organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(2-Eth­­oxy­phen­yl)-1-(3-nitro­phen­yl)triaz-1-ene

aDepartment of Chemistry, Islamic Azad University, Karaj Branch, Karaj, Iran, and bDipartimento di Chimica Inorganica, Universita di Messina, Messina, Italy
*Correspondence e-mail: m.melardi@kiau.ac.ir

(Received 4 November 2011; accepted 16 November 2011; online 30 November 2011)

The title compound, C14H14N4O3, exhibits a trans geometry about the N=N double bond in the triazene unit. The mol­ecule is approximately planar (r.m.s. deviation = 0.044 Å for all non-H atoms). An intra­molecular N—H⋯O hydrogen bond occurs. In the crystal, C—H⋯N hydrogen bonds lead to the formation of dimers which are, in turn, connected to each other by C—H⋯O hydrogen bonds, forming infinite chains of R22(8) graph-set motif.

Related literature

For aryl triazenes, their structural properties and metal complexes see: Meldola & Streatfield (1888[Meldola, R. & Streatfield, F. W. (1888). J. Chem. Soc. 61, 102-118.]); Leman et al. (1993[Leman, J. T., Wilking, J. B., Cooling, A. J. & Barron, A. R. (1993). Inorg. Chem. 32, 4324-4336.]); Chen et al. (2002[Chen, N., Barra, M., Lee, I. & Chahal, N. (2002). J. Org. Chem. 67, 2271-2277.]); Vrieze & Van Koten (1987[Vrieze, K. & Van Koten, G. (1987). In Comprehensive Coordination Chemistry. Oxford: Pergamon Press.]). For a similar structure with cyano instead of eth­oxy groups, see: Melardi et al. (2008[Melardi, M. R., Khalili, H. R., Barkhi, M. & Rofouei, M. K. (2008). Anal. Sci. 24, x281-x282.]). For the synthesis and characterization of a similar structure with meth­oxy instead of eth­oxy groups, see: Rofouei et al. (2006[Rofouei, M. K., Shamsipur, M. & Payehghadr, M. (2006). Anal. Sci. 22, x79-x80.]). For the synthesis and crystal structures of mercury(II) and silver(I) complexes with 1,3-bis­(2-meth­oxy­phen­yl)triazene, see: Hematyar & Rofouei (2008[Hematyar, M. & Rofouei, M. K. (2008). Anal. Sci. 24, x117-x118.]) and Payehghadr et al. (2007[Payehghadr, M., Rofouei, M. K., Morsali, A. & Shamsipur, M. (2007). Inorg. Chim. Acta, 360, 1792-1798.]), respectively. For hydrogen-bond patterns and related graph sets, see: Grell et al. (2002[Grell, J. J., Bernstein, J. & Tinhofer, G. (2002). Crystallogr. Rev. 8, 1-56.]).

[Scheme 1]

Experimental

Crystal data
  • C14H14N4O3

  • Mr = 286.29

  • Triclinic, [P \overline 1]

  • a = 6.7754 (4) Å

  • b = 7.5482 (4) Å

  • c = 14.0467 (7) Å

  • α = 99.057 (3)°

  • β = 102.479 (2)°

  • γ = 90.192 (3)°

  • V = 692.14 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.55 × 0.33 × 0.26 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.688, Tmax = 0.746

  • 26097 measured reflections

  • 3178 independent reflections

  • 2693 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.115

  • S = 1.06

  • 3178 reflections

  • 191 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.86 2.26 2.6130 (12) 105
C7—H2A⋯O3i 0.97 2.55 3.4595 (18) 157
C10—H10⋯N3ii 0.93 2.65 3.543 (3) 161
Symmetry codes: (i) x, y, z+1; (ii) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). SAINT-Plus and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2005[Bruker (2005). SAINT-Plus and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Aryl triazenes have been studied for over 130 years for their interesting structural, anticancer, and reactivity properties. The first extensive investigation of the coordination chemistry of a triazene derivative (1,3 diphenyltriazene) was carried out in 1887 by Meldola (Meldola et al., 1888). In the intervening years, numerous transition metal triazenide compounds have been studied (Leman et al., 1993). Triazene compounds characterized by having a diazoamino group commonly adopt a trans configuration in the ground state (Chen et al., 2002). The study of transition metal complexes containing 1,3-diaryltriazenide [RNN—NR]- ligands has increased greatly in the past few years, because of their potential reactivity in relation to their several coordination modes (Vrieze et al., 1987). We have recently reported the synthesis and characterization of the two molecules 1,3-bis(2-methoxyphenyl)triazene (Rofouei, et al., 2006) and 1,3-bis(2-cyanophenyl)triazene (Melardi, et al., 2008).

The title compound, C14H14N4O3, is a related triazene compound. It exhibits a trans stereo chemistry of the NN double bond, and the C9—N3—N2—N1 and C1—N1—N2—N3 torsion angles are -179.23 (9) and 177.91 (10)°, respectively which indicates the molecule is planar. The N1—N2 and N2—N3 bond distances are 1.3295 (13) and 1.2550 (14) Å, respectively, which indicates the presence of distinct single and double bonds between the nitrogen atoms. These values are in good agreement with the reported data for N—N and NN bond distances (Hematyar, et al., 2008; Payehghadr, et al. 2007). For example, in 1,3-bis(2-cyanophenyl)triazene, the N—N and NN bond distances are 1.335 (5) and 1.289 (5) Å (Melardi, et al., 2008). Individual molecules are mostly planar with an r.m.s. deviation from planarity of 0.044 Å for all non-hydrogen atoms. Every molecule in the molecular structure (Fig. 1) is connected to other unit by two distinct C—H···N hydrogen bonds to form dimers. The resultant dimers are then connected to each other by C—H···O hydrogen bonds to form infinite chains with R22(8) graph-set motifs (Grell et al., 2002)) (Fig. 2). Unit cell diagram of the title compound is illustrated in Fig. 3.

Related literature top

For aryl triazenes, their structural properties and metal complexes see: Meldola & Streatfield (1888); Leman et al. (1993); Chen et al. (2002); Vrieze & Van Koten (1987). For a similar structure with cyano instead of ethoxy groups, see: Melardi et al. (2008). For the synthesis and characterization of a similar structure with methoxy instead of ethoxy groups, see: Rofouei et al. (2006). For the synthesis and crystal structures of mercury(II) and silver(I) complexes with 1,3-bis(2-methoxyphenyl)triazene, see: Hematyar & Rofouei (2008) and Payehghadr et al. (2007), respectively. For hydrogen-bond patterns and related graph sets, see: Grell et al. (2002).

Experimental top

The compound was prepared by the following method: A 100 ml flask was charged with 10 g of ice and 15 ml of water and then cooled to 273 k in an ice-bath. To this was added 2 mmol (0.344 g) of 3-nitroaniline and 2 mmol of hydrochloric acid (36.5%) and 2 ml of water. To thissolution was then added a solution containing NaNO2 (2 mmol, 0.16 g) in 2 ml of water during a 15 min period. After mixing for 15 min, the obtained solution was added to a solution of 2 mmol (0.261 ml) of o-phenetidin and 2 ml of methanol and 2 ml of water.

After that a solution containing 36 mmol (2.95 g) of sodium acetate in 10 ml of water was added. After mixing for 24 h the orange product was filtered off and dissolved in DMSO. Recrystallization from DMSO afforded the product as an orange crystalline material. 1H NMR (300MHZ, DMSO): 1.37(6H, CH3), 4.12(4H, CH2), 6.98–8.07 (8H, aromatic), 12.93(1H, NH). IR (KBr): 3326, 1484, 1468, 1253, 1046, 816 cm-1

Structure description top

Aryl triazenes have been studied for over 130 years for their interesting structural, anticancer, and reactivity properties. The first extensive investigation of the coordination chemistry of a triazene derivative (1,3 diphenyltriazene) was carried out in 1887 by Meldola (Meldola et al., 1888). In the intervening years, numerous transition metal triazenide compounds have been studied (Leman et al., 1993). Triazene compounds characterized by having a diazoamino group commonly adopt a trans configuration in the ground state (Chen et al., 2002). The study of transition metal complexes containing 1,3-diaryltriazenide [RNN—NR]- ligands has increased greatly in the past few years, because of their potential reactivity in relation to their several coordination modes (Vrieze et al., 1987). We have recently reported the synthesis and characterization of the two molecules 1,3-bis(2-methoxyphenyl)triazene (Rofouei, et al., 2006) and 1,3-bis(2-cyanophenyl)triazene (Melardi, et al., 2008).

The title compound, C14H14N4O3, is a related triazene compound. It exhibits a trans stereo chemistry of the NN double bond, and the C9—N3—N2—N1 and C1—N1—N2—N3 torsion angles are -179.23 (9) and 177.91 (10)°, respectively which indicates the molecule is planar. The N1—N2 and N2—N3 bond distances are 1.3295 (13) and 1.2550 (14) Å, respectively, which indicates the presence of distinct single and double bonds between the nitrogen atoms. These values are in good agreement with the reported data for N—N and NN bond distances (Hematyar, et al., 2008; Payehghadr, et al. 2007). For example, in 1,3-bis(2-cyanophenyl)triazene, the N—N and NN bond distances are 1.335 (5) and 1.289 (5) Å (Melardi, et al., 2008). Individual molecules are mostly planar with an r.m.s. deviation from planarity of 0.044 Å for all non-hydrogen atoms. Every molecule in the molecular structure (Fig. 1) is connected to other unit by two distinct C—H···N hydrogen bonds to form dimers. The resultant dimers are then connected to each other by C—H···O hydrogen bonds to form infinite chains with R22(8) graph-set motifs (Grell et al., 2002)) (Fig. 2). Unit cell diagram of the title compound is illustrated in Fig. 3.

For aryl triazenes, their structural properties and metal complexes see: Meldola & Streatfield (1888); Leman et al. (1993); Chen et al. (2002); Vrieze & Van Koten (1987). For a similar structure with cyano instead of ethoxy groups, see: Melardi et al. (2008). For the synthesis and characterization of a similar structure with methoxy instead of ethoxy groups, see: Rofouei et al. (2006). For the synthesis and crystal structures of mercury(II) and silver(I) complexes with 1,3-bis(2-methoxyphenyl)triazene, see: Hematyar & Rofouei (2008) and Payehghadr et al. (2007), respectively. For hydrogen-bond patterns and related graph sets, see: Grell et al. (2002).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2005); data reduction: SAINT-Plus (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Thermal ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. C—H···N and C—H···O hydrogen bonds connect the different units into chains with R22(8) graph-set motifs
[Figure 3] Fig. 3. Unit cell packing diagram of the title compound, hydrogen bonding are shown as dashed lines.
3-(2-Ethoxyphenyl)-1-(3-nitrophenyl)triaz-1-ene top
Crystal data top
C14H14N4O3Z = 2
Mr = 286.29F(000) = 300
Triclinic, P1Dx = 1.374 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.7754 (4) ÅCell parameters from 9946 reflections
b = 7.5482 (4) Åθ = 2.7–31.1°
c = 14.0467 (7) ŵ = 0.10 mm1
α = 99.057 (3)°T = 293 K
β = 102.479 (2)°Irregular, colourless
γ = 90.192 (3)°0.55 × 0.33 × 0.26 mm
V = 692.14 (6) Å3
Data collection top
Bruker APEXII CCD
diffractometer
3178 independent reflections
Radiation source: fine-focus sealed tube2693 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
φ and ω scansθmax = 27.5°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 88
Tmin = 0.688, Tmax = 0.746k = 99
26097 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0511P)2 + 0.145P]
where P = (Fo2 + 2Fc2)/3
3178 reflections(Δ/σ)max < 0.001
191 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C14H14N4O3γ = 90.192 (3)°
Mr = 286.29V = 692.14 (6) Å3
Triclinic, P1Z = 2
a = 6.7754 (4) ÅMo Kα radiation
b = 7.5482 (4) ŵ = 0.10 mm1
c = 14.0467 (7) ÅT = 293 K
α = 99.057 (3)°0.55 × 0.33 × 0.26 mm
β = 102.479 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
3178 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
2693 reflections with I > 2σ(I)
Tmin = 0.688, Tmax = 0.746Rint = 0.019
26097 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.115H-atom parameters constrained
S = 1.06Δρmax = 0.19 e Å3
3178 reflectionsΔρmin = 0.17 e Å3
191 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.14363 (13)0.78956 (13)0.80767 (6)0.0496 (2)
O20.25541 (16)0.75287 (19)0.17852 (8)0.0775 (4)
O30.09609 (19)0.67215 (19)0.06405 (7)0.0772 (4)
N10.08879 (15)0.75248 (15)0.61555 (7)0.0463 (3)
H10.19690.72240.65320.056*
N20.07393 (15)0.72890 (13)0.51841 (7)0.0405 (2)
N30.22616 (15)0.65698 (14)0.49393 (7)0.0452 (2)
N40.10788 (17)0.69283 (16)0.15046 (7)0.0510 (3)
C80.3938 (2)0.7498 (2)0.94857 (10)0.0657 (4)
H1A0.39110.62270.92610.099*
H1B0.42960.77321.01950.099*
H1C0.49190.80820.92260.099*
C70.1898 (2)0.8201 (2)0.91353 (9)0.0539 (3)
H2A0.08900.75910.93760.065*
H2B0.18950.94760.93830.065*
C20.03776 (17)0.84559 (16)0.76042 (8)0.0408 (3)
C10.06778 (17)0.82518 (15)0.65747 (8)0.0388 (2)
C90.21578 (17)0.63226 (15)0.39086 (8)0.0383 (2)
C140.05175 (17)0.67526 (15)0.32130 (8)0.0385 (2)
H60.06270.72360.34020.046*
C130.06377 (18)0.64406 (15)0.22357 (8)0.0404 (3)
C120.2299 (2)0.57199 (18)0.19153 (9)0.0488 (3)
H80.23290.55230.12480.059*
C110.3909 (2)0.53033 (18)0.26185 (10)0.0529 (3)
H90.50490.48180.24250.063*
C100.38486 (19)0.55994 (17)0.36067 (9)0.0466 (3)
H100.49460.53130.40740.056*
C60.24781 (19)0.87423 (17)0.60219 (10)0.0483 (3)
H110.26860.85990.53370.058*
C50.3968 (2)0.94460 (18)0.64873 (11)0.0551 (3)
H120.51760.97780.61140.066*
C40.3679 (2)0.96581 (19)0.74939 (12)0.0565 (3)
H130.46881.01370.78010.068*
C30.1888 (2)0.91623 (19)0.80575 (10)0.0514 (3)
H140.17010.93040.87410.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0446 (5)0.0738 (6)0.0283 (4)0.0085 (4)0.0058 (3)0.0050 (4)
O20.0549 (6)0.1304 (11)0.0483 (6)0.0282 (6)0.0088 (5)0.0206 (6)
O30.0823 (8)0.1176 (10)0.0321 (5)0.0152 (7)0.0110 (5)0.0155 (5)
N10.0432 (5)0.0665 (7)0.0277 (5)0.0103 (5)0.0052 (4)0.0068 (4)
N20.0437 (5)0.0473 (5)0.0295 (5)0.0021 (4)0.0061 (4)0.0060 (4)
N30.0461 (5)0.0557 (6)0.0329 (5)0.0094 (4)0.0074 (4)0.0064 (4)
N40.0537 (6)0.0657 (7)0.0329 (5)0.0009 (5)0.0067 (4)0.0096 (5)
C80.0646 (9)0.0905 (11)0.0386 (7)0.0041 (8)0.0004 (6)0.0152 (7)
C70.0621 (8)0.0705 (9)0.0284 (6)0.0037 (6)0.0093 (5)0.0069 (5)
C20.0415 (6)0.0438 (6)0.0360 (6)0.0011 (5)0.0081 (4)0.0035 (5)
C10.0398 (6)0.0399 (6)0.0357 (6)0.0002 (4)0.0072 (4)0.0047 (4)
C90.0437 (6)0.0379 (6)0.0334 (5)0.0025 (4)0.0091 (4)0.0058 (4)
C140.0408 (6)0.0418 (6)0.0338 (5)0.0020 (4)0.0103 (4)0.0054 (4)
C130.0457 (6)0.0422 (6)0.0334 (6)0.0005 (5)0.0083 (5)0.0074 (4)
C120.0604 (7)0.0534 (7)0.0368 (6)0.0060 (6)0.0199 (5)0.0068 (5)
C110.0557 (7)0.0566 (8)0.0524 (7)0.0155 (6)0.0247 (6)0.0094 (6)
C100.0468 (6)0.0493 (7)0.0452 (6)0.0114 (5)0.0108 (5)0.0109 (5)
C60.0466 (6)0.0521 (7)0.0434 (7)0.0028 (5)0.0024 (5)0.0093 (5)
C50.0421 (6)0.0523 (7)0.0693 (9)0.0062 (5)0.0057 (6)0.0137 (6)
C40.0476 (7)0.0547 (8)0.0704 (9)0.0072 (6)0.0228 (6)0.0055 (6)
C30.0521 (7)0.0577 (7)0.0460 (7)0.0018 (6)0.0186 (6)0.0019 (6)
Geometric parameters (Å, º) top
O1—C21.3672 (14)C1—C61.3828 (16)
O1—C71.4327 (14)C9—C141.3886 (15)
O2—N41.2153 (15)C9—C101.3898 (16)
O3—N41.2192 (14)C14—C131.3760 (15)
N1—N21.3295 (13)C14—H60.9300
N1—C11.3948 (15)C13—C121.3824 (17)
N1—H10.8600C12—C111.3782 (19)
N2—N31.2550 (14)C12—H80.9300
N3—C91.4165 (14)C11—C101.3803 (18)
N4—C131.4658 (16)C11—H90.9300
C8—C71.493 (2)C10—H100.9300
C8—H1A0.9600C6—C51.3813 (19)
C8—H1B0.9600C6—H110.9300
C8—H1C0.9600C5—C41.368 (2)
C7—H2A0.9700C5—H120.9300
C7—H2B0.9700C4—C31.386 (2)
C2—C31.3840 (17)C4—H130.9300
C2—C11.3996 (16)C3—H140.9300
C2—O1—C7117.63 (9)C10—C9—N3115.61 (10)
N2—N1—C1121.19 (9)C13—C14—C9117.92 (11)
N2—N1—H1119.4C13—C14—H6121.0
C1—N1—H1119.4C9—C14—H6121.0
N3—N2—N1112.29 (9)C14—C13—C12123.37 (11)
N2—N3—C9113.57 (9)C14—C13—N4117.84 (10)
O2—N4—O3122.79 (12)C12—C13—N4118.78 (10)
O2—N4—C13118.69 (10)C11—C12—C13117.71 (11)
O3—N4—C13118.52 (11)C11—C12—H8121.1
C7—C8—H1A109.5C13—C12—H8121.1
C7—C8—H1B109.5C12—C11—C10120.67 (11)
H1A—C8—H1B109.5C12—C11—H9119.7
C7—C8—H1C109.5C10—C11—H9119.7
H1A—C8—H1C109.5C11—C10—C9120.44 (11)
H1B—C8—H1C109.5C11—C10—H10119.8
O1—C7—C8108.27 (11)C9—C10—H10119.8
O1—C7—H2A110.0C5—C6—C1119.94 (12)
C8—C7—H2A110.0C5—C6—H11120.0
O1—C7—H2B110.0C1—C6—H11120.0
C8—C7—H2B110.0C4—C5—C6120.46 (12)
H2A—C7—H2B108.4C4—C5—H12119.8
O1—C2—C3125.54 (11)C6—C5—H12119.8
O1—C2—C1115.09 (10)C5—C4—C3120.27 (12)
C3—C2—C1119.37 (11)C5—C4—H13119.9
C6—C1—N1123.10 (11)C3—C4—H13119.9
C6—C1—C2119.87 (11)C2—C3—C4120.09 (12)
N1—C1—C2117.02 (10)C2—C3—H14120.0
C14—C9—C10119.88 (10)C4—C3—H14120.0
C14—C9—N3124.50 (10)
C1—N1—N2—N3177.91 (10)O2—N4—C13—C142.37 (18)
N1—N2—N3—C9179.23 (9)O3—N4—C13—C14177.30 (12)
C2—O1—C7—C8179.64 (12)O2—N4—C13—C12178.57 (13)
C7—O1—C2—C35.71 (19)O3—N4—C13—C121.77 (18)
C7—O1—C2—C1175.15 (11)C14—C13—C12—C110.2 (2)
N2—N1—C1—C61.14 (18)N4—C13—C12—C11178.81 (12)
N2—N1—C1—C2179.72 (10)C13—C12—C11—C100.1 (2)
O1—C2—C1—C6178.70 (11)C12—C11—C10—C90.1 (2)
C3—C2—C1—C60.50 (18)C14—C9—C10—C110.06 (19)
O1—C2—C1—N10.47 (16)N3—C9—C10—C11179.95 (11)
C3—C2—C1—N1179.67 (11)N1—C1—C6—C5179.66 (12)
N2—N3—C9—C142.50 (17)C2—C1—C6—C50.54 (19)
N2—N3—C9—C10177.40 (11)C1—C6—C5—C40.2 (2)
C10—C9—C14—C130.07 (17)C6—C5—C4—C30.2 (2)
N3—C9—C14—C13179.82 (10)O1—C2—C3—C4179.01 (12)
C9—C14—C13—C120.20 (18)C1—C2—C3—C40.1 (2)
C9—C14—C13—N4178.82 (10)C5—C4—C3—C20.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.862.262.6130 (12)105
C7—H2A···O3i0.972.553.4595 (18)157
C10—H10···N3ii0.932.653.543 (3)161
Symmetry codes: (i) x, y, z+1; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC14H14N4O3
Mr286.29
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)6.7754 (4), 7.5482 (4), 14.0467 (7)
α, β, γ (°)99.057 (3), 102.479 (2), 90.192 (3)
V3)692.14 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.55 × 0.33 × 0.26
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.688, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
26097, 3178, 2693
Rint0.019
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.115, 1.06
No. of reflections3178
No. of parameters191
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.17

Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.862.262.6130 (12)104.9
C7—H2A···O3i0.972.553.4595 (18)157
C10—H10···N3ii0.932.653.543 (3)161
Symmetry codes: (i) x, y, z+1; (ii) x+1, y+1, z+1.
 

References

First citationBruker (2005). SAINT-Plus and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, N., Barra, M., Lee, I. & Chahal, N. (2002). J. Org. Chem. 67, 2271–2277.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGrell, J. J., Bernstein, J. & Tinhofer, G. (2002). Crystallogr. Rev. 8, 1–56.  CrossRef CAS Google Scholar
First citationHematyar, M. & Rofouei, M. K. (2008). Anal. Sci. 24, x117–x118.  CAS Google Scholar
First citationLeman, J. T., Wilking, J. B., Cooling, A. J. & Barron, A. R. (1993). Inorg. Chem. 32, 4324–4336.  CSD CrossRef CAS Web of Science Google Scholar
First citationMelardi, M. R., Khalili, H. R., Barkhi, M. & Rofouei, M. K. (2008). Anal. Sci. 24, x281–x282.  CAS Google Scholar
First citationMeldola, R. & Streatfield, F. W. (1888). J. Chem. Soc. 61, 102–118.  Google Scholar
First citationPayehghadr, M., Rofouei, M. K., Morsali, A. & Shamsipur, M. (2007). Inorg. Chim. Acta, 360, 1792–1798.  Web of Science CSD CrossRef CAS Google Scholar
First citationRofouei, M. K., Shamsipur, M. & Payehghadr, M. (2006). Anal. Sci. 22, x79–x80.  CAS Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVrieze, K. & Van Koten, G. (1987). In Comprehensive Coordination Chemistry. Oxford: Pergamon Press.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds