organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[2-(2-Hy­dr­oxy­eth­­oxy)phen­yl]-4,4,5,5-tetra­methyl-2-imidazoline-1-oxyl 3-oxide

aDepartment of Pharmacy, Lanzhou General Hospital of PLA, Key Laboratory of the Prevention and Cure for the Plateau Environment Damage, PLA 730050, Lanzhou Gansu, People's Republic of China
*Correspondence e-mail: zhengping_jia@yahoo.cn

(Received 8 November 2011; accepted 26 November 2011; online 30 November 2011)

In the title compound, C15H21N2O4, the nitronyl nitroxide unit displays a twisted conformation. The crystal structure is stabilized by non-classical C—H⋯O and C—H⋯π hydrogen bonds, which build up a three-dimensional network.

Related literature

For the biological activity of nitronyl nitroxides, see: Soule et al. (2007[Soule, B. P., Hyodo, F., Matsumoto, K., Simone, N. L., Cook, J. A., Krishna, M. C. & Mitchell, J. B. (2007). Free Radic. Biol. Med. 42, 1632-1650.]); Blasig et al. (2002[Blasig, I. E., Mertsch, K. & Haseloff, R. F. (2002). Neuropharmacology, 43, 1006-1014.]); Qin et al. (2009[Qin, X. Y., Ding, G. R. & Sun, X. L. (2009). J. Chem. Res. pp. 511-514.]); Tanaka et al. (2007[Tanaka, K., Furuichi, K., Kozaki, M., Suzuki, S., Shiomi, D., Sato, K., Takui, T. & Okada, K. (2007). Polyhedron, 26, 2021-2026.]). For their coordination properties, see: Masuda et al. (2009[Masuda, Y., Kurats, M., Suzuki, S., Kozaki, M., Shiomi, D., Sato, K., Takui, T., Hosokoshi, Y., Miyazaki, Y., Inada, A. & Okada, K. (2009). J. Am. Chem. Soc. 131, 4670-4673.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For pseudorotation parameters, see: Rao et al. (1981[Rao, S. T., Westhof, E. & Sundaralingam, M. (1981). Acta Cryst. A37, 421-425.]).

[Scheme 1]

Experimental

Crystal data
  • C15H21N2O4

  • Mr = 293.34

  • Orthorhombic, P c a 21

  • a = 14.458 (7) Å

  • b = 10.187 (5) Å

  • c = 10.670 (5) Å

  • V = 1571.5 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.23 × 0.20 × 0.19 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.980, Tmax = 0.983

  • 10740 measured reflections

  • 1547 independent reflections

  • 1245 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.107

  • S = 1.05

  • 1547 reflections

  • 195 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.11 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C4–C9 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯O1i 0.93 2.45 3.248 (5) 143
C6—H6⋯O1ii 0.93 2.50 3.364 (5) 155
C14—H14BCg2iii 0.96 3.00 3.513 (5) 115
Symmetry codes: (i) [-x+2, -y+1, z+{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, y, z+{\script{1\over 2}}]; (iii) [-x+2, -y+2, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Nitronyl nitroxides, firstly synthesized more than 30 years ago, can be used for coordination with many metalcations, such as Mn2+, Cu2+ and Ni2+ leading to form some molecule based magentic materials (Masuda et al., 2009). They also can react with free radicals such as OH, H2O2, and O2 (Blasig et al., 2002) to protect cells from the attack of free radicals. So they have lots of biological properities as anticancer, antiradiation and antioxidation (Qin et al., 2009; Tanaka et al., 2007; Soule et al., 2007).

The molecular structure of the title compound is shown in Fig. 1. The nitronyl nitroxide ring and the phenyl rings are twisted with respect to each other making a dihedral angle of 50.07 (9)°. The puckering parameters of the nitronyl nitroxide ring are Q(2) = 0.143 (4)Å and φ = 236.4 (14)° (Cremer & Pople, 1975). The pseudorotation parameters (Rao et al., 1981) for the nitronyl nitroxide ring are P = 39.5 (9)° and τ(M) = 14.8 (2)° for the C1—N1 reference bond with the closest puckering descriptor being twisted on C1—C2.

The crystal structure is stabilized by non–classical intermolecular C—H···O and C—H···π hydrogen bonds (Table 1).

Related literature top

For the biological activity of nitronyl nitroxides, see: Soule et al. (2007); Blasig et al. (2002); Qin et al. (2009); Tanaka et al. (2007). For their coordination properties, see: Masuda et al. (2009). For puckering parameters, see: Cremer & Pople (1975). For pseudorotation parameters, see: Rao et al. (1981).

Experimental top

2,3–Dimethyl–2,3–bis(hydroxylamino) butane (1.48 g, 10.0 mmol) and 2–(2–hydroxyethoxy)benzaldehyde (1.66 g, 10 mmol) were dissolved in methanol (30.0 ml). The reaction was filtered after stirring for 24 h at room temperature. The resulting white powder was washed by cool methanol and suspended in the solution of dichloromethane (30.0 ml). Then the reaction mixture was added to an aqueous solution of NaIO4(30 ml) and stirred for 15 min in an ice bath to give a dark red solution. The aqueous phase was extracted with CH2Cl2 and the organic layer was combined and dried over Na2SO4. Then the solvent was removed to give a dark red residue which was purified by flash column chromatography with the elution of n–hexane / ethyl acetate (1:3) to yield 1.69 g (57%) of the title compound as a dark red powder. Single crystals of the title compound suitable for X–ray diffraction was recrystallized from hexane / dichloromethane (2:1).

Refinement top

In the structure all the H atoms were positioned geometrically and refined with using a riding model: C—Hmethyl = 0.96Å; C—Hmethylene = 0.97Å; C—Haryl = 0.93Å and O—H = 0.82Å with Uiso(H) = 1.2Ueq(C), Uiso(H) = 1.5Ueq(Cmethyl) and Uiso(H) = 1.5Ueq(O).

Structure description top

Nitronyl nitroxides, firstly synthesized more than 30 years ago, can be used for coordination with many metalcations, such as Mn2+, Cu2+ and Ni2+ leading to form some molecule based magentic materials (Masuda et al., 2009). They also can react with free radicals such as OH, H2O2, and O2 (Blasig et al., 2002) to protect cells from the attack of free radicals. So they have lots of biological properities as anticancer, antiradiation and antioxidation (Qin et al., 2009; Tanaka et al., 2007; Soule et al., 2007).

The molecular structure of the title compound is shown in Fig. 1. The nitronyl nitroxide ring and the phenyl rings are twisted with respect to each other making a dihedral angle of 50.07 (9)°. The puckering parameters of the nitronyl nitroxide ring are Q(2) = 0.143 (4)Å and φ = 236.4 (14)° (Cremer & Pople, 1975). The pseudorotation parameters (Rao et al., 1981) for the nitronyl nitroxide ring are P = 39.5 (9)° and τ(M) = 14.8 (2)° for the C1—N1 reference bond with the closest puckering descriptor being twisted on C1—C2.

The crystal structure is stabilized by non–classical intermolecular C—H···O and C—H···π hydrogen bonds (Table 1).

For the biological activity of nitronyl nitroxides, see: Soule et al. (2007); Blasig et al. (2002); Qin et al. (2009); Tanaka et al. (2007). For their coordination properties, see: Masuda et al. (2009). For puckering parameters, see: Cremer & Pople (1975). For pseudorotation parameters, see: Rao et al. (1981).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as a small spheres of arbitrary radius.
2-[2-(2-Hydroxyethoxy)phenyl]-4,4,5,5-tetramethyl-2-imidazoline-1-oxyl 3-oxide top
Crystal data top
C15H21N2O4F(000) = 628
Mr = 293.34Dx = 1.240 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 2696 reflections
a = 14.458 (7) Åθ = 2.8–23.3°
b = 10.187 (5) ŵ = 0.09 mm1
c = 10.670 (5) ÅT = 296 K
V = 1571.5 (13) Å3Block, red
Z = 40.23 × 0.20 × 0.19 mm
Data collection top
Bruker APEXII CCD
diffractometer
1547 independent reflections
Radiation source: fine–focus sealed tube1245 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
φ and ω scansθmax = 25.5°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1717
Tmin = 0.980, Tmax = 0.983k = 1112
10740 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0518P)2 + 0.287P]
where P = (Fo2 + 2Fc2)/3
1547 reflections(Δ/σ)max < 0.001
195 parametersΔρmax = 0.11 e Å3
1 restraintΔρmin = 0.14 e Å3
Crystal data top
C15H21N2O4V = 1571.5 (13) Å3
Mr = 293.34Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 14.458 (7) ŵ = 0.09 mm1
b = 10.187 (5) ÅT = 296 K
c = 10.670 (5) Å0.23 × 0.20 × 0.19 mm
Data collection top
Bruker APEXII CCD
diffractometer
1547 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
1245 reflections with I > 2σ(I)
Tmin = 0.980, Tmax = 0.983Rint = 0.038
10740 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0421 restraint
wR(F2) = 0.107H-atom parameters constrained
S = 1.05Δρmax = 0.11 e Å3
1547 reflectionsΔρmin = 0.14 e Å3
195 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.9017 (2)0.8466 (3)0.2894 (4)0.0611 (10)
C20.9954 (3)0.9121 (4)0.3217 (4)0.0651 (10)
C30.95885 (19)0.7595 (3)0.4802 (3)0.0464 (8)
C40.9624 (2)0.6861 (3)0.5974 (3)0.0461 (7)
C50.8832 (3)0.6738 (4)0.6705 (4)0.0636 (10)
H50.82740.70710.64100.076*
C60.8859 (3)0.6144 (4)0.7837 (5)0.0804 (14)
H60.83270.60740.83210.097*
C70.9683 (3)0.5645 (4)0.8264 (5)0.0793 (12)
H70.97050.52530.90500.095*
C81.0473 (3)0.5710 (3)0.7558 (4)0.0632 (10)
H81.10230.53560.78580.076*
C91.0443 (2)0.6313 (3)0.6386 (3)0.0469 (8)
C101.2080 (2)0.6121 (4)0.6047 (5)0.0749 (11)
H10A1.21860.51840.61300.090*
H10B1.21650.65290.68600.090*
C111.2719 (3)0.6687 (6)0.5129 (5)0.0959 (16)
H11A1.33460.64390.53480.115*
H11B1.25840.63220.43090.115*
C120.8185 (3)0.9359 (4)0.3095 (8)0.115 (2)
H12A0.76320.88390.31270.173*
H12B0.81430.99730.24150.173*
H12C0.82570.98280.38690.173*
C130.8961 (4)0.7819 (5)0.1625 (4)0.0905 (15)
H13A0.94690.72200.15290.136*
H13B0.89910.84770.09830.136*
H13C0.83890.73470.15570.136*
C140.9919 (5)1.0609 (4)0.3315 (6)0.134 (3)
H14A0.94621.08580.39240.201*
H14B0.97591.09750.25150.201*
H14C1.05131.09340.35700.201*
C151.0746 (3)0.8629 (9)0.2416 (5)0.139 (3)
H15A1.13230.88750.27940.209*
H15B1.07040.90090.15950.209*
H15C1.07130.76900.23520.209*
N10.89542 (17)0.7436 (3)0.3891 (3)0.0524 (7)
N21.01428 (18)0.8600 (2)0.4494 (3)0.0505 (7)
O10.83122 (15)0.6579 (2)0.3892 (3)0.0682 (7)
O21.07936 (16)0.9064 (2)0.5172 (2)0.0612 (6)
O31.11657 (14)0.6369 (2)0.5582 (2)0.0522 (6)
O41.2663 (2)0.8039 (4)0.5064 (5)0.1191 (15)
H41.21190.82650.50990.179*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.063 (2)0.0458 (19)0.074 (3)0.0010 (16)0.0135 (19)0.0018 (18)
C20.077 (3)0.064 (2)0.054 (2)0.0238 (19)0.009 (2)0.0130 (19)
C30.0374 (15)0.0421 (17)0.060 (2)0.0002 (13)0.0027 (15)0.0036 (14)
C40.0460 (16)0.0375 (16)0.0550 (19)0.0034 (13)0.0071 (15)0.0021 (15)
C50.056 (2)0.056 (2)0.079 (3)0.0072 (17)0.0181 (19)0.004 (2)
C60.088 (3)0.069 (3)0.085 (3)0.017 (2)0.042 (3)0.006 (2)
C70.109 (3)0.063 (2)0.066 (2)0.015 (2)0.021 (3)0.017 (2)
C80.076 (2)0.048 (2)0.065 (2)0.0004 (18)0.001 (2)0.0116 (18)
C90.0517 (18)0.0333 (16)0.056 (2)0.0035 (13)0.0059 (16)0.0031 (15)
C100.051 (2)0.081 (3)0.093 (3)0.0064 (19)0.005 (2)0.010 (3)
C110.052 (2)0.135 (5)0.101 (4)0.002 (3)0.002 (3)0.001 (3)
C120.091 (3)0.071 (3)0.184 (6)0.027 (2)0.010 (4)0.018 (4)
C130.118 (4)0.084 (3)0.070 (3)0.029 (3)0.022 (3)0.003 (2)
C140.210 (6)0.069 (3)0.123 (4)0.059 (4)0.085 (5)0.045 (3)
C150.074 (3)0.285 (9)0.059 (3)0.037 (4)0.007 (2)0.004 (4)
N10.0412 (14)0.0455 (15)0.0705 (18)0.0027 (12)0.0021 (14)0.0004 (14)
N20.0514 (15)0.0435 (14)0.0565 (16)0.0070 (12)0.0023 (14)0.0029 (13)
O10.0477 (12)0.0592 (15)0.0977 (19)0.0149 (11)0.0061 (14)0.0009 (14)
O20.0633 (14)0.0583 (14)0.0620 (14)0.0200 (12)0.0142 (13)0.0013 (12)
O30.0411 (11)0.0581 (13)0.0573 (15)0.0037 (10)0.0004 (10)0.0029 (11)
O40.0635 (18)0.130 (3)0.164 (4)0.026 (2)0.006 (2)0.056 (3)
Geometric parameters (Å, º) top
C1—N11.498 (5)C10—C111.464 (6)
C1—C131.508 (6)C10—H10A0.9700
C1—C121.522 (5)C10—H10B0.9700
C1—C21.550 (5)C11—O41.381 (6)
C2—N21.488 (5)C11—H11A0.9700
C2—C151.514 (7)C11—H11B0.9700
C2—C141.520 (6)C12—H12A0.9600
C3—N21.341 (4)C12—H12B0.9600
C3—N11.346 (4)C12—H12C0.9600
C3—C41.458 (5)C13—H13A0.9600
C4—C91.381 (4)C13—H13B0.9600
C4—C51.391 (5)C13—H13C0.9600
C5—C61.352 (6)C14—H14A0.9600
C5—H50.9300C14—H14B0.9600
C6—C71.372 (6)C14—H14C0.9600
C6—H60.9300C15—H15A0.9600
C7—C81.369 (6)C15—H15B0.9600
C7—H70.9300C15—H15C0.9600
C8—C91.394 (5)N1—O11.274 (3)
C8—H80.9300N2—O21.277 (3)
C9—O31.353 (4)O4—H40.8200
C10—O31.435 (4)
N1—C1—C13109.1 (3)O4—C11—C10112.9 (4)
N1—C1—C12105.7 (4)O4—C11—H11A109.0
C13—C1—C12110.2 (4)C10—C11—H11A109.0
N1—C1—C2101.3 (3)O4—C11—H11B109.0
C13—C1—C2115.8 (4)C10—C11—H11B109.0
C12—C1—C2113.7 (3)H11A—C11—H11B107.8
N2—C2—C15105.1 (4)C1—C12—H12A109.5
N2—C2—C14107.4 (3)C1—C12—H12B109.5
C15—C2—C14113.3 (5)H12A—C12—H12B109.5
N2—C2—C1102.1 (3)C1—C12—H12C109.5
C15—C2—C1113.2 (4)H12A—C12—H12C109.5
C14—C2—C1114.6 (4)H12B—C12—H12C109.5
N2—C3—N1108.8 (3)C1—C13—H13A109.5
N2—C3—C4125.5 (3)C1—C13—H13B109.5
N1—C3—C4125.6 (3)H13A—C13—H13B109.5
C9—C4—C5119.4 (3)C1—C13—H13C109.5
C9—C4—C3120.7 (3)H13A—C13—H13C109.5
C5—C4—C3119.9 (3)H13B—C13—H13C109.5
C6—C5—C4121.1 (4)C2—C14—H14A109.5
C6—C5—H5119.4C2—C14—H14B109.5
C4—C5—H5119.4H14A—C14—H14B109.5
C5—C6—C7119.2 (4)C2—C14—H14C109.5
C5—C6—H6120.4H14A—C14—H14C109.5
C7—C6—H6120.4H14B—C14—H14C109.5
C8—C7—C6121.5 (4)C2—C15—H15A109.5
C8—C7—H7119.2C2—C15—H15B109.5
C6—C7—H7119.2H15A—C15—H15B109.5
C7—C8—C9119.3 (4)C2—C15—H15C109.5
C7—C8—H8120.4H15A—C15—H15C109.5
C9—C8—H8120.4H15B—C15—H15C109.5
O3—C9—C4116.3 (3)O1—N1—C3125.3 (3)
O3—C9—C8124.3 (3)O1—N1—C1121.7 (3)
C4—C9—C8119.3 (3)C3—N1—C1112.8 (3)
O3—C10—C11106.3 (3)O2—N2—C3125.7 (3)
O3—C10—H10A110.5O2—N2—C2121.4 (3)
C11—C10—H10A110.5C3—N2—C2112.8 (3)
O3—C10—H10B110.5C9—O3—C10119.0 (3)
C11—C10—H10B110.5C11—O4—H4109.5
H10A—C10—H10B108.7
N1—C1—C2—N213.7 (3)O3—C10—C11—O466.3 (5)
C13—C1—C2—N2131.6 (3)N2—C3—N1—O1179.0 (3)
C12—C1—C2—N299.3 (4)C4—C3—N1—O13.2 (5)
N1—C1—C2—C1598.7 (4)N2—C3—N1—C14.4 (4)
C13—C1—C2—C1519.2 (5)C4—C3—N1—C1171.4 (3)
C12—C1—C2—C15148.3 (5)C13—C1—N1—O150.7 (4)
N1—C1—C2—C14129.4 (4)C12—C1—N1—O167.9 (4)
C13—C1—C2—C14112.7 (5)C2—C1—N1—O1173.3 (3)
C12—C1—C2—C1416.5 (6)C13—C1—N1—C3134.5 (3)
N2—C3—C4—C952.9 (4)C12—C1—N1—C3107.0 (4)
N1—C3—C4—C9132.0 (3)C2—C1—N1—C311.9 (4)
N2—C3—C4—C5125.4 (3)N1—C3—N2—O2176.5 (3)
N1—C3—C4—C549.7 (4)C4—C3—N2—O20.7 (5)
C9—C4—C5—C63.1 (5)N1—C3—N2—C25.9 (4)
C3—C4—C5—C6175.3 (3)C4—C3—N2—C2178.3 (3)
C4—C5—C6—C70.6 (6)C15—C2—N2—O272.3 (4)
C5—C6—C7—C81.4 (7)C14—C2—N2—O248.5 (5)
C6—C7—C8—C90.9 (6)C1—C2—N2—O2169.4 (3)
C5—C4—C9—O3174.4 (3)C15—C2—N2—C3105.4 (4)
C3—C4—C9—O37.2 (4)C14—C2—N2—C3133.8 (4)
C5—C4—C9—C83.6 (5)C1—C2—N2—C312.9 (4)
C3—C4—C9—C8174.8 (3)C4—C9—O3—C10164.8 (3)
C7—C8—C9—O3176.2 (3)C8—C9—O3—C1017.3 (5)
C7—C8—C9—C41.7 (5)C11—C10—O3—C9160.6 (3)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C4–C9 ring.
D—H···AD—HH···AD···AD—H···A
C8—H8···O1i0.932.453.248 (5)143
C6—H6···O1ii0.932.503.364 (5)155
C14—H14B···Cg2iii0.963.003.513 (5)115
Symmetry codes: (i) x+2, y+1, z+1/2; (ii) x+3/2, y, z+1/2; (iii) x+2, y+2, z1/2.

Experimental details

Crystal data
Chemical formulaC15H21N2O4
Mr293.34
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)296
a, b, c (Å)14.458 (7), 10.187 (5), 10.670 (5)
V3)1571.5 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.23 × 0.20 × 0.19
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.980, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
10740, 1547, 1245
Rint0.038
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.107, 1.05
No. of reflections1547
No. of parameters195
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.11, 0.14

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C4–C9 ring.
D—H···AD—HH···AD···AD—H···A
C8—H8···O1i0.932.453.248 (5)143
C6—H6···O1ii0.932.503.364 (5)155
C14—H14B···Cg2iii0.963.003.513 (5)115
Symmetry codes: (i) x+2, y+1, z+1/2; (ii) x+3/2, y, z+1/2; (iii) x+2, y+2, z1/2.
 

Acknowledgements

We thank the Natural Science Foundation of China (grants No. 30772773, 30472186) for financial support.

References

First citationBlasig, I. E., Mertsch, K. & Haseloff, R. F. (2002). Neuropharmacology, 43, 1006–1014.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationMasuda, Y., Kurats, M., Suzuki, S., Kozaki, M., Shiomi, D., Sato, K., Takui, T., Hosokoshi, Y., Miyazaki, Y., Inada, A. & Okada, K. (2009). J. Am. Chem. Soc. 131, 4670–4673.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationQin, X. Y., Ding, G. R. & Sun, X. L. (2009). J. Chem. Res. pp. 511–514.  Web of Science CrossRef CAS Google Scholar
First citationRao, S. T., Westhof, E. & Sundaralingam, M. (1981). Acta Cryst. A37, 421–425.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoule, B. P., Hyodo, F., Matsumoto, K., Simone, N. L., Cook, J. A., Krishna, M. C. & Mitchell, J. B. (2007). Free Radic. Biol. Med. 42, 1632–1650.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTanaka, K., Furuichi, K., Kozaki, M., Suzuki, S., Shiomi, D., Sato, K., Takui, T. & Okada, K. (2007). Polyhedron, 26, 2021–2026.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds