metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[2-(2H-benzotriazol-2-yl)-4-methyl-6-(phenyl­imino­methyl-κN)phenolato-κO]palladium(II)

aDepartment of Chemistry, Chung Yuan Christian University, Chung-Li 320, Taiwan
*Correspondence e-mail: btko@cycu.edu.tw

(Received 14 November 2011; accepted 20 November 2011; online 25 November 2011)

In the title complex, [Pd(C20H15N4O)2], the PdII atom is tetra­coordinated by two N atoms and two O atoms from two bidentate imine–benzotriazole phenolate ligands, forming a square-planar environment. The asymmetric unit contains two half-mol­ecules in both of which the PdII atom lies on a centre of symmetry. The average distances between the PdII atom and the coordinated O and N atoms are 1.9831 (12) and 2.012 (2) Å, respectively.

Related literature

For background information, see: Brayton et al. (2009[Brayton, D. F., Larkin, T. M., Vicic, D. A. & Navarro, O. (2009). J. Organomet. Chem. 576, 3008-3011.]); Li et al. (2010[Li, C.-H., Su, J.-K., Li, C.-Y. & Ko, B.-T. (2010). Acta Cryst. E66, o2825.]). For related structures, see: Tsai et al. (2009[Tsai, C.-Y., Lin, C.-H. & Ko, B.-T. (2009). Acta Cryst. E65, m619.]); Lin et al. (2010[Lin, M.-L., Tsai, C.-Y., Li, C.-Y., Huang, B.-H. & Ko, B.-T. (2010). Acta Cryst. E66, m1022.]).

[Scheme 1]

Experimental

Crystal data
  • [Pd(C20H15N4O)2]

  • Mr = 761.12

  • Triclinic, [P \overline 1]

  • a = 11.7509 (2) Å

  • b = 11.9846 (2) Å

  • c = 13.4898 (2) Å

  • α = 78.808 (1)°

  • β = 89.357 (1)°

  • γ = 63.535 (1)°

  • V = 1662.20 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.61 mm−1

  • T = 296 K

  • 0.20 × 0.12 × 0.08 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.888, Tmax = 0.953

  • 29546 measured reflections

  • 8252 independent reflections

  • 6488 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.071

  • S = 1.01

  • 8252 reflections

  • 465 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.49 e Å−3

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently, Brayton et al. (2009) reported the synthesis and characterization of the air- and moisture-stable bis(phenoxyketimine) Pd(II) complex, and it was also demonstrated effectively to catalyze Suzuki-Miyaura cross coupling reaction. Experimental results exhibited that it catalyzed the coupling of unactivated aryl bromides with boronic acids in good yields under mild temperature and short reaction time. Therefore, our group is interested in the synthesis and preparation of palladium complexes derived from N, O-bidentate ligands. For example, our group has successfully synthesized and structural characterized the Pd(II) complex with methylphenyl-diphenylazo-naphtolate ligands (Lin et al., 2010). Most recently, we also reported the synthesis and crystal structure of the imine group substituted benzotriazole-phenolate derivative (Li et al., 2010). In term of coordination chemistry, the imine-phenolate group can provide the better N, O-bidentate chelation to stabilize the transition metal or main group metal complexes. Therefore, we describe the synthesis and crystal structure of N, O-bidentate imine-benzotriazole phenolate ligand incorporated PdII complex, I, a potential catalyst for palladium-catalyzed Suzuki cross-coupling reactions (Scheme 1).

The solid structure of I reveals a monomeric PdII complex (Fig. 1) including two six-membered rings coordinated from two N, O-bidentate imine-benzotriazole phenolate ligands. We found that the asymmetric unit has two half molecules in which both Pd atoms lies on a centre of symmetry. The geometry around each Pd atom is tetra-coordinated with a normal square planar environment in which two nitrogen atoms and two oxygen atoms are coplanar. The two N atoms and two O atoms around Pd atom are trans to each other with average bond angle of O1–Pd1–N4 = 90.16 (6)°, O1–Pd1–N4i = 89.84 (6)°, O2–Pd2–N8 = 90.56 (6)°, and O2–Pd2–N8ii = 89.44 (6)°. Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x+2, -y+1, -z+1. The average distances between the Pd atom and O and N (imino nitrogen) are 1.9831 (12)Å and 2.0119 (15)Å, respectively. These bond distances and angles are similar to our earlier reports for the crystal structures of bis[4-methyl-2-(2H-benzotriazol-2-yl)phenolato]palladium(II) (Tsai et al., 2009) and bis{(1-[(E)-o-tolyldiazenyl)naphthalen-2-yloxy]palladium(II) (Lin et al., 2010).

Related literature top

For background information, see: Brayton et al. (2009); Li et al. (2010). For related structures, see: Tsai et al. (2009); Lin et al. (2010).

Experimental top

The title complex was synthesized by the following procedures (Fig. 2): (E)-2-(2H-benzotriazol-2-yl)-4-methyl-6-[(phenylimino)methyl] phenol (0.66 g, 2.0 mmol) and Pd(OAc)2 (0.22 g, 1.0 mmol) was stirred at 298 K in THF (25 ml) for 24 h. Volatile materials were removed under vacuum and the residue was washed twice from hexane solution to give red solids. The resulting solids were crystallized from CH2Cl2/Hexane (1:5) solution to yield red crystals.

Refinement top

The H atoms were placed in idealized positions and constrained to ride on their parent atoms, with C–H = 0.93Å with Uiso(H) = 1.2Ueq(C) for phenyl hydrogen; 0.96Å with Uiso(H) = 1.5Ueq(C) for CH3 groups.

Structure description top

Recently, Brayton et al. (2009) reported the synthesis and characterization of the air- and moisture-stable bis(phenoxyketimine) Pd(II) complex, and it was also demonstrated effectively to catalyze Suzuki-Miyaura cross coupling reaction. Experimental results exhibited that it catalyzed the coupling of unactivated aryl bromides with boronic acids in good yields under mild temperature and short reaction time. Therefore, our group is interested in the synthesis and preparation of palladium complexes derived from N, O-bidentate ligands. For example, our group has successfully synthesized and structural characterized the Pd(II) complex with methylphenyl-diphenylazo-naphtolate ligands (Lin et al., 2010). Most recently, we also reported the synthesis and crystal structure of the imine group substituted benzotriazole-phenolate derivative (Li et al., 2010). In term of coordination chemistry, the imine-phenolate group can provide the better N, O-bidentate chelation to stabilize the transition metal or main group metal complexes. Therefore, we describe the synthesis and crystal structure of N, O-bidentate imine-benzotriazole phenolate ligand incorporated PdII complex, I, a potential catalyst for palladium-catalyzed Suzuki cross-coupling reactions (Scheme 1).

The solid structure of I reveals a monomeric PdII complex (Fig. 1) including two six-membered rings coordinated from two N, O-bidentate imine-benzotriazole phenolate ligands. We found that the asymmetric unit has two half molecules in which both Pd atoms lies on a centre of symmetry. The geometry around each Pd atom is tetra-coordinated with a normal square planar environment in which two nitrogen atoms and two oxygen atoms are coplanar. The two N atoms and two O atoms around Pd atom are trans to each other with average bond angle of O1–Pd1–N4 = 90.16 (6)°, O1–Pd1–N4i = 89.84 (6)°, O2–Pd2–N8 = 90.56 (6)°, and O2–Pd2–N8ii = 89.44 (6)°. Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x+2, -y+1, -z+1. The average distances between the Pd atom and O and N (imino nitrogen) are 1.9831 (12)Å and 2.0119 (15)Å, respectively. These bond distances and angles are similar to our earlier reports for the crystal structures of bis[4-methyl-2-(2H-benzotriazol-2-yl)phenolato]palladium(II) (Tsai et al., 2009) and bis{(1-[(E)-o-tolyldiazenyl)naphthalen-2-yloxy]palladium(II) (Lin et al., 2010).

For background information, see: Brayton et al. (2009); Li et al. (2010). For related structures, see: Tsai et al. (2009); Lin et al. (2010).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT-Plus (Bruker, 2008); data reduction: SAINT-Plus (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of I with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius. Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x+2, -y+1, -z+1.
[Figure 2] Fig. 2. The synthetic procedure of the title compound I.
Bis[2-(2H-benzotriazol-2-yl)-4-methyl-6- (phenyliminomethyl-κN)phenolato-κO]palladium(II) top
Crystal data top
[Pd(C20H15N4O)2]Z = 2
Mr = 761.12F(000) = 776
Triclinic, P1Dx = 1.521 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 11.7509 (2) ÅCell parameters from 9762 reflections
b = 11.9846 (2) Åθ = 2.2–28.3°
c = 13.4898 (2) ŵ = 0.61 mm1
α = 78.808 (1)°T = 296 K
β = 89.357 (1)°Block, red
γ = 63.535 (1)°0.20 × 0.12 × 0.08 mm
V = 1662.20 (5) Å3
Data collection top
Bruker APEXII CCD
diffractometer
8252 independent reflections
Radiation source: fine-focus sealed tube6488 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 8.3333 pixels mm-1θmax = 28.3°, θmin = 1.5°
φ and ω scansh = 1515
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
k = 1515
Tmin = 0.888, Tmax = 0.953l = 1717
29546 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.071H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0283P)2 + 1.0203P]
where P = (Fo2 + 2Fc2)/3
8252 reflections(Δ/σ)max < 0.001
465 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.49 e Å3
Crystal data top
[Pd(C20H15N4O)2]γ = 63.535 (1)°
Mr = 761.12V = 1662.20 (5) Å3
Triclinic, P1Z = 2
a = 11.7509 (2) ÅMo Kα radiation
b = 11.9846 (2) ŵ = 0.61 mm1
c = 13.4898 (2) ÅT = 296 K
α = 78.808 (1)°0.20 × 0.12 × 0.08 mm
β = 89.357 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
8252 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
6488 reflections with I > 2σ(I)
Tmin = 0.888, Tmax = 0.953Rint = 0.023
29546 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.071H-atom parameters constrained
S = 1.01Δρmax = 0.36 e Å3
8252 reflectionsΔρmin = 0.49 e Å3
465 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.50000.50000.00000.02975 (5)
O10.43565 (12)0.64409 (13)0.07104 (10)0.0382 (3)
N10.47080 (16)0.81318 (17)0.17120 (13)0.0423 (4)
N20.37066 (15)0.80246 (15)0.20916 (12)0.0360 (3)
N30.35846 (18)0.8031 (2)0.30772 (13)0.0505 (5)
N40.34666 (14)0.59491 (15)0.10154 (11)0.0345 (3)
C10.31532 (16)0.71915 (17)0.07416 (13)0.0327 (4)
C20.27672 (17)0.79683 (17)0.14747 (14)0.0339 (4)
C30.15029 (18)0.86425 (18)0.16344 (15)0.0389 (4)
H3B0.12960.91070.21430.047*
C40.05239 (18)0.86491 (19)0.10559 (16)0.0411 (4)
C50.08597 (18)0.80335 (18)0.02622 (16)0.0404 (4)
H5A0.02190.80940.01750.049*
C60.21473 (17)0.73097 (17)0.00869 (14)0.0347 (4)
C70.5317 (2)0.8193 (2)0.25227 (16)0.0446 (5)
C80.6486 (2)0.8243 (3)0.2612 (2)0.0613 (6)
H8A0.69440.82860.20510.074*
C90.6915 (3)0.8228 (3)0.3538 (2)0.0715 (8)
H9A0.76900.82480.36180.086*
C100.6222 (3)0.8181 (3)0.4388 (2)0.0828 (9)
H10A0.65560.81670.50140.099*
C110.5082 (3)0.8155 (3)0.4324 (2)0.0774 (9)
H11A0.46210.81480.48890.093*
C120.4625 (2)0.8140 (2)0.33610 (17)0.0509 (5)
C130.0850 (2)0.9317 (2)0.1297 (2)0.0566 (6)
H13A0.14040.95960.06880.085*
H13B0.09771.00400.15730.085*
H13C0.10400.87370.17830.085*
C140.23845 (17)0.67832 (18)0.08024 (14)0.0366 (4)
H14A0.16910.70700.12740.044*
C150.35559 (17)0.56714 (19)0.20098 (14)0.0380 (4)
C160.2814 (2)0.5200 (2)0.23682 (17)0.0525 (5)
H16A0.22270.50510.19660.063*
C170.2939 (3)0.4942 (2)0.33368 (18)0.0623 (7)
H17A0.24430.46120.35790.075*
C180.3783 (3)0.5171 (3)0.39271 (18)0.0696 (8)
H18A0.38640.49970.45740.084*
C190.4516 (3)0.5657 (4)0.3574 (2)0.0831 (10)
H19A0.50880.58210.39850.100*
C200.4411 (2)0.5905 (3)0.26088 (18)0.0650 (7)
H20A0.49150.62280.23670.078*
Pd21.00000.50000.50000.02949 (5)
O21.05982 (13)0.35405 (13)0.43133 (10)0.0372 (3)
N51.24404 (16)0.17309 (17)0.33049 (13)0.0438 (4)
N61.13063 (15)0.19195 (15)0.29581 (12)0.0367 (3)
N71.11407 (19)0.19435 (19)0.19740 (13)0.0495 (4)
N80.92774 (14)0.41267 (15)0.60629 (11)0.0342 (3)
C211.00565 (17)0.27973 (17)0.43401 (13)0.0332 (4)
C221.03292 (18)0.20029 (18)0.36207 (14)0.0353 (4)
C230.96764 (19)0.13146 (18)0.35389 (15)0.0404 (4)
H23A0.98570.08470.30320.049*
C240.87544 (19)0.12903 (19)0.41863 (16)0.0418 (4)
C250.85671 (19)0.19365 (18)0.49572 (16)0.0398 (4)
H25A0.80110.18770.54370.048*
C260.91890 (17)0.26881 (17)0.50476 (14)0.0343 (4)
C271.3086 (2)0.1642 (2)0.24674 (16)0.0459 (5)
C281.4334 (2)0.1497 (3)0.2344 (2)0.0654 (7)
H28A1.48730.13990.28890.079*
C291.4707 (3)0.1509 (3)0.1390 (3)0.0804 (9)
H29A1.55190.14310.12760.096*
C301.3908 (4)0.1634 (3)0.0565 (2)0.0877 (10)
H30A1.42110.16320.00750.105*
C311.2719 (3)0.1756 (3)0.0668 (2)0.0803 (9)
H31A1.22040.18290.01170.096*
C321.2287 (2)0.1768 (2)0.16516 (17)0.0518 (5)
C330.8029 (2)0.0552 (2)0.4060 (2)0.0564 (6)
H33A0.76980.03610.46900.085*
H33B0.85910.02290.38640.085*
H33C0.73360.10530.35450.085*
C340.89495 (17)0.32790 (18)0.59048 (14)0.0358 (4)
H34A0.85090.30230.64020.043*
C350.90674 (19)0.44738 (18)0.70374 (14)0.0370 (4)
C360.7882 (2)0.4909 (2)0.73935 (16)0.0507 (5)
H36A0.71880.50050.69980.061*
C370.7719 (3)0.5207 (2)0.83463 (18)0.0600 (6)
H37A0.69150.55070.85880.072*
C380.8734 (3)0.5058 (3)0.89235 (18)0.0696 (8)
H38A0.86250.52560.95620.084*
C390.9919 (3)0.4619 (4)0.8568 (2)0.0814 (10)
H39A1.06130.45110.89710.098*
C401.0090 (3)0.4336 (3)0.76148 (18)0.0616 (7)
H40A1.08920.40540.73690.074*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.02420 (9)0.03341 (10)0.03039 (10)0.00941 (7)0.00205 (7)0.01305 (7)
O10.0277 (6)0.0416 (7)0.0447 (7)0.0098 (5)0.0018 (5)0.0226 (6)
N10.0431 (9)0.0512 (10)0.0439 (9)0.0278 (8)0.0128 (7)0.0188 (8)
N20.0375 (8)0.0429 (9)0.0327 (8)0.0194 (7)0.0100 (6)0.0167 (7)
N30.0476 (10)0.0707 (13)0.0347 (9)0.0239 (9)0.0111 (7)0.0223 (9)
N40.0307 (7)0.0398 (8)0.0330 (8)0.0137 (6)0.0016 (6)0.0130 (6)
C10.0310 (8)0.0316 (9)0.0351 (9)0.0128 (7)0.0052 (7)0.0101 (7)
C20.0341 (9)0.0340 (9)0.0351 (9)0.0155 (7)0.0057 (7)0.0108 (7)
C30.0387 (10)0.0370 (10)0.0416 (10)0.0148 (8)0.0135 (8)0.0161 (8)
C40.0328 (9)0.0371 (10)0.0505 (11)0.0118 (8)0.0113 (8)0.0131 (9)
C50.0303 (9)0.0388 (10)0.0501 (11)0.0125 (8)0.0027 (8)0.0128 (9)
C60.0302 (8)0.0325 (9)0.0391 (10)0.0106 (7)0.0037 (7)0.0115 (7)
C70.0454 (11)0.0463 (11)0.0491 (12)0.0227 (9)0.0052 (9)0.0207 (9)
C80.0548 (14)0.0682 (16)0.0763 (17)0.0369 (13)0.0044 (12)0.0265 (14)
C90.0623 (16)0.0740 (18)0.092 (2)0.0357 (14)0.0092 (15)0.0337 (16)
C100.078 (2)0.100 (2)0.0728 (19)0.0324 (18)0.0202 (16)0.0410 (17)
C110.0748 (18)0.110 (2)0.0485 (14)0.0353 (17)0.0029 (13)0.0367 (15)
C120.0480 (12)0.0611 (14)0.0446 (12)0.0199 (11)0.0031 (9)0.0252 (10)
C130.0354 (11)0.0584 (14)0.0748 (16)0.0152 (10)0.0181 (10)0.0275 (12)
C140.0309 (9)0.0383 (10)0.0386 (10)0.0127 (8)0.0017 (7)0.0109 (8)
C150.0323 (9)0.0419 (10)0.0341 (9)0.0099 (8)0.0012 (7)0.0123 (8)
C160.0625 (14)0.0633 (14)0.0415 (11)0.0351 (12)0.0007 (10)0.0159 (10)
C170.0790 (17)0.0594 (15)0.0460 (13)0.0261 (13)0.0129 (12)0.0180 (11)
C180.0638 (16)0.0858 (19)0.0366 (12)0.0092 (14)0.0002 (11)0.0247 (12)
C190.0623 (17)0.144 (3)0.0438 (14)0.0443 (19)0.0163 (12)0.0287 (17)
C200.0539 (14)0.108 (2)0.0458 (13)0.0435 (15)0.0106 (10)0.0262 (14)
Pd20.03257 (10)0.03457 (10)0.02779 (9)0.01861 (8)0.00840 (7)0.01249 (7)
O20.0436 (7)0.0418 (7)0.0391 (7)0.0264 (6)0.0165 (6)0.0200 (6)
N50.0385 (9)0.0511 (10)0.0433 (9)0.0185 (8)0.0066 (7)0.0179 (8)
N60.0413 (8)0.0410 (9)0.0319 (8)0.0191 (7)0.0063 (6)0.0161 (7)
N70.0619 (11)0.0661 (12)0.0326 (9)0.0350 (10)0.0095 (8)0.0218 (8)
N80.0377 (8)0.0402 (8)0.0291 (7)0.0200 (7)0.0082 (6)0.0117 (6)
C210.0342 (9)0.0323 (9)0.0332 (9)0.0141 (7)0.0037 (7)0.0093 (7)
C220.0366 (9)0.0359 (9)0.0346 (9)0.0154 (8)0.0058 (7)0.0126 (7)
C230.0451 (11)0.0366 (10)0.0437 (11)0.0185 (8)0.0025 (8)0.0175 (8)
C240.0419 (10)0.0364 (10)0.0516 (12)0.0198 (8)0.0037 (9)0.0135 (9)
C250.0392 (10)0.0379 (10)0.0467 (11)0.0201 (8)0.0092 (8)0.0123 (8)
C260.0378 (9)0.0329 (9)0.0353 (9)0.0174 (8)0.0058 (7)0.0103 (7)
C270.0474 (11)0.0448 (11)0.0479 (12)0.0198 (9)0.0163 (9)0.0185 (9)
C280.0496 (13)0.0705 (17)0.0774 (18)0.0254 (12)0.0197 (12)0.0234 (14)
C290.0671 (18)0.081 (2)0.098 (2)0.0346 (16)0.0458 (17)0.0293 (18)
C300.103 (3)0.106 (3)0.0674 (19)0.053 (2)0.0529 (19)0.0356 (18)
C310.102 (2)0.110 (3)0.0480 (14)0.059 (2)0.0322 (15)0.0344 (16)
C320.0650 (14)0.0593 (14)0.0410 (11)0.0323 (12)0.0183 (10)0.0225 (10)
C330.0574 (14)0.0551 (14)0.0738 (16)0.0356 (12)0.0101 (12)0.0261 (12)
C340.0372 (9)0.0390 (10)0.0344 (9)0.0196 (8)0.0089 (7)0.0091 (8)
C350.0486 (11)0.0412 (10)0.0296 (9)0.0265 (9)0.0082 (8)0.0108 (8)
C360.0508 (12)0.0641 (14)0.0388 (11)0.0247 (11)0.0115 (9)0.0180 (10)
C370.0767 (17)0.0624 (15)0.0436 (12)0.0306 (13)0.0264 (12)0.0204 (11)
C380.119 (2)0.0822 (19)0.0357 (12)0.0657 (19)0.0193 (14)0.0243 (12)
C390.104 (2)0.133 (3)0.0436 (14)0.082 (2)0.0028 (14)0.0279 (16)
C400.0638 (15)0.098 (2)0.0430 (12)0.0509 (15)0.0085 (11)0.0234 (13)
Geometric parameters (Å, º) top
Pd1—O1i1.9835 (12)Pd2—O21.9826 (12)
Pd1—O11.9835 (12)Pd2—O2ii1.9826 (12)
Pd1—N42.0102 (15)Pd2—N8ii2.0136 (15)
Pd1—N4i2.0102 (15)Pd2—N82.0136 (15)
O1—C11.300 (2)O2—C211.301 (2)
N1—N21.326 (2)N5—N61.323 (2)
N1—C71.345 (3)N5—C271.348 (3)
N2—N31.337 (2)N6—N71.337 (2)
N2—C21.423 (2)N6—C221.427 (2)
N3—C121.352 (3)N7—C321.348 (3)
N4—C141.292 (2)N8—C341.289 (2)
N4—C151.435 (2)N8—C351.441 (2)
C1—C21.422 (2)C21—C261.420 (2)
C1—C61.422 (3)C21—C221.425 (2)
C2—C31.377 (3)C22—C231.372 (3)
C3—C41.394 (3)C23—C241.391 (3)
C3—H3B0.9300C23—H23A0.9300
C4—C51.373 (3)C24—C251.373 (3)
C4—C131.513 (3)C24—C331.508 (3)
C5—C61.414 (2)C25—C261.411 (3)
C5—H5A0.9300C25—H25A0.9300
C6—C141.430 (3)C26—C341.432 (3)
C7—C121.394 (3)C27—C321.395 (3)
C7—C81.409 (3)C27—C281.410 (3)
C8—C91.346 (4)C28—C291.355 (4)
C8—H8A0.9300C28—H28A0.9300
C9—C101.405 (4)C29—C301.405 (5)
C9—H9A0.9300C29—H29A0.9300
C10—C111.357 (4)C30—C311.347 (4)
C10—H10A0.9300C30—H30A0.9300
C11—C121.419 (3)C31—C321.416 (3)
C11—H11A0.9300C31—H31A0.9300
C13—H13A0.9600C33—H33A0.9600
C13—H13B0.9600C33—H33B0.9600
C13—H13C0.9600C33—H33C0.9600
C14—H14A0.9300C34—H34A0.9300
C15—C161.367 (3)C35—C401.369 (3)
C15—C201.373 (3)C35—C361.370 (3)
C16—C171.391 (3)C36—C371.388 (3)
C16—H16A0.9300C36—H36A0.9300
C17—C181.353 (4)C37—C381.356 (4)
C17—H17A0.9300C37—H37A0.9300
C18—C191.368 (4)C38—C391.369 (4)
C18—H18A0.9300C38—H38A0.9300
C19—C201.384 (4)C39—C401.383 (3)
C19—H19A0.9300C39—H39A0.9300
C20—H20A0.9300C40—H40A0.9300
O1i—Pd1—O1179.999 (1)O2—Pd2—O2ii179.999 (1)
O1i—Pd1—N489.84 (6)O2—Pd2—N8ii89.44 (6)
O1—Pd1—N490.16 (6)O2ii—Pd2—N8ii90.56 (6)
O1i—Pd1—N4i90.16 (6)O2—Pd2—N890.56 (6)
O1—Pd1—N4i89.84 (6)O2ii—Pd2—N889.44 (6)
N4—Pd1—N4i180.0N8ii—Pd2—N8179.998 (1)
C1—O1—Pd1123.88 (12)C21—O2—Pd2124.18 (11)
N2—N1—C7103.01 (16)N6—N5—C27102.73 (17)
N1—N2—N3116.89 (16)N5—N6—N7117.27 (16)
N1—N2—C2121.96 (15)N5—N6—C22121.35 (15)
N3—N2—C2121.08 (16)N7—N6—C22121.24 (16)
N2—N3—C12102.22 (17)N6—N7—C32102.09 (17)
C14—N4—C15118.18 (15)C34—N8—C35117.21 (15)
C14—N4—Pd1122.59 (13)C34—N8—Pd2122.79 (12)
C15—N4—Pd1119.21 (11)C35—N8—Pd2119.96 (12)
O1—C1—C2119.72 (16)O2—C21—C26125.35 (16)
O1—C1—C6124.93 (16)O2—C21—C22119.75 (16)
C2—C1—C6115.34 (15)C26—C21—C22114.90 (16)
C3—C2—C1121.93 (17)C23—C22—C21122.07 (17)
C3—C2—N2118.38 (16)C23—C22—N6118.55 (17)
C1—C2—N2119.65 (16)C21—C22—N6119.37 (16)
C2—C3—C4121.97 (18)C22—C23—C24122.36 (18)
C2—C3—H3B119.0C22—C23—H23A118.8
C4—C3—H3B119.0C24—C23—H23A118.8
C5—C4—C3117.25 (17)C25—C24—C23116.89 (18)
C5—C4—C13121.85 (19)C25—C24—C33121.98 (19)
C3—C4—C13120.90 (19)C23—C24—C33121.10 (19)
C4—C5—C6122.23 (18)C24—C25—C26122.31 (18)
C4—C5—H5A118.9C24—C25—H25A118.8
C6—C5—H5A118.9C26—C25—H25A118.8
C5—C6—C1120.47 (17)C25—C26—C21120.87 (17)
C5—C6—C14117.37 (17)C25—C26—C34117.04 (17)
C1—C6—C14122.04 (16)C21—C26—C34122.03 (17)
N1—C7—C12108.81 (18)N5—C27—C32108.70 (19)
N1—C7—C8129.9 (2)N5—C27—C28129.6 (2)
C12—C7—C8121.2 (2)C32—C27—C28121.7 (2)
C9—C8—C7117.5 (3)C29—C28—C27116.4 (3)
C9—C8—H8A121.2C29—C28—H28A121.8
C7—C8—H8A121.2C27—C28—H28A121.8
C8—C9—C10121.7 (3)C28—C29—C30122.2 (3)
C8—C9—H9A119.1C28—C29—H29A118.9
C10—C9—H9A119.1C30—C29—H29A118.9
C11—C10—C9122.2 (2)C31—C30—C29122.4 (3)
C11—C10—H10A118.9C31—C30—H30A118.8
C9—C10—H10A118.9C29—C30—H30A118.8
C10—C11—C12117.1 (3)C30—C31—C32117.2 (3)
C10—C11—H11A121.4C30—C31—H31A121.4
C12—C11—H11A121.4C32—C31—H31A121.4
N3—C12—C7109.07 (18)N7—C32—C27109.20 (18)
N3—C12—C11130.8 (2)N7—C32—C31130.6 (2)
C7—C12—C11120.1 (2)C27—C32—C31120.2 (2)
C4—C13—H13A109.5C24—C33—H33A109.5
C4—C13—H13B109.5C24—C33—H33B109.5
H13A—C13—H13B109.5H33A—C33—H33B109.5
C4—C13—H13C109.5C24—C33—H33C109.5
H13A—C13—H13C109.5H33A—C33—H33C109.5
H13B—C13—H13C109.5H33B—C33—H33C109.5
N4—C14—C6126.47 (17)N8—C34—C26127.10 (17)
N4—C14—H14A116.8N8—C34—H34A116.5
C6—C14—H14A116.8C26—C34—H34A116.5
C16—C15—C20120.1 (2)C40—C35—C36120.32 (19)
C16—C15—N4121.97 (19)C40—C35—N8118.34 (18)
C20—C15—N4117.94 (19)C36—C35—N8121.34 (18)
C15—C16—C17119.8 (2)C35—C36—C37119.8 (2)
C15—C16—H16A120.1C35—C36—H36A120.1
C17—C16—H16A120.1C37—C36—H36A120.1
C18—C17—C16120.2 (2)C38—C37—C36119.9 (2)
C18—C17—H17A119.9C38—C37—H37A120.0
C16—C17—H17A119.9C36—C37—H37A120.0
C17—C18—C19120.2 (2)C37—C38—C39120.2 (2)
C17—C18—H18A119.9C37—C38—H38A119.9
C19—C18—H18A119.9C39—C38—H38A119.9
C18—C19—C20120.3 (3)C38—C39—C40120.5 (3)
C18—C19—H19A119.9C38—C39—H39A119.8
C20—C19—H19A119.9C40—C39—H39A119.8
C15—C20—C19119.5 (3)C35—C40—C39119.3 (2)
C15—C20—H20A120.2C35—C40—H40A120.4
C19—C20—H20A120.2C39—C40—H40A120.4
N4—Pd1—O1—C130.49 (15)N8ii—Pd2—O2—C21151.66 (15)
N4i—Pd1—O1—C1149.51 (15)N8—Pd2—O2—C2128.34 (15)
C7—N1—N2—N31.1 (2)C27—N5—N6—N71.1 (2)
C7—N1—N2—C2178.06 (17)C27—N5—N6—C22176.73 (17)
N1—N2—N3—C120.7 (2)N5—N6—N7—C320.9 (2)
C2—N2—N3—C12177.72 (18)C22—N6—N7—C32176.50 (18)
O1i—Pd1—N4—C14152.65 (16)O2—Pd2—N8—C3424.36 (15)
O1—Pd1—N4—C1427.35 (16)O2ii—Pd2—N8—C34155.64 (15)
O1i—Pd1—N4—C1525.56 (14)O2—Pd2—N8—C35157.78 (14)
O1—Pd1—N4—C15154.44 (14)O2ii—Pd2—N8—C3522.22 (14)
Pd1—O1—C1—C2163.30 (13)Pd2—O2—C21—C2617.1 (3)
Pd1—O1—C1—C616.5 (3)Pd2—O2—C21—C22163.31 (13)
O1—C1—C2—C3170.75 (18)O2—C21—C22—C23172.27 (18)
C6—C1—C2—C39.1 (3)C26—C21—C22—C238.1 (3)
O1—C1—C2—N27.0 (3)O2—C21—C22—N67.4 (3)
C6—C1—C2—N2173.20 (16)C26—C21—C22—N6172.23 (16)
N1—N2—C2—C3138.43 (19)N5—N6—C22—C23132.8 (2)
N3—N2—C2—C338.4 (3)N7—N6—C22—C2342.7 (3)
N1—N2—C2—C143.8 (3)N5—N6—C22—C2147.5 (3)
N3—N2—C2—C1139.39 (19)N7—N6—C22—C21136.99 (19)
C1—C2—C3—C43.0 (3)C21—C22—C23—C243.6 (3)
N2—C2—C3—C4179.28 (18)N6—C22—C23—C24176.75 (18)
C2—C3—C4—C54.9 (3)C22—C23—C24—C253.4 (3)
C2—C3—C4—C13175.4 (2)C22—C23—C24—C33178.4 (2)
C3—C4—C5—C66.2 (3)C23—C24—C25—C265.5 (3)
C13—C4—C5—C6174.1 (2)C33—C24—C25—C26176.4 (2)
C4—C5—C6—C10.2 (3)C24—C25—C26—C210.7 (3)
C4—C5—C6—C14175.77 (19)C24—C25—C26—C34177.85 (19)
O1—C1—C6—C5172.14 (18)O2—C21—C26—C25174.38 (18)
C2—C1—C6—C57.7 (3)C22—C21—C26—C256.0 (3)
O1—C1—C6—C1412.1 (3)O2—C21—C26—C348.6 (3)
C2—C1—C6—C14168.12 (17)C22—C21—C26—C34171.07 (17)
N2—N1—C7—C121.0 (2)N6—N5—C27—C320.8 (2)
N2—N1—C7—C8176.1 (2)N6—N5—C27—C28176.8 (2)
N1—C7—C8—C9176.3 (2)N5—C27—C28—C29176.3 (3)
C12—C7—C8—C90.5 (4)C32—C27—C28—C291.1 (4)
C7—C8—C9—C100.9 (4)C27—C28—C29—C301.2 (5)
C8—C9—C10—C110.3 (5)C28—C29—C30—C310.3 (6)
C9—C10—C11—C121.8 (5)C29—C30—C31—C320.7 (5)
N2—N3—C12—C70.0 (2)N6—N7—C32—C270.2 (2)
N2—N3—C12—C11177.4 (3)N6—N7—C32—C31176.7 (3)
N1—C7—C12—N30.6 (3)N5—C27—C32—N70.4 (3)
C8—C7—C12—N3176.8 (2)C28—C27—C32—N7177.5 (2)
N1—C7—C12—C11178.4 (2)N5—C27—C32—C31177.7 (2)
C8—C7—C12—C111.0 (4)C28—C27—C32—C310.2 (4)
C10—C11—C12—N3175.1 (3)C30—C31—C32—N7175.9 (3)
C10—C11—C12—C72.1 (4)C30—C31—C32—C270.7 (4)
C15—N4—C14—C6171.22 (19)C35—N8—C34—C26172.76 (18)
Pd1—N4—C14—C610.6 (3)Pd2—N8—C34—C269.3 (3)
C5—C6—C14—N4168.91 (19)C25—C26—C34—N8170.17 (19)
C1—C6—C14—N415.2 (3)C21—C26—C34—N812.7 (3)
C14—N4—C15—C1660.2 (3)C34—N8—C35—C40122.8 (2)
Pd1—N4—C15—C16118.12 (19)Pd2—N8—C35—C4059.2 (2)
C14—N4—C15—C20119.2 (2)C34—N8—C35—C3656.0 (3)
Pd1—N4—C15—C2062.5 (2)Pd2—N8—C35—C36121.99 (18)
C20—C15—C16—C170.8 (4)C40—C35—C36—C370.3 (4)
N4—C15—C16—C17179.8 (2)N8—C35—C36—C37178.5 (2)
C15—C16—C17—C180.7 (4)C35—C36—C37—C380.4 (4)
C16—C17—C18—C190.0 (4)C36—C37—C38—C390.2 (4)
C17—C18—C19—C200.7 (5)C37—C38—C39—C400.7 (5)
C16—C15—C20—C190.2 (4)C36—C35—C40—C391.1 (4)
N4—C15—C20—C19179.6 (3)N8—C35—C40—C39177.7 (3)
C18—C19—C20—C150.6 (5)C38—C39—C40—C351.3 (5)
Symmetry codes: (i) x+1, y+1, z; (ii) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Pd(C20H15N4O)2]
Mr761.12
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)11.7509 (2), 11.9846 (2), 13.4898 (2)
α, β, γ (°)78.808 (1), 89.357 (1), 63.535 (1)
V3)1662.20 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.61
Crystal size (mm)0.20 × 0.12 × 0.08
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.888, 0.953
No. of measured, independent and
observed [I > 2σ(I)] reflections
29546, 8252, 6488
Rint0.023
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.071, 1.01
No. of reflections8252
No. of parameters465
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.49

Computer programs: APEX2 (Bruker, 2008), SAINT-Plus (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

We gratefully acknowledge financial support from the National Science Council, Taiwan (NSC99-2113-M-033-007-MY2).

References

First citationBrayton, D. F., Larkin, T. M., Vicic, D. A. & Navarro, O. (2009). J. Organomet. Chem. 576, 3008-3011.  Web of Science CrossRef Google Scholar
First citationBruker (2008). APEX2, SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLi, C.-H., Su, J.-K., Li, C.-Y. & Ko, B.-T. (2010). Acta Cryst. E66, o2825.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLin, M.-L., Tsai, C.-Y., Li, C.-Y., Huang, B.-H. & Ko, B.-T. (2010). Acta Cryst. E66, m1022.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTsai, C.-Y., Lin, C.-H. & Ko, B.-T. (2009). Acta Cryst. E65, m619.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds