organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-1-(4,4′′-Di­fluoro-5′-meth­­oxy-1,1′:3′,1′′-terphenyl-4′-yl)-3-(4-meth­­oxy­phen­yl)prop-2-en-1-one

aNelson Mandela Metropolitan University, Summerstrand Campus, Department of Chemistry, University Way, Summerstrand, PO Box 77000, Port Elizabeth 6031, South Africa, bMangalore University, Department of Studies in Chemistry, Mangalagangotri 574 199, India, and cUniversity of Mysore, Department of Studies in Chemistry, Manasagangotri, Mysore 570 006, India
*Correspondence e-mail: richard.betz@webmail.co.za

(Received 12 October 2011; accepted 10 November 2011; online 16 November 2011)

The title compound, C29H22F2O3, is a meta-terphenyl derivative featuring a Michael-system-derived substituent with an E-configured C=C function. In the crystal, C—H⋯O and C—H⋯F contacts connect the mol­ecules into planes parallel to (101). The shortest centroid–centroid distance between two aromatic systems is 3.7169 (7) Å and is apparent between the terminal benzene ring of the Michael-system-derived substituent and its symmetry-generated equivalent.

Related literature

For the pharmacological importance of terphenyls, see: Liu (2006[Liu, J. K. (2006). Chem. Rev. 106, 2209-2223.]) and of chalcones, see: Dhar (1981[Dhar, D. N. (1981). In The Chemistry of Chalcones and Related Compounds. New York: John Wiley.]); Dimmock et al. (1999[Dimmock, J. R., Elias, D. W., Beazely, M. A. & Kandepu, N. M. (1999). Curr. Med. Chem. 6, 1125-1149.]); Satyanarayana et al. (2004[Satyanarayana, M., Tiwari, P., Tripathi, B. K., Sriwastava, A. K. & Pratap, R. (2004). Bioorg. Med. Chem. 12, 883-887.]). For our work on the synthesis of different chalcone derivatives, see: Samshuddin et al. (2011[Samshuddin, S., Butcher, R. J., Akkurt, M., Narayana, B., Yathirajan, H. S. & Sarojini, B. K. (2011). Acta Cryst. E67, o1954-o1955.]); Fun et al. (2010[Fun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010). Acta Cryst. E66, o864-o865.]); Jasinski et al. (2010[Jasinski, J. P., Guild, C. J., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010). Acta Cryst. E66, o2018.]); Baktır et al. (2011[Baktır, Z., Akkurt, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2011). Acta Cryst. E67, o1262-o1263.]). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C29H22F2O3

  • Mr = 456.47

  • Monoclinic, P 21 /c

  • a = 9.6059 (2) Å

  • b = 19.2236 (5) Å

  • c = 13.3772 (3) Å

  • β = 112.905 (1)°

  • V = 2275.46 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 200 K

  • 0.54 × 0.51 × 0.51 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • 20209 measured reflections

  • 5655 independent reflections

  • 4754 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.125

  • S = 1.03

  • 5655 reflections

  • 309 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯F1i 0.95 2.51 3.4159 (15) 159
C5—H5B⋯O1ii 0.98 2.54 3.3534 (18) 141
C22—H22⋯O1iii 0.95 2.51 3.4208 (18) 161
Symmetry codes: (i) -x+2, -y, -z+1; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2010[Bruker (2010). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Chalcones constitute an important family of substances belonging to flavonoids, a large group of natural and synthetic products with interesting physicochemical properties, biological activity and structural characteristics. They have been reported to possess many interesting pharmacological activities (Dhar, 1981) including anti-inflammatory, antimicrobial, antifungal, antioxidant, cytotoxic, antitumor and anticancer activities (Dimmock et al., 1999; Satyanarayana et al., 2004). In recent years, it has been reported that some terphenyls exhibit considerable biological activities (e.g. being potent anticoagulants, immunosuppressants, antithrombotics, neuroprotectives, specific 5-lipoxygenase inhibitors) and showing cytotoxic activities (Liu, 2006). In view of the pharmacological importance of terphenyls and chalcones, and in continuation of our work on synthesis of various derivatives of 4,4'-difluoro chalcone (Samshuddin et al., 2011, Fun et al., 2010, Jasinski et al., 2010, Baktır et al., 2011), the molecular and crystal structure of the title compound is reported.

The C=C function along the Michael system is (E)-configured. The least-squares planes defined by the respective carbon atoms of the individual para-fluorophenyl moieties enclose angles of 25.42 (5) ° and 64.01 (5) ° with the plane defined by the carbon atoms of the terphenyl's central phenyl ring.

In the crystal, C–H···O as well as C–H···F contacts can be observed whose range falls by more than 0.1 Å below the sum of van-der-Waals radii of the respective atoms. The C–H···O contacts stem from one of the hydrogen atoms of a para-fluoro phenyl moiety and one of the methoxy groups and invariably apply the ketonic oxygen atom as acceptor. The C–H···F contacts are exclusively supported by the vinylic hydrogen atom on the Michael system. In terms of graph-set analysis (Etter et al., 1990; Bernstein et al., 1995), the descriptor for the C–H···F contacts is R22(26) on the unitary level while the C–H···O contacts necessitate a C11(9)C11(10) descriptor on the same level. In total, the molecules are connected to planes parallel (1 0 1). The shortest intercentroid distance between two ring centroids was found at 3.7169 (7) Å and is apparent between the methoxyphenyl moiety connected to the Michael system and its symmetry-generated equivalents. Details about metrical parameters of the C–H···O and C–H···F contacts as well as information about their symmetry can be found in Table 1 (Fig. 2).

Related literature top

For the pharmacological importance of terphenyls, see: Liu (2006) and of chalcones, see: Dhar (1981); Dimmock et al. (1999); Satyanarayana et al. (2004). For our work on the synthesis of different chalcone derivatives, see: Samshuddin et al. (2011); Fun et al. (2010); Jasinski et al. (2010); Baktır et al. (2011). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990); Bernstein et al. (1995).

Experimental top

To a mixture of 1-(4,4''-difluoro-5'-methoxy-1,1':3',1''-terphenyl-4'-yl) ethanone (3.38 g, 0.01 mol) and anisaldehyde (1.36 g, 0.01 mol) in 30 ml e thanol, 10 ml of 10% sodium hydroxide solution was added and stirred at 5–10 °C for 3 h. The precipitate formed was collected by filtration and purified by recrystallization from ethanol (yield: 79%). Single crystals suitable for the X-ray diffraction study were grown from DMF by slow evaporation at room temperature.

Refinement top

Carbon-bound H atoms were placed in calculated positions (C—H 0.95 Å and C—H 0.98 Å for the methyl groups, see below) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C). The H atoms of the methyl groups were allowed to rotate with a fixed angle around the C—C bond to best fit the experimental electron density (HFIX 137 in the SHELX program suite (Sheldrick, 2008)), with U(H) set to 1.5Ueq(C).

Structure description top

Chalcones constitute an important family of substances belonging to flavonoids, a large group of natural and synthetic products with interesting physicochemical properties, biological activity and structural characteristics. They have been reported to possess many interesting pharmacological activities (Dhar, 1981) including anti-inflammatory, antimicrobial, antifungal, antioxidant, cytotoxic, antitumor and anticancer activities (Dimmock et al., 1999; Satyanarayana et al., 2004). In recent years, it has been reported that some terphenyls exhibit considerable biological activities (e.g. being potent anticoagulants, immunosuppressants, antithrombotics, neuroprotectives, specific 5-lipoxygenase inhibitors) and showing cytotoxic activities (Liu, 2006). In view of the pharmacological importance of terphenyls and chalcones, and in continuation of our work on synthesis of various derivatives of 4,4'-difluoro chalcone (Samshuddin et al., 2011, Fun et al., 2010, Jasinski et al., 2010, Baktır et al., 2011), the molecular and crystal structure of the title compound is reported.

The C=C function along the Michael system is (E)-configured. The least-squares planes defined by the respective carbon atoms of the individual para-fluorophenyl moieties enclose angles of 25.42 (5) ° and 64.01 (5) ° with the plane defined by the carbon atoms of the terphenyl's central phenyl ring.

In the crystal, C–H···O as well as C–H···F contacts can be observed whose range falls by more than 0.1 Å below the sum of van-der-Waals radii of the respective atoms. The C–H···O contacts stem from one of the hydrogen atoms of a para-fluoro phenyl moiety and one of the methoxy groups and invariably apply the ketonic oxygen atom as acceptor. The C–H···F contacts are exclusively supported by the vinylic hydrogen atom on the Michael system. In terms of graph-set analysis (Etter et al., 1990; Bernstein et al., 1995), the descriptor for the C–H···F contacts is R22(26) on the unitary level while the C–H···O contacts necessitate a C11(9)C11(10) descriptor on the same level. In total, the molecules are connected to planes parallel (1 0 1). The shortest intercentroid distance between two ring centroids was found at 3.7169 (7) Å and is apparent between the methoxyphenyl moiety connected to the Michael system and its symmetry-generated equivalents. Details about metrical parameters of the C–H···O and C–H···F contacts as well as information about their symmetry can be found in Table 1 (Fig. 2).

For the pharmacological importance of terphenyls, see: Liu (2006) and of chalcones, see: Dhar (1981); Dimmock et al. (1999); Satyanarayana et al. (2004). For our work on the synthesis of different chalcone derivatives, see: Samshuddin et al. (2011); Fun et al. (2010); Jasinski et al. (2010); Baktır et al. (2011). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990); Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and anisotropic displacement ellipsoids (drawn at 50% probability level).
[Figure 2] Fig. 2. Intermolecular contacts, viewed along [-1 0 0]. For clarity, only C–H···F contacts (blue dashed lines) as well as a π···π interaction (red dashed line, Cg2—Cg2i = 3.9381 (9) Å) are shown. Symmetry operator: i -x + 2, -y, -z + 1.
(E)-1-(4,4''-Difluoro-5'-methoxy-1,1':3',1''-terphenyl-4'-yl)- 3-(4-methoxyphenyl)prop-2-en-1-one top
Crystal data top
C29H22F2O3F(000) = 952
Mr = 456.47Dx = 1.332 Mg m3
Monoclinic, P21/cMelting point: 453 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 9.6059 (2) ÅCell parameters from 9984 reflections
b = 19.2236 (5) Åθ = 2.3–28.3°
c = 13.3772 (3) ŵ = 0.10 mm1
β = 112.905 (1)°T = 200 K
V = 2275.46 (9) Å3Block, colourless
Z = 40.54 × 0.51 × 0.51 mm
Data collection top
Bruker APEXII CCD
diffractometer
4754 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.032
Graphite monochromatorθmax = 28.3°, θmin = 2.0°
φ and ω scansh = 1212
20209 measured reflectionsk = 2516
5655 independent reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0584P)2 + 0.9094P]
where P = (Fo2 + 2Fc2)/3
5655 reflections(Δ/σ)max < 0.001
309 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C29H22F2O3V = 2275.46 (9) Å3
Mr = 456.47Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.6059 (2) ŵ = 0.10 mm1
b = 19.2236 (5) ÅT = 200 K
c = 13.3772 (3) Å0.54 × 0.51 × 0.51 mm
β = 112.905 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
4754 reflections with I > 2σ(I)
20209 measured reflectionsRint = 0.032
5655 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.125H-atom parameters constrained
S = 1.03Δρmax = 0.37 e Å3
5655 reflectionsΔρmin = 0.28 e Å3
309 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F11.26002 (12)0.02346 (5)0.34310 (8)0.0531 (3)
F21.29595 (14)0.18370 (8)1.21317 (8)0.0771 (4)
O10.72100 (12)0.25739 (5)0.81288 (8)0.0372 (2)
O20.56634 (10)0.17164 (5)0.56481 (7)0.0331 (2)
O30.22589 (11)0.09964 (5)0.91422 (8)0.0364 (2)
C10.70335 (13)0.19685 (6)0.78248 (9)0.0255 (2)
C20.59846 (14)0.15198 (7)0.80742 (10)0.0295 (3)
H20.53350.17310.83690.035*
C30.58766 (13)0.08347 (7)0.79165 (10)0.0271 (2)
H30.64800.06360.75720.033*
C40.48881 (15)0.16369 (9)0.45031 (11)0.0394 (3)
H4A0.49740.11540.43010.059*
H4B0.53380.19470.41290.059*
H4C0.38200.17560.42930.059*
C50.23701 (19)0.17318 (8)0.90367 (14)0.0429 (3)
H5A0.34310.18740.93820.064*
H5B0.19750.18570.82660.064*
H5C0.17800.19690.93900.064*
C110.79205 (13)0.16861 (6)0.71955 (9)0.0236 (2)
C120.71812 (13)0.15845 (6)0.60728 (9)0.0245 (2)
C130.79734 (13)0.13784 (7)0.54504 (9)0.0262 (2)
H130.74520.13100.46920.031*
C140.95320 (13)0.12709 (6)0.59309 (9)0.0257 (2)
C151.02729 (13)0.13882 (7)0.70402 (10)0.0283 (3)
H151.13380.13300.73720.034*
C160.94848 (13)0.15899 (6)0.76765 (9)0.0256 (2)
C211.03663 (13)0.10142 (7)0.52704 (10)0.0265 (2)
C220.98189 (16)0.11293 (9)0.41562 (11)0.0384 (3)
H220.89250.13960.38160.046*
C231.05596 (18)0.08598 (9)0.35336 (12)0.0435 (4)
H231.01680.09290.27710.052*
C241.18607 (17)0.04932 (8)0.40404 (12)0.0366 (3)
C251.24621 (17)0.03782 (8)0.51371 (12)0.0404 (3)
H251.33830.01300.54720.048*
C261.16917 (15)0.06331 (8)0.57462 (11)0.0353 (3)
H261.20780.05450.65050.042*
C311.03597 (13)0.16740 (7)0.88673 (9)0.0290 (3)
C321.1509 (2)0.21657 (9)0.92460 (12)0.0494 (4)
H321.16970.24630.87450.059*
C331.2391 (2)0.22275 (11)1.03526 (14)0.0601 (5)
H331.31680.25671.06150.072*
C341.21002 (18)0.17847 (11)1.10472 (11)0.0501 (4)
C351.10140 (19)0.12816 (12)1.07091 (12)0.0538 (5)
H351.08670.09731.12140.065*
C361.01272 (16)0.12334 (10)0.96049 (11)0.0442 (4)
H360.93510.08930.93540.053*
C410.49220 (13)0.03587 (6)0.82201 (9)0.0261 (2)
C420.49079 (14)0.03467 (7)0.79823 (10)0.0298 (3)
H420.55190.05090.76180.036*
C430.40287 (15)0.08220 (7)0.82603 (10)0.0310 (3)
H430.40350.13010.80860.037*
C440.31392 (14)0.05848 (7)0.87982 (10)0.0282 (2)
C450.31186 (14)0.01215 (7)0.90335 (10)0.0285 (3)
H450.24930.02830.93870.034*
C460.39985 (13)0.05836 (7)0.87571 (10)0.0272 (2)
H460.39850.10620.89300.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0621 (6)0.0616 (6)0.0549 (6)0.0049 (5)0.0437 (5)0.0110 (5)
F20.0674 (7)0.1271 (12)0.0192 (4)0.0025 (7)0.0025 (4)0.0068 (5)
O10.0469 (6)0.0328 (5)0.0397 (5)0.0057 (4)0.0254 (4)0.0092 (4)
O20.0227 (4)0.0522 (6)0.0219 (4)0.0035 (4)0.0059 (3)0.0026 (4)
O30.0441 (5)0.0325 (5)0.0414 (5)0.0044 (4)0.0263 (4)0.0002 (4)
C10.0262 (5)0.0306 (6)0.0199 (5)0.0001 (4)0.0093 (4)0.0011 (4)
C20.0301 (6)0.0349 (7)0.0283 (6)0.0000 (5)0.0168 (5)0.0023 (5)
C30.0258 (5)0.0345 (6)0.0229 (5)0.0010 (5)0.0115 (4)0.0011 (5)
C40.0257 (6)0.0624 (9)0.0237 (6)0.0019 (6)0.0027 (5)0.0031 (6)
C50.0580 (9)0.0317 (7)0.0477 (8)0.0039 (6)0.0301 (7)0.0011 (6)
C110.0260 (5)0.0260 (5)0.0197 (5)0.0005 (4)0.0100 (4)0.0003 (4)
C120.0222 (5)0.0294 (6)0.0211 (5)0.0003 (4)0.0074 (4)0.0001 (4)
C130.0271 (5)0.0329 (6)0.0173 (5)0.0003 (5)0.0073 (4)0.0011 (4)
C140.0271 (5)0.0306 (6)0.0207 (5)0.0018 (4)0.0107 (4)0.0003 (4)
C150.0235 (5)0.0380 (7)0.0220 (5)0.0036 (5)0.0072 (4)0.0008 (5)
C160.0271 (5)0.0302 (6)0.0183 (5)0.0010 (4)0.0077 (4)0.0001 (4)
C210.0279 (5)0.0313 (6)0.0221 (5)0.0005 (5)0.0115 (4)0.0021 (4)
C220.0366 (7)0.0549 (9)0.0268 (6)0.0100 (6)0.0159 (5)0.0044 (6)
C230.0479 (8)0.0624 (10)0.0267 (6)0.0050 (7)0.0216 (6)0.0004 (6)
C240.0436 (7)0.0390 (7)0.0387 (7)0.0023 (6)0.0286 (6)0.0078 (6)
C250.0364 (7)0.0469 (8)0.0411 (8)0.0104 (6)0.0187 (6)0.0023 (6)
C260.0341 (6)0.0456 (8)0.0269 (6)0.0074 (6)0.0124 (5)0.0008 (5)
C310.0257 (5)0.0408 (7)0.0194 (5)0.0054 (5)0.0074 (4)0.0016 (5)
C320.0554 (9)0.0532 (9)0.0264 (7)0.0139 (7)0.0017 (6)0.0016 (6)
C330.0619 (11)0.0666 (12)0.0312 (8)0.0165 (9)0.0042 (7)0.0058 (8)
C340.0407 (8)0.0827 (13)0.0188 (6)0.0093 (8)0.0028 (5)0.0045 (7)
C350.0420 (8)0.0962 (14)0.0243 (7)0.0009 (8)0.0143 (6)0.0119 (8)
C360.0336 (7)0.0730 (11)0.0255 (6)0.0064 (7)0.0110 (5)0.0056 (7)
C410.0255 (5)0.0307 (6)0.0223 (5)0.0013 (4)0.0095 (4)0.0003 (4)
C420.0323 (6)0.0332 (6)0.0282 (6)0.0015 (5)0.0165 (5)0.0032 (5)
C430.0364 (6)0.0282 (6)0.0306 (6)0.0000 (5)0.0154 (5)0.0034 (5)
C440.0281 (6)0.0323 (6)0.0243 (6)0.0012 (5)0.0102 (4)0.0020 (5)
C450.0274 (5)0.0346 (6)0.0260 (6)0.0039 (5)0.0130 (5)0.0006 (5)
C460.0277 (5)0.0285 (6)0.0259 (6)0.0032 (4)0.0109 (4)0.0004 (5)
Geometric parameters (Å, º) top
F1—C241.3663 (14)C21—C221.3917 (17)
F2—C341.3652 (16)C22—C231.3892 (18)
O1—C11.2227 (16)C22—H220.9500
O2—C121.3668 (14)C23—C241.363 (2)
O2—C41.4269 (15)C23—H230.9500
O3—C441.3623 (15)C24—C251.369 (2)
O3—C51.4290 (17)C25—C261.3860 (18)
C1—C21.4602 (17)C25—H250.9500
C1—C111.5125 (15)C26—H260.9500
C2—C31.3315 (18)C31—C361.383 (2)
C2—H20.9500C31—C321.390 (2)
C3—C411.4604 (17)C32—C331.395 (2)
C3—H30.9500C32—H320.9500
C4—H4A0.9800C33—C341.367 (3)
C4—H4B0.9800C33—H330.9500
C4—H4C0.9800C34—C351.364 (3)
C5—H5A0.9800C35—C361.392 (2)
C5—H5B0.9800C35—H350.9500
C5—H5C0.9800C36—H360.9500
C11—C161.3978 (16)C41—C421.3919 (18)
C11—C121.4028 (15)C41—C461.4093 (16)
C12—C131.3865 (16)C42—C431.3894 (18)
C13—C141.3958 (16)C42—H420.9500
C13—H130.9500C43—C441.3909 (17)
C14—C151.3919 (16)C43—H430.9500
C14—C211.4892 (16)C44—C451.3955 (18)
C15—C161.3962 (16)C45—C461.3724 (17)
C15—H150.9500C45—H450.9500
C16—C311.4927 (16)C46—H460.9500
C21—C261.3901 (18)
C12—O2—C4116.93 (9)C24—C23—H23120.7
C44—O3—C5117.47 (11)C22—C23—H23120.7
O1—C1—C2120.33 (11)C23—C24—F1118.70 (13)
O1—C1—C11119.44 (11)C23—C24—C25122.62 (12)
C2—C1—C11120.22 (11)F1—C24—C25118.68 (13)
C3—C2—C1124.49 (11)C24—C25—C26118.27 (13)
C3—C2—H2117.8C24—C25—H25120.9
C1—C2—H2117.8C26—C25—H25120.9
C2—C3—C41126.46 (11)C25—C26—C21121.37 (13)
C2—C3—H3116.8C25—C26—H26119.3
C41—C3—H3116.8C21—C26—H26119.3
O2—C4—H4A109.5C36—C31—C32118.83 (13)
O2—C4—H4B109.5C36—C31—C16120.99 (12)
H4A—C4—H4B109.5C32—C31—C16119.99 (12)
O2—C4—H4C109.5C31—C32—C33120.81 (15)
H4A—C4—H4C109.5C31—C32—H32119.6
H4B—C4—H4C109.5C33—C32—H32119.6
O3—C5—H5A109.5C34—C33—C32117.92 (16)
O3—C5—H5B109.5C34—C33—H33121.0
H5A—C5—H5B109.5C32—C33—H33121.0
O3—C5—H5C109.5C35—C34—F2118.20 (16)
H5A—C5—H5C109.5C35—C34—C33123.25 (14)
H5B—C5—H5C109.5F2—C34—C33118.54 (17)
C16—C11—C12118.68 (10)C34—C35—C36118.18 (15)
C16—C11—C1121.93 (10)C34—C35—H35120.9
C12—C11—C1119.06 (10)C36—C35—H35120.9
O2—C12—C13123.33 (10)C31—C36—C35120.96 (15)
O2—C12—C11115.64 (10)C31—C36—H36119.5
C13—C12—C11121.01 (10)C35—C36—H36119.5
C12—C13—C14120.45 (10)C42—C41—C46117.60 (11)
C12—C13—H13119.8C42—C41—C3119.88 (11)
C14—C13—H13119.8C46—C41—C3122.52 (11)
C15—C14—C13118.60 (10)C43—C42—C41122.17 (11)
C15—C14—C21121.09 (11)C43—C42—H42118.9
C13—C14—C21120.28 (10)C41—C42—H42118.9
C14—C15—C16121.42 (11)C42—C43—C44118.86 (12)
C14—C15—H15119.3C42—C43—H43120.6
C16—C15—H15119.3C44—C43—H43120.6
C15—C16—C11119.80 (10)O3—C44—C43124.85 (12)
C15—C16—C31117.84 (10)O3—C44—C45115.07 (11)
C11—C16—C31122.33 (10)C43—C44—C45120.07 (11)
C26—C21—C22118.11 (11)C46—C45—C44120.31 (11)
C26—C21—C14120.76 (11)C46—C45—H45119.8
C22—C21—C14121.10 (11)C44—C45—H45119.8
C23—C22—C21120.97 (13)C45—C46—C41120.98 (12)
C23—C22—H22119.5C45—C46—H46119.5
C21—C22—H22119.5C41—C46—H46119.5
C24—C23—C22118.62 (13)
O1—C1—C2—C3169.93 (13)C23—C24—C25—C261.5 (2)
C11—C1—C2—C39.58 (19)F1—C24—C25—C26179.01 (14)
C1—C2—C3—C41175.54 (11)C24—C25—C26—C211.9 (2)
O1—C1—C11—C1668.39 (16)C22—C21—C26—C250.6 (2)
C2—C1—C11—C16111.12 (13)C14—C21—C26—C25178.59 (13)
O1—C1—C11—C12104.98 (14)C15—C16—C31—C36113.39 (15)
C2—C1—C11—C1275.50 (15)C11—C16—C31—C3664.74 (18)
C4—O2—C12—C130.32 (18)C15—C16—C31—C3261.56 (18)
C4—O2—C12—C11178.25 (12)C11—C16—C31—C32120.31 (15)
C16—C11—C12—O2177.27 (11)C36—C31—C32—C331.6 (3)
C1—C11—C12—O23.68 (16)C16—C31—C32—C33176.68 (16)
C16—C11—C12—C131.35 (18)C31—C32—C33—C340.8 (3)
C1—C11—C12—C13174.94 (11)C32—C33—C34—C351.1 (3)
O2—C12—C13—C14178.18 (11)C32—C33—C34—F2179.65 (17)
C11—C12—C13—C140.33 (19)F2—C34—C35—C36179.30 (16)
C12—C13—C14—C151.26 (19)C33—C34—C35—C362.2 (3)
C12—C13—C14—C21176.82 (12)C32—C31—C36—C350.5 (2)
C13—C14—C15—C161.84 (19)C16—C31—C36—C35175.56 (14)
C21—C14—C15—C16176.22 (12)C34—C35—C36—C311.3 (3)
C14—C15—C16—C110.8 (2)C2—C3—C41—C42178.76 (13)
C14—C15—C16—C31177.35 (12)C2—C3—C41—C461.5 (2)
C12—C11—C16—C150.77 (18)C46—C41—C42—C430.25 (19)
C1—C11—C16—C15174.17 (11)C3—C41—C42—C43179.53 (12)
C12—C11—C16—C31178.86 (11)C41—C42—C43—C440.3 (2)
C1—C11—C16—C317.74 (18)C5—O3—C44—C436.38 (19)
C15—C14—C21—C2625.55 (19)C5—O3—C44—C45172.91 (12)
C13—C14—C21—C26152.49 (13)C42—C43—C44—O3178.15 (12)
C15—C14—C21—C22156.51 (13)C42—C43—C44—C451.12 (19)
C13—C14—C21—C2225.45 (19)O3—C44—C45—C46177.93 (11)
C26—C21—C22—C231.2 (2)C43—C44—C45—C461.40 (19)
C14—C21—C22—C23176.78 (14)C44—C45—C46—C410.84 (18)
C21—C22—C23—C241.6 (2)C42—C41—C46—C450.02 (18)
C22—C23—C24—F1179.25 (14)C3—C41—C46—C45179.79 (11)
C22—C23—C24—C250.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···F1i0.952.513.4159 (15)159
C5—H5B···O1ii0.982.543.3534 (18)141
C22—H22···O1iii0.952.513.4208 (18)161
Symmetry codes: (i) x+2, y, z+1; (ii) x+1, y1/2, z+3/2; (iii) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC29H22F2O3
Mr456.47
Crystal system, space groupMonoclinic, P21/c
Temperature (K)200
a, b, c (Å)9.6059 (2), 19.2236 (5), 13.3772 (3)
β (°) 112.905 (1)
V3)2275.46 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.54 × 0.51 × 0.51
Data collection
DiffractometerBruker APEXII CCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
20209, 5655, 4754
Rint0.032
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.125, 1.03
No. of reflections5655
No. of parameters309
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.28

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···F1i0.952.513.4159 (15)159.3
C5—H5B···O1ii0.982.543.3534 (18)140.9
C22—H22···O1iii0.952.513.4208 (18)160.6
Symmetry codes: (i) x+2, y, z+1; (ii) x+1, y1/2, z+3/2; (iii) x, y+1/2, z1/2.
 

Acknowledgements

BN thanks the UGC for financial assistance under SAP and BSR one-time grants for the purchase of chemicals. SS thanks Mangalore University for research facilities.

References

First citationBaktır, Z., Akkurt, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2011). Acta Cryst. E67, o1262–o1263.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2010). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDhar, D. N. (1981). In The Chemistry of Chalcones and Related Compounds. New York: John Wiley.  Google Scholar
First citationDimmock, J. R., Elias, D. W., Beazely, M. A. & Kandepu, N. M. (1999). Curr. Med. Chem. 6, 1125–1149.  Web of Science PubMed CAS Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010). Acta Cryst. E66, o864–o865.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationJasinski, J. P., Guild, C. J., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010). Acta Cryst. E66, o2018.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, J. K. (2006). Chem. Rev. 106, 2209–2223.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSamshuddin, S., Butcher, R. J., Akkurt, M., Narayana, B., Yathirajan, H. S. & Sarojini, B. K. (2011). Acta Cryst. E67, o1954–o1955.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSatyanarayana, M., Tiwari, P., Tripathi, B. K., Sriwastava, A. K. & Pratap, R. (2004). Bioorg. Med. Chem. 12, 883–887.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds