organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-[((E)-{2-[(2-Nitro­benz­yl)(2-{[(E)-(2-oxidonaphthalen-1-yl)methyl­­idene]aza­nium­yl}eth­yl)amino]­eth­yl}aza­niumyl­­idene)meth­yl]naphthalen-2-olate monohydrate

aDepartment of Chemistry, Islamic Azad University, Khorramabad Branch, Khorramabad, Iran, bDipartimento di Chimica Inorganica, Vill. S. Agata, Salita Sperone 31, Universita di Messina 98166 Messina, Italy, and cDepartment of Chemistry, Payame Noor University, Hamedan, Iran
*Correspondence e-mail: s_menati723@yahoo.com

(Received 27 October 2011; accepted 9 November 2011; online 16 November 2011)

The title Schiff base compound, C33H30N4O4·H2O, adopts an E configuration with respect to each C=N double bond. In the mol­ecule, there are naphthoxide anions and the protonated imino N atoms. Intra­molecular N—H⋯O hydrogen bonds lead to the formation of approximately planar (maximum deviation 0.029 Å for H atom) six-membered rings.. In the crystal, mol­ecules are linked by O—H⋯O and N—H⋯O hydrogen bonds as well as C—H⋯O contacts, leading to the formation of a three-dimensional network.

Related literature

For related structures, see: Keypour et al. (2008[Keypour, H., Azadbakht, R., Salehzadeh, S., Khanmohammadi, H., Khavasi, H. & Adams, H. (2008). J. Organomet. Chem. 693, 2237-2243.]); Zeng et al. (1999[Zeng, Q., Qian, M., Gou, S., Fun, H. K., Duan, C. & You, X. (1999). Inorg. Chim. Acta, 294, 1-7.]); McKee et al. (2006[McKee, V., Morgan, G. G. & Nelson, J. (2006). Acta Cryst. E62, o3747-o3749.]). For Schiff base derivatives incorporating a fluorescent moiety as tools for optical sensing of metal ions, see: Aza­dbakht et al. (2011[Azadbakht, R., Parviz, M., Tamari, E., Keypour, H. & Golbedaghi, R. (2011). Spectrochim. Acta A, pp. 200-204.]).

[Scheme 1]

Experimental

Crystal data
  • C33H30N4O4·H2O

  • Mr = 564.63

  • Monoclinic, P 21 /c

  • a = 13.8808 (6) Å

  • b = 14.8951 (8) Å

  • c = 14.7517 (8) Å

  • β = 111.754 (2)°

  • V = 2832.8 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.5 × 0.3 × 0.2 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008)[Bruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.] Tmin = 0.671, Tmax = 0.745

  • 27583 measured reflections

  • 5261 independent reflections

  • 3757 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.195

  • S = 1.04

  • 5261 reflections

  • 395 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O2 0.79 (3) 1.99 (3) 2.596 (3) 133 (3)
N3—H3⋯O1 0.84 (3) 1.88 (3) 2.567 (3) 138 (3)
O5—H5D⋯O1i 0.95 (4) 1.82 (4) 2.747 (3) 164 (5)
N2—H2⋯O4ii 0.79 (3) 2.60 (3) 3.183 (4) 131 (2)
O5—H5C⋯O2iii 0.94 (3) 1.91 (3) 2.839 (3) 170 (3)
C1—H1A⋯O5iv 0.97 2.53 3.409 (4) 151
C2—H2A⋯O5iv 0.97 2.55 3.359 (4) 140
Symmetry codes: (i) -x, -y, -z+2; (ii) -x, -y, -z+1; (iii) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff bases (imines) are known to be good ligands for metal ions. A number of the Schiff bases have antitumor properties, antioxidative activities, attractive electronic and photophysical properties. In addition, Schiff base derivatives incorporating a fluorescent moiety are appealing tools for optical sensing of metal ions (Azadbakht et al. 2011). The title compound, (I), crystallizes in the Monoclinic space group P2(1)/c. Figure 1 shows the ORTEP representation of the molecule with thermal ellipsoids at the 30% probability level. In the compound, there are π-π interactions between the naphthalene moiety and the nitrobenzene moiety with the distance of 3.516 (3) Å. The structural features of I (The bond lengths) provides evidence for the existence of a naphthoxide anions and the protonated imino N atoms in the crystal structure of I that stabilize by intramolecular hydrogen bond between the naphtholate oxygen and the iminium nitrogen (O-···H—N+). This molecular conformation is determined by the formation of pairs of intramolecular N±–H···O– (1.888 (3) Å) hydrogen bonds. These interactions lead to the formation of six- membered rings (see scheme). Details of the hydrogen-bonding geometry are given in Table 1. Each of these hydrogen-bonded rings adopts a nearly planar conformation. In the six-membered rings, the maximum deviation from the mean planes is 0.029 Å for H (N±–H). The crystal packing in compound (1) is stabilized by O—H···O– interactions (Fig. 2 and Table 1).

Related literature top

For related structures, see: Keypour et al. (2008); Zeng et al. (1999); McKee et al. (2006). For Schiff base derivatives incorporating a fluorescent moiety as tools for optical sensing of metal ions, see: Azadbakht et al. (2011).

Experimental top

A solution of NaOH (3 mmol) in methanol (10 cm3) was added to a suspension of N1-(2-nitrobenzyl)-N1-(2-aminoethyl)ethane-1,2- diamine trihydrochloride (0.357 g, 1 mmol) in methanol (10 cm3). The mixture was stirred at room temperature for a few minutes then filtered, and the precipitate was washed well with methanol (10 cm3). The washings and the filtrate were combined and to this solution was added 2-hydroxy-1-naphthaldehyde (0.344 g, 2 mmol). After refluxing the solution for 8 h on cooling the product was recovered as a yellow powder, which was recrystallized from methanol.

Refinement top

Several H atoms were located on final difference map. However, the H atoms were included in the refinement using a riding model with the X—H bond geometry and the H isotropic displacement parameter depending on the parent atomX.

Structure description top

Schiff bases (imines) are known to be good ligands for metal ions. A number of the Schiff bases have antitumor properties, antioxidative activities, attractive electronic and photophysical properties. In addition, Schiff base derivatives incorporating a fluorescent moiety are appealing tools for optical sensing of metal ions (Azadbakht et al. 2011). The title compound, (I), crystallizes in the Monoclinic space group P2(1)/c. Figure 1 shows the ORTEP representation of the molecule with thermal ellipsoids at the 30% probability level. In the compound, there are π-π interactions between the naphthalene moiety and the nitrobenzene moiety with the distance of 3.516 (3) Å. The structural features of I (The bond lengths) provides evidence for the existence of a naphthoxide anions and the protonated imino N atoms in the crystal structure of I that stabilize by intramolecular hydrogen bond between the naphtholate oxygen and the iminium nitrogen (O-···H—N+). This molecular conformation is determined by the formation of pairs of intramolecular N±–H···O– (1.888 (3) Å) hydrogen bonds. These interactions lead to the formation of six- membered rings (see scheme). Details of the hydrogen-bonding geometry are given in Table 1. Each of these hydrogen-bonded rings adopts a nearly planar conformation. In the six-membered rings, the maximum deviation from the mean planes is 0.029 Å for H (N±–H). The crystal packing in compound (1) is stabilized by O—H···O– interactions (Fig. 2 and Table 1).

For related structures, see: Keypour et al. (2008); Zeng et al. (1999); McKee et al. (2006). For Schiff base derivatives incorporating a fluorescent moiety as tools for optical sensing of metal ions, see: Azadbakht et al. (2011).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Perspective view of the title molecule with numbering of the atoms. Non H-atoms represented as displacement ellipsoids are plotted at the 30% probability level, while H atoms are shown as small spheres of arbitrary radius.
[Figure 2] Fig. 2. A stereoview of part of the crystal packing, showing the intermolecular hydrogen bonds. For clarity, H atoms have been omitted for clarity except hydrogen of water. Hydrogen bonds are denoted by dashed lines.
1-[((E)-{2-[(2-Nitrobenzyl)(2-{[(E)-(2-oxidonaphthalen-1- yl)methylidene]azaniumyl}ethyl)amino]ethyl}azaniumylidene)methyl]naphthalen-2- olate monohydrate top
Crystal data top
C33H30N4O4·H2OF(000) = 1192
Mr = 564.63Dx = 1.324 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7294 reflections
a = 13.8808 (6) Åθ = 2.2–24.5°
b = 14.8951 (8) ŵ = 0.09 mm1
c = 14.7517 (8) ÅT = 296 K
β = 111.754 (2)°Irregular, yellow
V = 2832.8 (2) Å30.5 × 0.3 × 0.2 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
5261 independent reflections
Radiation source: fine-focus sealed tube3757 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
φ and ω scansθmax = 25.5°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1616
Tmin = 0.671, Tmax = 0.745k = 1818
27583 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.195H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.1034P)2 + 1.1914P]
where P = (Fo2 + 2Fc2)/3
5261 reflections(Δ/σ)max < 0.001
395 parametersΔρmax = 0.53 e Å3
2 restraintsΔρmin = 0.35 e Å3
Crystal data top
C33H30N4O4·H2OV = 2832.8 (2) Å3
Mr = 564.63Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.8808 (6) ŵ = 0.09 mm1
b = 14.8951 (8) ÅT = 296 K
c = 14.7517 (8) Å0.5 × 0.3 × 0.2 mm
β = 111.754 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
5261 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3757 reflections with I > 2σ(I)
Tmin = 0.671, Tmax = 0.745Rint = 0.027
27583 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0582 restraints
wR(F2) = 0.195H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.53 e Å3
5261 reflectionsΔρmin = 0.35 e Å3
395 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N20.02034 (16)0.10330 (14)0.67594 (18)0.0489 (5)
O50.0441 (2)0.22187 (17)1.08799 (17)0.0868 (7)
N30.08388 (19)0.08971 (16)0.95583 (16)0.0575 (6)
O10.15835 (17)0.07002 (12)0.98645 (15)0.0683 (5)
O20.08995 (15)0.12590 (13)0.53670 (13)0.0642 (5)
C70.11465 (19)0.12276 (15)0.73426 (18)0.0457 (5)
H70.12880.12230.80100.055*
N10.04699 (15)0.08040 (13)0.75101 (14)0.0480 (5)
C140.20514 (19)0.04119 (15)1.11073 (18)0.0459 (6)
C230.26511 (17)0.06422 (16)1.21139 (18)0.0465 (6)
C300.4997 (3)0.1957 (2)0.9093 (3)0.0802 (9)
H300.56640.20600.95420.096*
C310.4165 (3)0.1976 (2)0.9386 (2)0.0766 (9)
H310.42730.20981.00350.092*
C320.3183 (2)0.18192 (19)0.8738 (2)0.0615 (7)
H320.26320.18370.89530.074*
C330.29846 (19)0.16309 (15)0.77513 (18)0.0488 (6)
C240.19620 (18)0.14433 (15)0.70377 (17)0.0456 (5)
C60.05483 (19)0.06051 (18)0.7097 (2)0.0535 (6)
H6A0.03830.07550.77780.064*
H6B0.12350.08380.67260.064*
C50.05569 (19)0.04108 (18)0.69884 (19)0.0525 (6)
H5A0.07820.05630.63010.063*
H5B0.10510.06670.72400.063*
C20.0439 (2)0.16542 (17)0.80026 (19)0.0580 (7)
H2A0.00600.20510.75430.070*
H2B0.11140.19390.82020.070*
C30.0154 (2)0.15386 (19)0.8878 (2)0.0622 (7)
H3A0.02000.21130.92020.075*
H3B0.05570.13300.86740.075*
C40.1394 (2)0.10508 (16)1.04679 (18)0.0497 (6)
H40.13570.16191.07150.060*
C180.32210 (19)0.00420 (18)1.2758 (2)0.0561 (7)
C190.3780 (2)0.0174 (2)1.3744 (2)0.0753 (9)
H190.41460.02771.41680.090*
C200.3802 (2)0.1015 (2)1.4094 (2)0.0769 (9)
H200.41790.11381.47480.092*
C290.4839 (2)0.1787 (2)0.8144 (3)0.0717 (8)
H290.54030.17740.79480.086*
C280.3837 (2)0.16316 (17)0.7452 (2)0.0554 (6)
C220.2694 (2)0.15089 (17)1.25023 (19)0.0538 (6)
H220.23310.19711.20950.065*
C210.3257 (2)0.1693 (2)1.3470 (2)0.0658 (7)
H210.32730.22741.37050.079*
C170.3211 (2)0.09229 (19)1.2381 (2)0.0659 (8)
H170.35840.13711.28050.079*
C160.2690 (2)0.11355 (18)1.1444 (2)0.0644 (8)
H160.27220.17201.12360.077*
C150.2082 (2)0.04778 (16)1.0751 (2)0.0528 (6)
C10.10302 (19)0.09324 (18)0.68424 (19)0.0524 (6)
H1A0.08450.15130.65290.063*
H1B0.08040.04770.63370.063*
C80.21990 (19)0.08819 (16)0.7341 (2)0.0512 (6)
C130.2687 (2)0.06145 (19)0.8299 (2)0.0611 (7)
H130.22850.04700.86620.073*
C120.3750 (2)0.0555 (2)0.8734 (3)0.0786 (9)
H120.40540.03710.93810.094*
C110.4369 (3)0.0767 (3)0.8215 (3)0.0909 (11)
H110.50870.07170.85050.109*
C100.3916 (3)0.1051 (3)0.7276 (3)0.0870 (11)
H100.43230.12160.69250.104*
C90.2849 (2)0.10932 (19)0.6845 (2)0.0627 (7)
N40.2402 (3)0.1395 (2)0.5833 (2)0.0826 (8)
O40.1694 (3)0.1045 (3)0.5282 (2)0.1449 (15)
O30.2758 (3)0.2062 (2)0.5574 (3)0.1365 (12)
C250.1803 (2)0.13542 (16)0.60255 (19)0.0515 (6)
C260.2703 (2)0.13597 (19)0.5771 (2)0.0632 (7)
H260.26230.12810.51210.076*
C270.3654 (2)0.14743 (19)0.6443 (2)0.0641 (7)
H270.42190.14510.62490.077*
H5C0.067 (3)0.270 (2)1.044 (3)0.105 (13)*
H5D0.092 (3)0.177 (3)1.053 (3)0.141 (17)*
H20.007 (2)0.1011 (18)0.619 (2)0.051 (8)*
H30.091 (2)0.039 (2)0.935 (2)0.074 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N20.0522 (13)0.0490 (11)0.0453 (13)0.0033 (9)0.0177 (11)0.0029 (10)
O50.116 (2)0.0707 (15)0.0578 (13)0.0088 (14)0.0138 (13)0.0015 (11)
N30.0777 (16)0.0483 (12)0.0494 (13)0.0107 (11)0.0271 (12)0.0032 (10)
O10.0960 (15)0.0449 (10)0.0657 (13)0.0019 (9)0.0321 (11)0.0041 (9)
O20.0672 (12)0.0779 (13)0.0439 (10)0.0098 (10)0.0163 (9)0.0046 (9)
C70.0559 (14)0.0388 (12)0.0433 (13)0.0043 (10)0.0194 (11)0.0003 (9)
N10.0486 (11)0.0496 (11)0.0466 (11)0.0005 (9)0.0185 (9)0.0004 (9)
C140.0519 (13)0.0388 (12)0.0545 (14)0.0009 (10)0.0284 (12)0.0061 (10)
C230.0407 (12)0.0496 (13)0.0552 (14)0.0022 (10)0.0245 (11)0.0057 (11)
C300.0637 (19)0.087 (2)0.074 (2)0.0162 (16)0.0072 (17)0.0016 (17)
C310.080 (2)0.084 (2)0.0556 (17)0.0185 (17)0.0130 (16)0.0047 (15)
C320.0633 (17)0.0674 (17)0.0532 (16)0.0104 (13)0.0206 (13)0.0040 (13)
C330.0572 (15)0.0383 (12)0.0517 (14)0.0018 (10)0.0210 (12)0.0032 (10)
C240.0530 (14)0.0382 (12)0.0470 (13)0.0011 (10)0.0203 (11)0.0026 (10)
C60.0445 (13)0.0646 (15)0.0563 (15)0.0067 (11)0.0244 (12)0.0007 (12)
C50.0435 (13)0.0660 (16)0.0522 (14)0.0095 (11)0.0225 (11)0.0074 (12)
C20.0747 (18)0.0478 (14)0.0509 (15)0.0078 (12)0.0226 (13)0.0047 (11)
C30.0715 (18)0.0619 (16)0.0516 (15)0.0152 (13)0.0212 (13)0.0034 (12)
C40.0602 (15)0.0432 (13)0.0508 (15)0.0011 (11)0.0266 (12)0.0006 (11)
C180.0402 (13)0.0569 (15)0.0690 (18)0.0022 (11)0.0176 (12)0.0100 (13)
C190.0534 (16)0.087 (2)0.070 (2)0.0121 (15)0.0056 (14)0.0173 (17)
C200.0633 (18)0.092 (2)0.0613 (19)0.0007 (16)0.0066 (15)0.0062 (17)
C290.0544 (16)0.0715 (19)0.090 (2)0.0035 (14)0.0273 (16)0.0062 (17)
C280.0564 (15)0.0457 (13)0.0652 (17)0.0014 (11)0.0239 (13)0.0068 (12)
C220.0587 (15)0.0512 (14)0.0550 (16)0.0014 (11)0.0250 (13)0.0026 (11)
C210.0641 (17)0.0697 (18)0.0621 (18)0.0049 (14)0.0217 (14)0.0087 (14)
C170.0505 (15)0.0568 (16)0.084 (2)0.0100 (12)0.0178 (15)0.0193 (15)
C160.0628 (17)0.0395 (13)0.091 (2)0.0042 (12)0.0288 (16)0.0040 (13)
C150.0587 (15)0.0437 (13)0.0616 (17)0.0016 (11)0.0291 (13)0.0023 (11)
C10.0516 (14)0.0580 (14)0.0502 (14)0.0030 (11)0.0218 (12)0.0050 (11)
C80.0508 (14)0.0430 (13)0.0623 (16)0.0042 (10)0.0239 (12)0.0054 (11)
C130.0528 (15)0.0600 (16)0.0649 (18)0.0040 (12)0.0155 (13)0.0007 (13)
C120.0623 (19)0.0710 (19)0.084 (2)0.0035 (15)0.0057 (17)0.0065 (16)
C110.0498 (18)0.095 (3)0.119 (3)0.0051 (17)0.021 (2)0.020 (2)
C100.0569 (19)0.105 (3)0.108 (3)0.0128 (18)0.041 (2)0.020 (2)
C90.0611 (17)0.0603 (16)0.0742 (19)0.0082 (13)0.0337 (15)0.0151 (14)
N40.090 (2)0.101 (2)0.0743 (19)0.0289 (17)0.0517 (18)0.0176 (16)
O40.104 (2)0.246 (4)0.083 (2)0.050 (3)0.0329 (17)0.015 (2)
O30.184 (3)0.129 (3)0.128 (3)0.024 (2)0.094 (2)0.011 (2)
C250.0621 (16)0.0450 (13)0.0494 (14)0.0034 (11)0.0230 (13)0.0054 (11)
C260.0756 (19)0.0688 (17)0.0542 (16)0.0034 (14)0.0343 (15)0.0019 (13)
C270.0651 (18)0.0650 (17)0.076 (2)0.0045 (13)0.0421 (16)0.0051 (14)
Geometric parameters (Å, º) top
N2—C71.305 (3)C3—H3B0.9700
N2—C61.459 (3)C4—H40.9300
N2—H20.79 (3)C18—C191.409 (4)
O5—H5C0.94 (3)C18—C171.423 (4)
O5—H5D0.95 (4)C19—C201.351 (5)
N3—C41.296 (3)C19—H190.9300
N3—C31.455 (3)C20—C211.386 (4)
N3—H30.84 (3)C20—H200.9300
O1—C151.276 (3)C29—C281.407 (4)
O2—C251.278 (3)C29—H290.9300
C7—C241.401 (3)C28—C271.434 (4)
C7—H70.9300C22—C211.377 (4)
N1—C51.468 (3)C22—H220.9300
N1—C21.468 (3)C21—H210.9300
N1—C11.476 (3)C17—C161.339 (4)
C14—C41.410 (3)C17—H170.9300
C14—C151.432 (3)C16—C151.441 (4)
C14—C231.449 (4)C16—H160.9300
C23—C221.405 (3)C1—C81.515 (4)
C23—C181.418 (3)C1—H1A0.9700
C30—C291.358 (5)C1—H1B0.9700
C30—C311.376 (5)C8—C131.381 (4)
C30—H300.9300C8—C91.392 (4)
C31—C321.364 (4)C13—C121.378 (4)
C31—H310.9300C13—H130.9300
C32—C331.406 (4)C12—C111.383 (5)
C32—H320.9300C12—H120.9300
C33—C281.407 (4)C11—C101.359 (5)
C33—C241.447 (3)C11—H110.9300
C24—C251.432 (3)C10—C91.379 (4)
C6—C51.521 (4)C10—H100.9300
C6—H6A0.9700C9—N41.459 (4)
C6—H6B0.9700N4—O41.142 (4)
C5—H5A0.9700N4—O31.232 (4)
C5—H5B0.9700C25—C261.432 (4)
C2—C31.495 (4)C26—C271.336 (4)
C2—H2A0.9700C26—H260.9300
C2—H2B0.9700C27—H270.9300
C3—H3A0.9700
C7—N2—C6122.8 (2)C20—C19—C18122.1 (3)
C7—N2—H2119 (2)C20—C19—H19119.0
C6—N2—H2116 (2)C18—C19—H19119.0
H5C—O5—H5D100 (4)C19—C20—C21119.5 (3)
C4—N3—C3125.7 (2)C19—C20—H20120.2
C4—N3—H3116 (2)C21—C20—H20120.2
C3—N3—H3119 (2)C30—C29—C28121.1 (3)
N2—C7—C24124.9 (2)C30—C29—H29119.5
N2—C7—H7117.6C28—C29—H29119.5
C24—C7—H7117.6C33—C28—C29119.6 (3)
C5—N1—C2113.8 (2)C33—C28—C27118.6 (2)
C5—N1—C1110.56 (19)C29—C28—C27121.8 (3)
C2—N1—C1109.7 (2)C21—C22—C23121.8 (3)
C4—C14—C15118.6 (2)C21—C22—H22119.1
C4—C14—C23120.6 (2)C23—C22—H22119.1
C15—C14—C23120.7 (2)C22—C21—C20120.2 (3)
C22—C23—C18117.3 (2)C22—C21—H21119.9
C22—C23—C14123.8 (2)C20—C21—H21119.9
C18—C23—C14118.9 (2)C16—C17—C18123.0 (2)
C29—C30—C31119.6 (3)C16—C17—H17118.5
C29—C30—H30120.2C18—C17—H17118.5
C31—C30—H30120.2C17—C16—C15121.4 (3)
C32—C31—C30120.9 (3)C17—C16—H16119.3
C32—C31—H31119.5C15—C16—H16119.3
C30—C31—H31119.5O1—C15—C14122.5 (2)
C31—C32—C33121.4 (3)O1—C15—C16120.2 (2)
C31—C32—H32119.3C14—C15—C16117.3 (2)
C33—C32—H32119.3N1—C1—C8113.9 (2)
C32—C33—C28117.4 (2)N1—C1—H1A108.8
C32—C33—C24123.7 (2)C8—C1—H1A108.8
C28—C33—C24119.0 (2)N1—C1—H1B108.8
C7—C24—C25118.8 (2)C8—C1—H1B108.8
C7—C24—C33120.1 (2)H1A—C1—H1B107.7
C25—C24—C33120.5 (2)C13—C8—C9115.8 (3)
N2—C6—C5112.2 (2)C13—C8—C1122.8 (2)
N2—C6—H6A109.2C9—C8—C1121.4 (2)
C5—C6—H6A109.2C12—C13—C8122.0 (3)
N2—C6—H6B109.2C12—C13—H13119.0
C5—C6—H6B109.2C8—C13—H13119.0
H6A—C6—H6B107.9C13—C12—C11120.4 (3)
N1—C5—C6111.9 (2)C13—C12—H12119.8
N1—C5—H5A109.2C11—C12—H12119.8
C6—C5—H5A109.2C10—C11—C12119.2 (3)
N1—C5—H5B109.2C10—C11—H11120.4
C6—C5—H5B109.2C12—C11—H11120.4
H5A—C5—H5B107.9C11—C10—C9119.8 (3)
N1—C2—C3113.2 (2)C11—C10—H10120.1
N1—C2—H2A108.9C9—C10—H10120.1
C3—C2—H2A108.9C10—C9—C8122.8 (3)
N1—C2—H2B108.9C10—C9—N4117.6 (3)
C3—C2—H2B108.9C8—C9—N4119.6 (3)
H2A—C2—H2B107.8O4—N4—O3119.1 (4)
N3—C3—C2110.9 (2)O4—N4—C9121.0 (3)
N3—C3—H3A109.5O3—N4—C9119.8 (3)
C2—C3—H3A109.5O2—C25—C26120.5 (2)
N3—C3—H3B109.5O2—C25—C24122.1 (2)
C2—C3—H3B109.5C26—C25—C24117.4 (2)
H3A—C3—H3B108.0C27—C26—C25121.6 (3)
N3—C4—C14124.2 (2)C27—C26—H26119.2
N3—C4—H4117.9C25—C26—H26119.2
C14—C4—H4117.9C26—C27—C28122.5 (3)
C19—C18—C23119.0 (3)C26—C27—H27118.7
C19—C18—C17122.4 (3)C28—C27—H27118.7
C23—C18—C17118.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O20.79 (3)1.99 (3)2.596 (3)133 (3)
N3—H3···O10.84 (3)1.88 (3)2.567 (3)138 (3)
N3—H3···N10.84 (3)2.62 (3)2.875 (3)99 (2)
O5—H5D···O1i0.95 (4)1.82 (4)2.747 (3)164 (5)
N2—H2···O4ii0.79 (3)2.60 (3)3.183 (4)131 (2)
O5—H5C···O2iii0.94 (3)1.91 (3)2.839 (3)170 (3)
C1—H1A···O5iv0.972.533.409 (4)151
C2—H2A···O5iv0.972.553.359 (4)140
Symmetry codes: (i) x, y, z+2; (ii) x, y, z+1; (iii) x, y+1/2, z+3/2; (iv) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC33H30N4O4·H2O
Mr564.63
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)13.8808 (6), 14.8951 (8), 14.7517 (8)
β (°) 111.754 (2)
V3)2832.8 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.5 × 0.3 × 0.2
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.671, 0.745
No. of measured, independent and
observed [I > 2σ(I)] reflections
27583, 5261, 3757
Rint0.027
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.195, 1.04
No. of reflections5261
No. of parameters395
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.53, 0.35

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O20.79 (3)1.99 (3)2.596 (3)133 (3)
N3—H3···O10.84 (3)1.88 (3)2.567 (3)138 (3)
N3—H3···N10.84 (3)2.62 (3)2.875 (3)99 (2)
O5—H5D···O1i0.95 (4)1.82 (4)2.747 (3)164 (5)
N2—H2···O4ii0.79 (3)2.60 (3)3.183 (4)131 (2)
O5—H5C···O2iii0.94 (3)1.91 (3)2.839 (3)170 (3)
C1—H1A···O5iv0.972.533.409 (4)151
C2—H2A···O5iv0.972.553.359 (4)140
Symmetry codes: (i) x, y, z+2; (ii) x, y, z+1; (iii) x, y+1/2, z+3/2; (iv) x, y+1/2, z1/2.
 

Acknowledgements

We are grateful to the Islamic Azad University of Khorramabad for financial support.

References

First citationAzadbakht, R., Parviz, M., Tamari, E., Keypour, H. & Golbedaghi, R. (2011). Spectrochim. Acta A, pp. 200–204.  CrossRef Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKeypour, H., Azadbakht, R., Salehzadeh, S., Khanmohammadi, H., Khavasi, H. & Adams, H. (2008). J. Organomet. Chem. 693, 2237–2243.  Web of Science CSD CrossRef CAS Google Scholar
First citationMcKee, V., Morgan, G. G. & Nelson, J. (2006). Acta Cryst. E62, o3747–o3749.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZeng, Q., Qian, M., Gou, S., Fun, H. K., Duan, C. & You, X. (1999). Inorg. Chim. Acta, 294, 1–7.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds