07

  • 3519 reflections

  • 226 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C10–C15 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯O1i 0.93 2.71 3.400 (3) 132
C13—H13⋯N2ii 0.93 2.73 3.654 (3) 170
C20—H20⋯N2iii 0.93 2.61 3.522 (2) 166
C6—H6⋯Cg1iv 0.93 2.76 3.549 (2) 143
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z-{\script{1\over 2}}]; (ii) [x, -y-{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) x, y+1, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Phthalazine (2,3 benzodiazine) is a well known heterocyclic system which is widely used in synthetic organic chemistry as an intermediate. Its derivatives possess remarkable biological activity, such as anticonvulsant antimicrobial, anti-inflammatory, antifungal, antibacterial, vasorelaxant and cardiotonic activity (Grasso et al., 2000).

In the title molecule (Fig. 1), the phthalazine moiety consists of a benzene and a pyridazine rings fused together and shows a planar conformation; the dihedral angle between these rings is 0.70 (4)°. A tolyl and a benzoyl rings are substituted on the pyridazine ring and dihedral angle of these rings with the pyridazine ring are 50.2 (5) and 56.4 (5)°, respectively. Though the molecules do not show any classical hydrogen bonds, these molecules are connected by C–H···O and C—H···N types of intermolecular hydrogen bonds. In addition to these, a C—H···π weak interaction also helps to consolidate the molecules in the unit cell crystal packing (Fig. 2 and Tab. 1). The molecular dimensions in the title compound are in excellent agreement with the corresponding molecular dimensions reported in closely related compounds (Dilek et al., 2004; Rajnikant et al., 2006).

Related literature top

For the biological activity of phthalazine derivatives, see: Grasso et al. (2000). For related structures, see: Dilek et al. (2004); Rajnikant et al. (2006).

Experimental top

The title compound was synthesized in 70% yield by heating the compounds 1-[2-(4-methylbenzoyl)phenyl]-2-phenylethane-1,2-dione (50 mg, 0.15 mmol) with hydrazine hydrate (11 mg, 0.23 mmol) under reflux in acetonitrile (5 ml) for 6 hr. The crystals suitable for crystallographic study were grown from dichloromethane by slow evaporation at room temperature.

Refinement top

H atoms were positioned geometrically and refined using a riding model with C—H = 0.93 Å for aromatic H and 0.96 Å for methyl H atoms. The Uiso parameters for H atoms were constraned to be 1.5Ueq of the carrier atom for the methyl H atoms and 1.2Ueq of the carrier atom for the remaining H atoms.

Structure description top

Phthalazine (2,3 benzodiazine) is a well known heterocyclic system which is widely used in synthetic organic chemistry as an intermediate. Its derivatives possess remarkable biological activity, such as anticonvulsant antimicrobial, anti-inflammatory, antifungal, antibacterial, vasorelaxant and cardiotonic activity (Grasso et al., 2000).

In the title molecule (Fig. 1), the phthalazine moiety consists of a benzene and a pyridazine rings fused together and shows a planar conformation; the dihedral angle between these rings is 0.70 (4)°. A tolyl and a benzoyl rings are substituted on the pyridazine ring and dihedral angle of these rings with the pyridazine ring are 50.2 (5) and 56.4 (5)°, respectively. Though the molecules do not show any classical hydrogen bonds, these molecules are connected by C–H···O and C—H···N types of intermolecular hydrogen bonds. In addition to these, a C—H···π weak interaction also helps to consolidate the molecules in the unit cell crystal packing (Fig. 2 and Tab. 1). The molecular dimensions in the title compound are in excellent agreement with the corresponding molecular dimensions reported in closely related compounds (Dilek et al., 2004; Rajnikant et al., 2006).

For the biological activity of phthalazine derivatives, see: Grasso et al. (2000). For related structures, see: Dilek et al. (2004); Rajnikant et al. (2006).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. ORTEP diagram of the title molecule with the atom numbering scheme. Displacement ellipsoid are drawn at 30% probability level. H-atoms were removed for clarity.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed down the c axis. Dashed lines indicate the hydrogen bonds between the molecules.
1-benzoyl-4-(4-methylphenyl)phthalazine top
Crystal data top
C22H16N2OF(000) = 680
Mr = 324.37Dx = 1.271 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3519 reflections
a = 12.4873 (2) Åθ = 1.6–26.6°
b = 8.8011 (1) ŵ = 0.08 mm1
c = 15.4425 (2) ÅT = 296 K
β = 92.458 (1)°Needle, orange
V = 1695.60 (4) Å30.10 × 0.06 × 0.04 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2606 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.036
Graphite monochromatorθmax = 26.6°, θmin = 1.6°
ω scansh = 1515
30411 measured reflectionsk = 1111
3519 independent reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0546P)2 + 0.4182P]
where P = (Fo2 + 2Fc2)/3
3519 reflections(Δ/σ)max = 0.003
226 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C22H16N2OV = 1695.60 (4) Å3
Mr = 324.37Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.4873 (2) ŵ = 0.08 mm1
b = 8.8011 (1) ÅT = 296 K
c = 15.4425 (2) Å0.10 × 0.06 × 0.04 mm
β = 92.458 (1)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2606 reflections with I > 2σ(I)
30411 measured reflectionsRint = 0.036
3519 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.130H-atom parameters constrained
S = 1.07Δρmax = 0.20 e Å3
3519 reflectionsΔρmin = 0.22 e Å3
226 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.00887 (10)0.14263 (15)0.07710 (9)0.0706 (4)
N10.21706 (11)0.03719 (15)0.05410 (9)0.0506 (3)
N20.27574 (11)0.07622 (15)0.12807 (9)0.0503 (3)
C80.17846 (12)0.30203 (17)0.02488 (10)0.0429 (3)
C10.17027 (12)0.14321 (17)0.00642 (10)0.0447 (4)
C20.28673 (12)0.22046 (18)0.15030 (10)0.0449 (4)
C30.23980 (12)0.34210 (17)0.10025 (10)0.0450 (4)
C40.24861 (16)0.49746 (19)0.12311 (12)0.0611 (5)
H40.28680.52560.17360.073*
C50.20122 (17)0.6061 (2)0.07141 (13)0.0660 (5)
H50.20770.70790.08680.079*
C60.14337 (15)0.56618 (19)0.00404 (12)0.0607 (5)
H60.11270.64180.03910.073*
C70.13101 (13)0.41727 (19)0.02740 (11)0.0521 (4)
H70.09140.39190.07770.063*
C90.09674 (14)0.08398 (18)0.06611 (10)0.0503 (4)
C100.12936 (15)0.04512 (18)0.12021 (10)0.0540 (4)
C110.04861 (19)0.1217 (2)0.16781 (12)0.0716 (6)
H110.02240.09220.16310.086*
C120.0726 (3)0.2391 (3)0.22112 (14)0.0957 (8)
H120.01830.28960.25250.115*
C130.1773 (3)0.2824 (3)0.22833 (14)0.1016 (10)
H130.19360.36230.26490.122*
C140.2591 (2)0.2087 (3)0.18174 (14)0.0890 (8)
H140.32980.23930.18700.107*
C150.23530 (17)0.0885 (2)0.12707 (11)0.0643 (5)
H150.28970.03820.09570.077*
C160.35062 (12)0.24271 (18)0.23300 (10)0.0478 (4)
C170.32650 (14)0.1561 (2)0.30488 (11)0.0541 (4)
H170.26900.08900.30100.065*
C180.38613 (14)0.1678 (2)0.38175 (11)0.0596 (5)
H180.36860.10790.42870.071*
C190.47198 (14)0.2676 (2)0.39033 (12)0.0605 (5)
C200.49709 (15)0.3524 (2)0.31882 (13)0.0658 (5)
H200.55530.41830.32270.079*
C210.43727 (14)0.3414 (2)0.24106 (12)0.0606 (5)
H210.45540.40070.19400.073*
C220.53529 (18)0.2818 (3)0.47533 (14)0.0875 (7)
H22A0.50600.21450.51710.131*
H22B0.53140.38460.49580.131*
H22C0.60880.25550.46710.131*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0648 (8)0.0652 (8)0.0797 (9)0.0137 (7)0.0217 (7)0.0093 (7)
N10.0605 (8)0.0396 (7)0.0507 (8)0.0036 (6)0.0103 (6)0.0013 (6)
N20.0585 (8)0.0414 (7)0.0500 (8)0.0032 (6)0.0097 (6)0.0009 (6)
C80.0470 (8)0.0402 (8)0.0417 (8)0.0035 (6)0.0054 (6)0.0015 (6)
C10.0503 (9)0.0402 (8)0.0433 (8)0.0041 (7)0.0009 (7)0.0005 (6)
C20.0481 (8)0.0434 (8)0.0433 (8)0.0008 (7)0.0023 (6)0.0004 (6)
C30.0521 (9)0.0400 (8)0.0431 (8)0.0014 (7)0.0043 (7)0.0006 (6)
C40.0808 (12)0.0418 (9)0.0604 (11)0.0007 (8)0.0029 (9)0.0081 (8)
C50.0881 (13)0.0362 (9)0.0740 (12)0.0027 (9)0.0056 (10)0.0027 (8)
C60.0724 (11)0.0434 (9)0.0666 (11)0.0116 (8)0.0078 (9)0.0124 (8)
C70.0581 (9)0.0485 (9)0.0497 (9)0.0075 (8)0.0015 (7)0.0061 (7)
C90.0608 (10)0.0430 (8)0.0463 (9)0.0040 (7)0.0073 (7)0.0026 (7)
C100.0795 (12)0.0403 (8)0.0413 (8)0.0036 (8)0.0072 (8)0.0037 (7)
C110.1067 (16)0.0528 (10)0.0531 (10)0.0058 (10)0.0220 (10)0.0002 (8)
C120.169 (3)0.0557 (13)0.0598 (13)0.0008 (15)0.0239 (15)0.0070 (10)
C130.211 (3)0.0494 (12)0.0442 (11)0.0230 (17)0.0024 (16)0.0069 (9)
C140.141 (2)0.0679 (13)0.0594 (12)0.0400 (14)0.0193 (13)0.0068 (11)
C150.0881 (13)0.0544 (10)0.0504 (10)0.0150 (10)0.0040 (9)0.0048 (8)
C160.0494 (9)0.0478 (9)0.0460 (9)0.0001 (7)0.0004 (7)0.0040 (7)
C170.0560 (10)0.0568 (10)0.0495 (9)0.0071 (8)0.0001 (7)0.0006 (8)
C180.0622 (11)0.0684 (12)0.0479 (9)0.0002 (9)0.0001 (8)0.0006 (8)
C190.0551 (10)0.0716 (12)0.0541 (10)0.0070 (9)0.0069 (8)0.0126 (9)
C200.0542 (10)0.0733 (13)0.0690 (12)0.0138 (9)0.0054 (9)0.0104 (10)
C210.0603 (10)0.0619 (11)0.0596 (11)0.0127 (8)0.0030 (8)0.0014 (9)
C220.0823 (15)0.1086 (18)0.0694 (14)0.0066 (13)0.0233 (11)0.0172 (13)
Geometric parameters (Å, º) top
O1—C91.2180 (19)C11—H110.9300
N1—C11.3105 (19)C12—C131.371 (4)
N1—N21.3740 (17)C12—H120.9300
N2—C21.321 (2)C13—C141.385 (4)
C8—C31.410 (2)C13—H130.9300
C8—C71.411 (2)C14—C151.393 (3)
C8—C11.429 (2)C14—H140.9300
C1—C91.510 (2)C15—H150.9300
C2—C31.431 (2)C16—C211.389 (2)
C2—C161.489 (2)C16—C171.390 (2)
C3—C41.415 (2)C17—C181.378 (2)
C4—C51.364 (3)C17—H170.9300
C4—H40.9300C18—C191.388 (3)
C5—C61.389 (3)C18—H180.9300
C5—H50.9300C19—C201.380 (3)
C6—C71.366 (2)C19—C221.508 (2)
C6—H60.9300C20—C211.390 (2)
C7—H70.9300C20—H200.9300
C9—C101.478 (2)C21—H210.9300
C10—C151.385 (3)C22—H22A0.9600
C10—C111.396 (3)C22—H22B0.9600
C11—C121.363 (3)C22—H22C0.9600
C1—N1—N2119.87 (13)C11—C12—H12120.1
C2—N2—N1120.15 (13)C13—C12—H12120.1
C3—C8—C7119.50 (14)C12—C13—C14120.8 (2)
C3—C8—C1116.16 (13)C12—C13—H13119.6
C7—C8—C1124.34 (15)C14—C13—H13119.6
N1—C1—C8123.91 (14)C13—C14—C15119.9 (2)
N1—C1—C9114.40 (13)C13—C14—H14120.0
C8—C1—C9121.43 (13)C15—C14—H14120.0
N2—C2—C3122.89 (14)C10—C15—C14119.0 (2)
N2—C2—C16113.28 (13)C10—C15—H15120.5
C3—C2—C16123.82 (14)C14—C15—H15120.5
C8—C3—C4118.76 (15)C21—C16—C17117.78 (15)
C8—C3—C2117.00 (14)C21—C16—C2123.07 (15)
C4—C3—C2124.21 (15)C17—C16—C2119.08 (14)
C5—C4—C3120.25 (17)C18—C17—C16121.29 (16)
C5—C4—H4119.9C18—C17—H17119.4
C3—C4—H4119.9C16—C17—H17119.4
C4—C5—C6120.71 (16)C17—C18—C19121.09 (17)
C4—C5—H5119.6C17—C18—H18119.5
C6—C5—H5119.6C19—C18—H18119.5
C7—C6—C5120.83 (16)C20—C19—C18117.83 (16)
C7—C6—H6119.6C20—C19—C22121.52 (19)
C5—C6—H6119.6C18—C19—C22120.65 (19)
C6—C7—C8119.90 (16)C19—C20—C21121.44 (17)
C6—C7—H7120.0C19—C20—H20119.3
C8—C7—H7120.0C21—C20—H20119.3
O1—C9—C10121.04 (15)C16—C21—C20120.56 (17)
O1—C9—C1118.19 (15)C16—C21—H21119.7
C10—C9—C1120.74 (14)C20—C21—H21119.7
C15—C10—C11119.84 (18)C19—C22—H22A109.5
C15—C10—C9122.84 (16)C19—C22—H22B109.5
C11—C10—C9117.29 (17)H22A—C22—H22B109.5
C12—C11—C10120.8 (2)C19—C22—H22C109.5
C12—C11—H11119.6H22A—C22—H22C109.5
C10—C11—H11119.6H22B—C22—H22C109.5
C11—C12—C13119.7 (2)
C1—N1—N2—C21.3 (2)C8—C1—C9—C10142.14 (16)
N2—N1—C1—C81.9 (2)O1—C9—C10—C15161.87 (17)
N2—N1—C1—C9172.33 (14)C1—C9—C10—C1520.2 (2)
C3—C8—C1—N11.1 (2)O1—C9—C10—C1116.1 (2)
C7—C8—C1—N1178.05 (15)C1—C9—C10—C11161.76 (15)
C3—C8—C1—C9172.76 (14)C15—C10—C11—C120.0 (3)
C7—C8—C1—C98.1 (2)C9—C10—C11—C12178.10 (17)
N1—N2—C2—C30.1 (2)C10—C11—C12—C130.2 (3)
N1—N2—C2—C16178.77 (13)C11—C12—C13—C140.3 (4)
C7—C8—C3—C42.4 (2)C12—C13—C14—C150.3 (3)
C1—C8—C3—C4178.43 (15)C11—C10—C15—C140.0 (3)
C7—C8—C3—C2179.47 (14)C9—C10—C15—C14177.99 (16)
C1—C8—C3—C20.3 (2)C13—C14—C15—C100.2 (3)
N2—C2—C3—C80.9 (2)N2—C2—C16—C21128.64 (18)
C16—C2—C3—C8177.89 (14)C3—C2—C16—C2152.5 (2)
N2—C2—C3—C4178.88 (16)N2—C2—C16—C1748.2 (2)
C16—C2—C3—C40.1 (3)C3—C2—C16—C17130.66 (17)
C8—C3—C4—C52.0 (3)C21—C16—C17—C180.2 (3)
C2—C3—C4—C5179.96 (17)C2—C16—C17—C18177.20 (16)
C3—C4—C5—C60.3 (3)C16—C17—C18—C190.5 (3)
C4—C5—C6—C71.2 (3)C17—C18—C19—C201.3 (3)
C5—C6—C7—C80.8 (3)C17—C18—C19—C22178.72 (18)
C3—C8—C7—C61.0 (2)C18—C19—C20—C211.4 (3)
C1—C8—C7—C6179.88 (16)C22—C19—C20—C21178.63 (19)
N1—C1—C9—O1134.47 (17)C17—C16—C21—C200.1 (3)
C8—C1—C9—O139.9 (2)C2—C16—C21—C20176.99 (16)
N1—C1—C9—C1043.5 (2)C19—C20—C21—C160.7 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C10–C15 ring.
D—H···AD—HH···AD···AD—H···A
C12—H12···O1i0.932.713.400 (3)132
C13—H13···N2ii0.932.733.654 (3)170
C20—H20···N2iii0.932.613.522 (2)166
C6—H6···Cg1iv0.932.763.549 (2)143
Symmetry codes: (i) x, y1/2, z1/2; (ii) x, y1/2, z1/2; (iii) x+1, y+1/2, z+1/2; (iv) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC22H16N2O
Mr324.37
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)12.4873 (2), 8.8011 (1), 15.4425 (2)
β (°) 92.458 (1)
V3)1695.60 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.10 × 0.06 × 0.04
Data collection
DiffractometerBruker SMART APEX CCD area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
30411, 3519, 2606
Rint0.036
(sin θ/λ)max1)0.629
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.130, 1.07
No. of reflections3519
No. of parameters226
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.22

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C10–C15 ring.
D—H···AD—HH···AD···AD—H···A
C12—H12···O1i0.932.713.400 (3)132
C13—H13···N2ii0.932.733.654 (3)170
C20—H20···N2iii0.932.613.522 (2)166
C6—H6···Cg1iv0.932.763.549 (2)143
Symmetry codes: (i) x, y1/2, z1/2; (ii) x, y1/2, z1/2; (iii) x+1, y+1/2, z+1/2; (iv) x, y+1, z.
 

Acknowledgements

KS thanks the Department of Science and Technology (DST) and the Council of Scientific and Industrial Research (CSIR), India, for financial support.

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDilek, N., Gunes, B., Ide, S., Ozcan, Y. & Tezcan, H. (2004). Anal. Sci. 20, x157–x158.  CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGrasso, S., De Sarro, G., De Sarro, A., Micale, N., Zappalà, M., Puja, G., Baraldi, M. & De Micheli, C. (2000). J. Med. Chem. 43, 2851–2859.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRajnikant, Dinesh, Kamni, & Deshmukh, M. B. (2006). Crystallogr. Rep. 51, 615–618.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds