organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(5RS,10SR,15RS)-Tri­methyl­truxene1

aDepartment of Chemistry, Louisiana State University, Baton Rouge, LA 70803-1804, USA
*Correspondence e-mail: ffroncz@lsu.edu

(Received 2 November 2011; accepted 15 November 2011; online 30 November 2011)

The title mol­ecule, C30H24, was prepared as a possible precursor to buckminsterfullerene cages. The two enanti­omers adopt the anti configuration, with one S/R and two R/S methyl groups, one anti to the other two. The truxene framework is slightly non-planar: with respect to the central six-ring mean plane, the three methyl C atoms are 1.377 (3), −1.475 (3) and 1.515 (3) Å distant, whereas the respective proximate peripheral six-ring mean planes make dihedral angles of 6.27 (6), 3.45 (7) and −7.37 (7)°.

Related literature

For related structures, see: De Frutos et al. (1999[De Frutos, O., Gomez-Lor, B., Granier, T., Monge, M. A., Gutierrez-Puebla, E. & Echavarren, A. M. (1999). Angew. Chem. Int. Ed. 38, 204-207.], 2002[De Frutos, O., Granier, T., Gomez-Lor, B., Jimenez-Barbero, J., Monge, A., Gutierrez- Puebla, E. & Echavarren, A. M. (2002). Chem. Eur. J. 8, 2879-2890.]). For the synthesis of truxenes, see: Amick & Scott (2007[Amick, A. W. & Scott, L. T. (2007). J. Org. Chem. 72, 3412-3418.]); Dehmlow & Kelle (1997[Dehmlow, E. V. & Kelle, T. (1997). Synth. Commun. 27, 2021-2026.]); Kipping (1894a[Kipping, F. S. (1894a). J. Chem. Soc. Trans. 65, 269-290.],b[Kipping, F. S. (1894b). J. Chem. Soc. Trans. 65, 480-503.]); Hausmann (1889[Hausmann, J. (1889). Ber. Dtsch Chem. Ges. 22, 2019-2026.]); Wislicenus (1887[Wislicenus, W. (1887). Ber. Dtsch Chem. Ges. 20, 589-595.]). For buckminsterfullerene, see: Kroto et al. (1985[Kroto, H. W., Heath, J. R., O'Brien, S. C., Curl, R. F. & Smalley, R. E. (1985). Nature (London), 318, 162-163.]). Buckybowls are inter­mediates in the synthesis of buckminsterfullerene. Truxene compounds, which serve as backbone of bucky bowl derivatives, have been fabricated for use as star-shaped organic semiconductors in solution, see: Sun et al. (2005[Sun, Y. M., Xiao, K., Liu, Y. Q., Wang, J. L., Pei, J., Yu, G. & Zhu, D. B. (2005). Adv. Funct. Mater. 15, 818-822.]).

[Scheme 1]

Experimental

Crystal data
  • C30H24

  • Mr = 384.49

  • Monoclinic, P 21 /n

  • a = 8.6755 (2) Å

  • b = 18.2860 (4) Å

  • c = 12.8206 (3) Å

  • β = 96.007 (1)°

  • V = 2022.69 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 90 K

  • 0.15 × 0.15 × 0.13 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.955, Tmax = 0.976

  • 13386 measured reflections

  • 7338 independent reflections

  • 5008 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.157

  • S = 1.04

  • 7338 reflections

  • 274 parameters

  • H-atom parameters constrained

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SHELXS86 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Buckminsterfullerene is a spherical fullerene molecule with the formula C60. It was first prepared in 1985 by Kroto et al. Buckybowls have been recognized as valuable intermediates in the synthesis of buckminsterfullerene and also show many valuable and interesting properties, including surface selective chemistry. As a part of ongoing investigations for synthesis of bucky bowls, the title molecule, trimethyltruxene, C30H24, was prepared as a possible precursor to buckminsterfullerene cages. Furthermore, these truxene compounds, which serve as backbone of bucky bowl derivatives also have shown properties of organic field-effect transistors (OFETs) based on oligothiophene-functionalized truxene derivatives, which have been fabricated for use as novel star-shaped organic semiconductors in solution (Sun et al., 2005).

Two isomers of the title compound, syn and anti are possible. De Frutos et al. (2002) prepared mixtures of the two isomers, which could be converted to the pure, more stable syn compound by reaction with base, potassium t-butoxide. We report here the structure of the less stable anti isomer, which is not a viable precursor for buckybowls.

The parent heptacyclic aromatic system, truxene (10,15-dihydro-5H-diindeno[1,2 - a:1',2'-c]fluorene), is planar with 3/m (C3 h) symmetry. The title molecule, I, is slightly non-planar with no discernable pattern: with respect to the central 6-ring mean plane, the three methyl groups are +1.377 (3), -1.475 (3) and +1.515 (3) Å distant, whereas the proximate peripheral 6-ring mean planes make dihedral angles of +6.27 (6)°, +3.45 (7)° and -7.37 (7)°.

Related literature top

For related structures, see: De Frutos et al. (1999, 2002). For the synthesis of truxenes, see: Amick & Scott (2007); Dehmlow & Kelle (1997); Kipping (1894a,b); Hausmann (1889); Wislicenus (1887). For buckminsterfullerene, see: Kroto et al. (1985). Buckybowls are intermediates in the synthesis of buckminsterfullerene. Truxene compounds, which serve as backbone of bucky bowl derivatives, have been fabricated for use as novel star-shaped organic semiconductors in solution, see:Sun et al. (2005).

Experimental top

Synthesis of truxene was carried by the one-pot, acid catalyzed, head-to-tail cyclotrimerization synthesis method detailed in (Amick & Scott, 2007) The trimethylation of truxene was carried out by treating truxene with n-butyl lithium, followed by treatment with methyl iodide. A suitable single-crystal was obtained by recrystallization from diethyl ether, dichloromethane and methanol.

Refinement top

All H atoms were placed in calculated positions, guided by difference maps, with C—H bond distances 0.95 (aromatic C), 1.00 (alkyl C) Å, and Uiso=1.2Ueq, thereafter refined as riding. A torsional parameter was refined for each methyl group, with C—H bond distances 0.98 Å and Uiso = 1.5Ueq. The largest peak in the final difference map was at the center of the C18–C26 bond, and the top 33 peaks lay near bond centers.

Structure description top

Buckminsterfullerene is a spherical fullerene molecule with the formula C60. It was first prepared in 1985 by Kroto et al. Buckybowls have been recognized as valuable intermediates in the synthesis of buckminsterfullerene and also show many valuable and interesting properties, including surface selective chemistry. As a part of ongoing investigations for synthesis of bucky bowls, the title molecule, trimethyltruxene, C30H24, was prepared as a possible precursor to buckminsterfullerene cages. Furthermore, these truxene compounds, which serve as backbone of bucky bowl derivatives also have shown properties of organic field-effect transistors (OFETs) based on oligothiophene-functionalized truxene derivatives, which have been fabricated for use as novel star-shaped organic semiconductors in solution (Sun et al., 2005).

Two isomers of the title compound, syn and anti are possible. De Frutos et al. (2002) prepared mixtures of the two isomers, which could be converted to the pure, more stable syn compound by reaction with base, potassium t-butoxide. We report here the structure of the less stable anti isomer, which is not a viable precursor for buckybowls.

The parent heptacyclic aromatic system, truxene (10,15-dihydro-5H-diindeno[1,2 - a:1',2'-c]fluorene), is planar with 3/m (C3 h) symmetry. The title molecule, I, is slightly non-planar with no discernable pattern: with respect to the central 6-ring mean plane, the three methyl groups are +1.377 (3), -1.475 (3) and +1.515 (3) Å distant, whereas the proximate peripheral 6-ring mean planes make dihedral angles of +6.27 (6)°, +3.45 (7)° and -7.37 (7)°.

For related structures, see: De Frutos et al. (1999, 2002). For the synthesis of truxenes, see: Amick & Scott (2007); Dehmlow & Kelle (1997); Kipping (1894a,b); Hausmann (1889); Wislicenus (1887). For buckminsterfullerene, see: Kroto et al. (1985). Buckybowls are intermediates in the synthesis of buckminsterfullerene. Truxene compounds, which serve as backbone of bucky bowl derivatives, have been fabricated for use as novel star-shaped organic semiconductors in solution, see:Sun et al. (2005).

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS86 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. View of (I) (50% probability displacement ellipsoids)
(5R,10S,15R)-rel-5,10,15-trimethyl-10,15- dihydro-5H-tribenzo[a,f,k]trindene top
Crystal data top
C30H24F(000) = 816
Mr = 384.49Dx = 1.263 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6571 reflections
a = 8.6755 (2) Åθ = 2.5–33.5°
b = 18.2860 (4) ŵ = 0.07 mm1
c = 12.8206 (3) ÅT = 90 K
β = 96.007 (1)°Prism, yellow
V = 2022.69 (8) Å30.15 × 0.15 × 0.13 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
7338 independent reflections
Radiation source: sealed tube5008 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
Detector resolution: 9 pixels mm-1θmax = 33.5°, θmin = 2.6°
CCD rotation images, thick slices scansh = 1313
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
k = 2823
Tmin = 0.955, Tmax = 0.976l = 1919
13386 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.157H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0893P)2 + 0.0548P]
where P = (Fo2 + 2Fc2)/3
7338 reflections(Δ/σ)max = 0.001
274 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.29 e Å3
0 constraints
Crystal data top
C30H24V = 2022.69 (8) Å3
Mr = 384.49Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.6755 (2) ŵ = 0.07 mm1
b = 18.2860 (4) ÅT = 90 K
c = 12.8206 (3) Å0.15 × 0.15 × 0.13 mm
β = 96.007 (1)°
Data collection top
Nonius KappaCCD
diffractometer
7338 independent reflections
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
5008 reflections with I > 2σ(I)
Tmin = 0.955, Tmax = 0.976Rint = 0.034
13386 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.157H-atom parameters constrained
S = 1.04Δρmax = 0.48 e Å3
7338 reflectionsΔρmin = 0.29 e Å3
274 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C010.07933 (13)0.09157 (6)0.49364 (9)0.0170 (2)
H010.04750.05720.55260.020*
C020.19146 (13)0.05432 (6)0.41175 (10)0.0174 (2)
C030.33977 (14)0.02847 (7)0.42222 (10)0.0203 (2)
H030.37980.02960.48840.024*
C040.42872 (14)0.00091 (7)0.33434 (10)0.0206 (2)
H040.52940.01780.34090.025*
C050.37157 (14)0.00050 (7)0.23706 (10)0.0192 (2)
H050.43460.01730.17740.023*
C060.22251 (13)0.02602 (6)0.22615 (10)0.0177 (2)
H060.18350.02540.15960.021*
C070.13174 (13)0.05235 (6)0.31430 (9)0.0154 (2)
C080.02504 (13)0.08458 (6)0.32688 (9)0.0153 (2)
C090.13369 (13)0.09525 (6)0.25572 (9)0.0152 (2)
C100.13230 (13)0.06937 (6)0.14305 (9)0.0172 (2)
H100.04000.08940.09900.021*
C110.28051 (14)0.10304 (6)0.11113 (10)0.0174 (2)
C120.34197 (15)0.09751 (7)0.01588 (10)0.0213 (3)
H120.28600.07340.04180.026*
C130.48723 (15)0.12793 (7)0.00611 (10)0.0223 (3)
H130.53000.12490.05900.027*
C140.57001 (14)0.16264 (6)0.09067 (10)0.0197 (2)
H140.66960.18230.08320.024*
C150.50823 (14)0.16888 (6)0.18647 (10)0.0182 (2)
H150.56470.19280.24410.022*
C160.36210 (13)0.13934 (6)0.19621 (9)0.0154 (2)
C170.27069 (13)0.13486 (6)0.28678 (9)0.0149 (2)
C180.30010 (12)0.16021 (6)0.38920 (9)0.0148 (2)
C190.43313 (13)0.20650 (6)0.43845 (9)0.0165 (2)
H190.53460.18290.42860.020*
C200.40577 (13)0.20572 (6)0.55330 (9)0.0162 (2)
C210.49513 (13)0.23644 (7)0.63774 (10)0.0191 (2)
H210.58850.26140.62780.023*
C220.44625 (14)0.23020 (7)0.73774 (10)0.0204 (2)
H220.50610.25150.79620.025*
C230.30980 (14)0.19282 (7)0.75213 (10)0.0197 (2)
H230.27840.18840.82060.024*
C240.21912 (13)0.16198 (6)0.66747 (9)0.0178 (2)
H240.12680.13630.67790.021*
C250.26576 (13)0.16933 (6)0.56710 (9)0.0153 (2)
C260.19633 (13)0.14324 (6)0.46379 (9)0.0148 (2)
C270.05726 (13)0.10782 (6)0.43211 (9)0.0149 (2)
C280.15190 (14)0.16121 (7)0.53548 (11)0.0226 (3)
H28A0.07530.18600.58490.034*
H28B0.24220.14790.57140.034*
H28C0.18430.19400.47680.034*
C290.13709 (15)0.01460 (7)0.13416 (11)0.0230 (3)
H29A0.14410.02850.06100.034*
H29B0.04250.03540.15780.034*
H29C0.22770.03340.17810.034*
C300.42829 (15)0.28518 (7)0.39498 (10)0.0223 (3)
H30A0.43380.28380.31900.033*
H30B0.51660.31290.42860.033*
H30C0.33150.30880.40970.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C010.0155 (5)0.0216 (5)0.0142 (5)0.0022 (4)0.0025 (4)0.0001 (4)
C020.0162 (5)0.0190 (5)0.0171 (6)0.0013 (4)0.0021 (4)0.0002 (4)
C030.0189 (5)0.0244 (6)0.0184 (6)0.0038 (5)0.0051 (5)0.0007 (5)
C040.0163 (5)0.0235 (6)0.0224 (6)0.0043 (5)0.0036 (5)0.0006 (5)
C050.0167 (5)0.0208 (6)0.0196 (6)0.0017 (4)0.0004 (4)0.0024 (5)
C060.0165 (5)0.0205 (5)0.0162 (6)0.0013 (4)0.0016 (4)0.0009 (4)
C070.0137 (5)0.0161 (5)0.0164 (5)0.0005 (4)0.0022 (4)0.0001 (4)
C080.0144 (5)0.0170 (5)0.0143 (5)0.0010 (4)0.0007 (4)0.0001 (4)
C090.0147 (5)0.0172 (5)0.0139 (5)0.0002 (4)0.0019 (4)0.0004 (4)
C100.0160 (5)0.0215 (5)0.0143 (5)0.0022 (4)0.0023 (4)0.0018 (4)
C110.0177 (5)0.0193 (5)0.0155 (5)0.0012 (4)0.0035 (4)0.0004 (4)
C120.0229 (6)0.0254 (6)0.0156 (6)0.0037 (5)0.0026 (5)0.0035 (5)
C130.0246 (6)0.0269 (6)0.0168 (6)0.0022 (5)0.0080 (5)0.0001 (5)
C140.0190 (5)0.0197 (5)0.0214 (6)0.0024 (4)0.0065 (5)0.0001 (5)
C150.0174 (5)0.0193 (5)0.0183 (6)0.0018 (4)0.0032 (4)0.0004 (4)
C160.0158 (5)0.0166 (5)0.0142 (5)0.0005 (4)0.0033 (4)0.0003 (4)
C170.0141 (5)0.0165 (5)0.0143 (5)0.0007 (4)0.0019 (4)0.0007 (4)
C180.0132 (5)0.0163 (5)0.0147 (5)0.0004 (4)0.0007 (4)0.0002 (4)
C190.0147 (5)0.0197 (5)0.0153 (5)0.0012 (4)0.0021 (4)0.0024 (4)
C200.0157 (5)0.0172 (5)0.0154 (5)0.0017 (4)0.0003 (4)0.0013 (4)
C210.0169 (5)0.0207 (5)0.0197 (6)0.0020 (5)0.0012 (4)0.0040 (5)
C220.0212 (6)0.0226 (6)0.0169 (6)0.0003 (5)0.0013 (5)0.0046 (5)
C230.0221 (6)0.0228 (6)0.0139 (6)0.0024 (5)0.0011 (4)0.0003 (4)
C240.0173 (5)0.0205 (5)0.0155 (6)0.0001 (4)0.0018 (4)0.0004 (4)
C250.0153 (5)0.0159 (5)0.0144 (5)0.0016 (4)0.0002 (4)0.0004 (4)
C260.0147 (5)0.0161 (5)0.0134 (5)0.0014 (4)0.0011 (4)0.0002 (4)
C270.0146 (5)0.0169 (5)0.0132 (5)0.0000 (4)0.0019 (4)0.0006 (4)
C280.0165 (5)0.0283 (6)0.0230 (6)0.0009 (5)0.0023 (5)0.0062 (5)
C290.0229 (6)0.0226 (6)0.0240 (7)0.0045 (5)0.0055 (5)0.0057 (5)
C300.0254 (6)0.0201 (6)0.0218 (6)0.0035 (5)0.0046 (5)0.0013 (5)
Geometric parameters (Å, º) top
C01—C021.5161 (17)C15—C161.3956 (16)
C01—C271.5201 (15)C15—H150.9500
C01—C281.5416 (17)C16—C171.4754 (15)
C01—H011.0000C17—C181.3906 (16)
C02—C031.3904 (16)C18—C261.4148 (15)
C02—C071.4021 (16)C18—C191.5148 (16)
C03—C041.3917 (18)C19—C201.5159 (16)
C03—H030.9500C19—C301.5419 (17)
C04—C051.3895 (17)C19—H191.0000
C04—H040.9500C20—C211.3831 (16)
C05—C061.3955 (16)C20—C251.4123 (16)
C05—H050.9500C21—C221.3966 (17)
C06—C071.3939 (17)C21—H210.9500
C06—H060.9500C22—C231.3958 (17)
C07—C081.4756 (15)C22—H220.9500
C08—C091.3924 (15)C23—C241.3915 (17)
C08—C271.4142 (16)C23—H230.9500
C09—C171.4131 (16)C24—C251.3952 (16)
C09—C101.5188 (16)C24—H240.9500
C10—C111.5199 (16)C25—C261.4756 (16)
C10—C291.5405 (17)C26—C271.3919 (16)
C10—H101.0000C28—H28A0.9800
C11—C121.3864 (16)C28—H28B0.9800
C11—C161.4035 (17)C28—H28C0.9800
C12—C131.3950 (17)C29—H29A0.9800
C12—H120.9500C29—H29B0.9800
C13—C141.3896 (18)C29—H29C0.9800
C13—H130.9500C30—H30A0.9800
C14—C151.3951 (16)C30—H30B0.9800
C14—H140.9500C30—H30C0.9800
C02—C01—C27101.95 (9)C18—C17—C09120.18 (10)
C02—C01—C28110.87 (9)C18—C17—C16131.61 (10)
C27—C01—C28112.83 (10)C09—C17—C16108.19 (10)
C02—C01—H01110.3C17—C18—C26119.89 (10)
C27—C01—H01110.3C17—C18—C19129.52 (10)
C28—C01—H01110.3C26—C18—C19110.59 (10)
C03—C02—C07120.61 (11)C18—C19—C20102.11 (9)
C03—C02—C01128.25 (11)C18—C19—C30112.34 (10)
C07—C02—C01111.01 (10)C20—C19—C30111.02 (10)
C02—C03—C04119.03 (11)C18—C19—H19110.4
C02—C03—H03120.5C20—C19—H19110.4
C04—C03—H03120.5C30—C19—H19110.4
C05—C04—C03120.59 (11)C21—C20—C25120.82 (11)
C05—C04—H04119.7C21—C20—C19128.64 (10)
C03—C04—H04119.7C25—C20—C19110.51 (10)
C04—C05—C06120.64 (12)C20—C21—C22119.09 (11)
C04—C05—H05119.7C20—C21—H21120.5
C06—C05—H05119.7C22—C21—H21120.5
C07—C06—C05119.01 (11)C23—C22—C21120.30 (11)
C07—C06—H06120.5C23—C22—H22119.8
C05—C06—H06120.5C21—C22—H22119.8
C06—C07—C02120.09 (10)C24—C23—C22120.90 (11)
C06—C07—C08131.50 (11)C24—C23—H23119.6
C02—C07—C08108.34 (10)C22—C23—H23119.6
C09—C08—C27120.21 (10)C23—C24—C25119.04 (11)
C09—C08—C07131.59 (11)C23—C24—H24120.5
C27—C08—C07108.19 (10)C25—C24—H24120.5
C08—C09—C17119.62 (11)C24—C25—C20119.81 (11)
C08—C09—C10129.86 (10)C24—C25—C26131.77 (10)
C17—C09—C10110.52 (9)C20—C25—C26108.39 (10)
C09—C10—C11101.95 (9)C27—C26—C18119.88 (10)
C09—C10—C29112.54 (10)C27—C26—C25132.24 (10)
C11—C10—C29110.72 (9)C18—C26—C25107.88 (10)
C09—C10—H10110.5C26—C27—C08119.80 (10)
C11—C10—H10110.5C26—C27—C01129.68 (10)
C29—C10—H10110.5C08—C27—C01110.44 (10)
C12—C11—C16120.66 (11)C01—C28—H28A109.5
C12—C11—C10128.45 (11)C01—C28—H28B109.5
C16—C11—C10110.75 (10)H28A—C28—H28B109.5
C11—C12—C13118.97 (12)C01—C28—H28C109.5
C11—C12—H12120.5H28A—C28—H28C109.5
C13—C12—H12120.5H28B—C28—H28C109.5
C14—C13—C12120.66 (11)C10—C29—H29A109.5
C14—C13—H13119.7C10—C29—H29B109.5
C12—C13—H13119.7H29A—C29—H29B109.5
C13—C14—C15120.62 (11)C10—C29—H29C109.5
C13—C14—H14119.7H29A—C29—H29C109.5
C15—C14—H14119.7H29B—C29—H29C109.5
C14—C15—C16118.91 (11)C19—C30—H30A109.5
C14—C15—H15120.5C19—C30—H30B109.5
C16—C15—H15120.5H30A—C30—H30B109.5
C15—C16—C11120.16 (11)C19—C30—H30C109.5
C15—C16—C17131.30 (11)H30A—C30—H30C109.5
C11—C16—C17108.46 (10)H30B—C30—H30C109.5
C27—C01—C02—C03178.33 (12)C11—C16—C17—C18178.54 (12)
C28—C01—C02—C0357.99 (16)C15—C16—C17—C09176.37 (12)
C27—C01—C02—C072.60 (12)C11—C16—C17—C090.28 (13)
C28—C01—C02—C07117.74 (11)C09—C17—C18—C263.09 (16)
C07—C02—C03—C040.37 (18)C16—C17—C18—C26174.99 (11)
C01—C02—C03—C04175.00 (11)C09—C17—C18—C19176.57 (11)
C02—C03—C04—C051.24 (18)C16—C17—C18—C195.3 (2)
C03—C04—C05—C061.61 (19)C17—C18—C19—C20173.01 (11)
C04—C05—C06—C070.33 (18)C26—C18—C19—C207.30 (12)
C05—C06—C07—C021.26 (17)C17—C18—C19—C3067.99 (15)
C05—C06—C07—C08177.68 (11)C26—C18—C19—C30111.70 (11)
C03—C02—C07—C061.63 (18)C18—C19—C20—C21176.85 (11)
C01—C02—C07—C06174.48 (10)C30—C19—C20—C2163.23 (16)
C03—C02—C07—C08178.80 (11)C18—C19—C20—C255.03 (12)
C01—C02—C07—C082.70 (13)C30—C19—C20—C25114.90 (11)
C06—C07—C08—C093.7 (2)C25—C20—C21—C220.88 (17)
C02—C07—C08—C09179.52 (12)C19—C20—C21—C22178.83 (11)
C06—C07—C08—C27175.11 (12)C20—C21—C22—C230.61 (18)
C02—C07—C08—C271.63 (13)C21—C22—C23—C240.82 (18)
C27—C08—C09—C175.30 (17)C22—C23—C24—C250.48 (18)
C07—C08—C09—C17173.44 (11)C23—C24—C25—C201.95 (17)
C27—C08—C09—C10173.82 (11)C23—C24—C25—C26179.84 (12)
C07—C08—C09—C107.4 (2)C21—C20—C25—C242.18 (17)
C08—C09—C10—C11177.42 (12)C19—C20—C25—C24179.53 (10)
C17—C09—C10—C113.40 (12)C21—C20—C25—C26179.47 (10)
C08—C09—C10—C2963.93 (16)C19—C20—C25—C261.18 (12)
C17—C09—C10—C29115.25 (11)C17—C18—C26—C276.66 (16)
C09—C10—C11—C12179.26 (12)C19—C18—C26—C27173.06 (10)
C29—C10—C11—C1259.33 (17)C17—C18—C26—C25173.32 (10)
C09—C10—C11—C163.59 (13)C19—C18—C26—C256.95 (12)
C29—C10—C11—C16116.35 (11)C24—C25—C26—C275.5 (2)
C16—C11—C12—C130.69 (18)C20—C25—C26—C27176.45 (12)
C10—C11—C12—C13174.61 (12)C24—C25—C26—C18174.51 (12)
C11—C12—C13—C140.63 (19)C20—C25—C26—C183.56 (12)
C12—C13—C14—C151.14 (19)C18—C26—C27—C084.24 (16)
C13—C14—C15—C160.32 (18)C25—C26—C27—C08175.74 (11)
C14—C15—C16—C111.00 (17)C18—C26—C27—C01172.36 (11)
C14—C15—C16—C17177.32 (11)C25—C26—C27—C017.7 (2)
C12—C11—C16—C151.52 (18)C09—C08—C27—C261.74 (17)
C10—C11—C16—C15174.55 (10)C07—C08—C27—C26177.27 (10)
C12—C11—C16—C17178.61 (11)C09—C08—C27—C01178.95 (10)
C10—C11—C16—C172.54 (13)C07—C08—C27—C010.06 (13)
C08—C09—C17—C182.87 (17)C02—C01—C27—C26178.41 (11)
C10—C09—C17—C18176.40 (10)C28—C01—C27—C2659.45 (16)
C08—C09—C17—C16178.63 (10)C02—C01—C27—C081.55 (12)
C10—C09—C17—C162.09 (13)C28—C01—C27—C08117.41 (11)
C15—C16—C17—C181.9 (2)

Experimental details

Crystal data
Chemical formulaC30H24
Mr384.49
Crystal system, space groupMonoclinic, P21/n
Temperature (K)90
a, b, c (Å)8.6755 (2), 18.2860 (4), 12.8206 (3)
β (°) 96.007 (1)
V3)2022.69 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.15 × 0.15 × 0.13
Data collection
DiffractometerNonius KappaCCD
Absorption correctionMulti-scan
(SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.955, 0.976
No. of measured, independent and
observed [I > 2σ(I)] reflections
13386, 7338, 5008
Rint0.034
(sin θ/λ)max1)0.777
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.157, 1.04
No. of reflections7338
No. of parameters274
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.48, 0.29

Computer programs: COLLECT (Nonius, 2000), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXS86 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

 

Footnotes

1CAS 478358-72-4.

Acknowledgements

The purchase of the diffractometer was made possible by grant No. LEQSF(1999–1200)-ENH-TR-13, administered by the Louisiana Board of Regents.

References

First citationAmick, A. W. & Scott, L. T. (2007). J. Org. Chem. 72, 3412–3418.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDe Frutos, O., Gomez-Lor, B., Granier, T., Monge, M. A., Gutierrez-Puebla, E. & Echavarren, A. M. (1999). Angew. Chem. Int. Ed. 38, 204–207.  CrossRef CAS Google Scholar
First citationDe Frutos, O., Granier, T., Gomez-Lor, B., Jimenez-Barbero, J., Monge, A., Gutierrez- Puebla, E. & Echavarren, A. M. (2002). Chem. Eur. J. 8, 2879–2890.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDehmlow, E. V. & Kelle, T. (1997). Synth. Commun. 27, 2021–2026.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHausmann, J. (1889). Ber. Dtsch Chem. Ges. 22, 2019–2026.  CrossRef Google Scholar
First citationKipping, F. S. (1894a). J. Chem. Soc. Trans. 65, 269–290.  CrossRef CAS Google Scholar
First citationKipping, F. S. (1894b). J. Chem. Soc. Trans. 65, 480–503.  CrossRef CAS Google Scholar
First citationKroto, H. W., Heath, J. R., O'Brien, S. C., Curl, R. F. & Smalley, R. E. (1985). Nature (London), 318, 162–163.  CrossRef CAS Web of Science Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, Y. M., Xiao, K., Liu, Y. Q., Wang, J. L., Pei, J., Yu, G. & Zhu, D. B. (2005). Adv. Funct. Mater. 15, 818–822.  Web of Science CrossRef CAS Google Scholar
First citationWislicenus, W. (1887). Ber. Dtsch Chem. Ges. 20, 589–595.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds