metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­aqua­bis­­(4,4′-bi­pyridine-κN)bis­­(2,4,5-tri­fluoro-3-hy­dr­oxy­benzoato-κO1)manganese(II)

aResearch Center for Analysis and Measurement, Kunming University of Science and Technology, 650093 Kunming, Yunnan, People's Republic of China
*Correspondence e-mail: minchungang@163.com

(Received 1 September 2011; accepted 21 November 2011; online 25 November 2011)

In the title compound, [Mn(C7H2F3O3)2(C10H8N2)2(H2O)2], the MnII ion, situated on a centre of inversion, has a distorted octa­hedral coordination geometry and is coordinated by two N atoms from two 4,4′-bipyridine ligands, two O atoms from two 2,4,5-trifluoro-3-hy­droxy­benzoate ligands and two water mol­ecules. Inter­molecular O—H⋯N hydrogen bonds link the mol­ecules into a chain along the a axis. Inter­actions between neighboring chains occur through O—H⋯O hydrogen bonds, which link the chains into a two-dimensional supra­molecular network parallel to the ac plane. In addition, O—H⋯O hydrogen bonds between the water mol­ecules and carboxyl­ate groups also exist in the the crystal structure.

Related literature

For general background to the design and synthesis of novel metal-organic coordination polymers based on fluoro­benzoic acid, see: Gielen et al. (1992[Gielen, M., Boualam, M., Meriem, A., Mahieu, B., Biesemans, M. & Willem, R. (1992). Heteroat. Chem. 3, 449-452.]); Ma et al. (2006[Ma, C. L., Sun, J. S. & Zhang, R. F. (2006). J. Organomet. Chem. 691, 5885-5898.]); Shi et al. (2011[Shi, Z. Q., Ji, N. N., Zhao, R. G., Li, J. K. & Li, Z. F. (2011). Struct. Chem. 22, 225-233.]). For a related structure, see: Zhu (2009[Zhu, X. (2009). Acta Cryst. E65, o1886.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C7H2F3O3)2(C10H8N2)2(H2O)2]

  • Mr = 785.51

  • Triclinic, [P \overline 1]

  • a = 7.0706 (6) Å

  • b = 8.2939 (7) Å

  • c = 13.9856 (12) Å

  • α = 79.200 (1)°

  • β = 88.338 (1)°

  • γ = 79.830 (2)°

  • V = 792.96 (12) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.51 mm−1

  • T = 298 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.861, Tmax = 0.904

  • 4185 measured reflections

  • 2792 independent reflections

  • 2101 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.084

  • S = 1.01

  • 2792 reflections

  • 241 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H2W⋯O2 0.85 2.04 2.839 (2) 155
O1W—H1W⋯O2i 0.84 1.97 2.773 (2) 159
O3—H3⋯N2ii 0.82 1.89 2.641 (3) 152
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x, -y+2, -z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In recent years, the design and synthesis of novel metal-organic coordination polymers based on fluorobenzoic acids have attracted much attention (Gielen et al., 1992; Ma et al., 2006; Zhu, 2009; Shi et al., 2011). We report herein the crystal structure (Fig. 1) of the title compound (I) based on 2,4,5-trifluoro-3-hydroxy-benzoic and 4,4'-bipyridine. In the crystal packing, the adjacent mononuclear units are linked into a linear chain along a axis via O—H···N hydrogen bonds (Fig. 2). Furthermore, additional interactions within neighboring chains occur through O—H···O hydrogen bonds, thus a two-dimensional supramolecular network parallel to ac plane is formed, as shown in Fig. 3. In addition, intramolecular O—H···O hydrogen bonds (O1W—H2W···O2) between the water molecules and carboxylate groups also exist in the the crystal structure.

Related literature top

For general background to the design and synthesis of novel metal-organic coordination polymers based on fluorobenzoic acid, see: Gielen et al. (1992); Ma et al. (2006); Shi et al. (2011). For a related structure, see: Zhu (2009).

Experimental top

A mixture of Mn(CH3COO)2.4H2O (0.1 mmol), 2,4,5-trifluoro-3-hydroxy-benzoic acid (0.2 mmol), Et3N (0.1 ml), EtOH (3 ml) and H2O (2 ml) was sealed in a 10 ml Teflon-lined stainless-steel reactor, heated to 393 K for 72 h, and then slowly cooled to room temperature. Light yellow block crystals suitable for X-ray diffraction analysis were collected by filtration.

Refinement top

H atoms attached to C atoms were placed in calculated positions (C—H = 0.93 Å) and refined as riding atoms and with Uiso(H) = 1.2 Ueq(C),respectively. The hydroxyl and water H atoms were located in a difference map and refined with O—H bond length from 0.82 to 0.85 Å and Uiso(H) = 1.5 Ueq(O).

Structure description top

In recent years, the design and synthesis of novel metal-organic coordination polymers based on fluorobenzoic acids have attracted much attention (Gielen et al., 1992; Ma et al., 2006; Zhu, 2009; Shi et al., 2011). We report herein the crystal structure (Fig. 1) of the title compound (I) based on 2,4,5-trifluoro-3-hydroxy-benzoic and 4,4'-bipyridine. In the crystal packing, the adjacent mononuclear units are linked into a linear chain along a axis via O—H···N hydrogen bonds (Fig. 2). Furthermore, additional interactions within neighboring chains occur through O—H···O hydrogen bonds, thus a two-dimensional supramolecular network parallel to ac plane is formed, as shown in Fig. 3. In addition, intramolecular O—H···O hydrogen bonds (O1W—H2W···O2) between the water molecules and carboxylate groups also exist in the the crystal structure.

For general background to the design and synthesis of novel metal-organic coordination polymers based on fluorobenzoic acid, see: Gielen et al. (1992); Ma et al. (2006); Shi et al. (2011). For a related structure, see: Zhu (2009).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with displacement ellipsoids drawn at the 30% probability level [symmetry codes: (A) -x, 1 - y, 1 - z].
[Figure 2] Fig. 2. The linear chain of (I). All H atoms have been omitted for clarity
[Figure 3] Fig. 3. The two-dimensional of (I). All H atoms have been omitted for clarity
Diaquabis(4,4'-bipyridine-κN)bis(2,4,5-trifluoro-3- hydroxybenzoato-κO1)manganese(II) top
Crystal data top
[Mn(C7H2F3O3)2(C10H8N2)2(H2O)2]Z = 1
Mr = 785.51F(000) = 399
Triclinic, P1Dx = 1.645 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.0706 (6) ÅCell parameters from 1483 reflections
b = 8.2939 (7) Åθ = 2.9–26.6°
c = 13.9856 (12) ŵ = 0.51 mm1
α = 79.200 (1)°T = 298 K
β = 88.338 (1)°Block, light yellow
γ = 79.830 (2)°0.30 × 0.25 × 0.20 mm
V = 792.96 (12) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2792 independent reflections
Radiation source: fine-focus sealed tube2101 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
φ and ω scansθmax = 25.1°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 88
Tmin = 0.861, Tmax = 0.904k = 89
4185 measured reflectionsl = 1516
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0281P)2 + 0.0001P]
where P = (Fo2 + 2Fc2)/3
2792 reflections(Δ/σ)max < 0.001
241 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
[Mn(C7H2F3O3)2(C10H8N2)2(H2O)2]γ = 79.830 (2)°
Mr = 785.51V = 792.96 (12) Å3
Triclinic, P1Z = 1
a = 7.0706 (6) ÅMo Kα radiation
b = 8.2939 (7) ŵ = 0.51 mm1
c = 13.9856 (12) ÅT = 298 K
α = 79.200 (1)°0.30 × 0.25 × 0.20 mm
β = 88.338 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2792 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2101 reflections with I > 2σ(I)
Tmin = 0.861, Tmax = 0.904Rint = 0.041
4185 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.084H-atom parameters constrained
S = 1.01Δρmax = 0.29 e Å3
2792 reflectionsΔρmin = 0.28 e Å3
241 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.00000.50000.50000.03192 (17)
F10.2679 (2)0.40469 (16)0.18986 (10)0.0502 (4)
F20.4119 (2)0.13268 (18)0.11722 (11)0.0654 (5)
F30.4709 (2)0.26309 (17)0.30543 (11)0.0653 (5)
O10.1454 (2)0.3687 (2)0.39423 (11)0.0390 (4)
O1W0.2747 (2)0.5272 (2)0.55884 (12)0.0481 (5)
H1W0.33550.60750.55310.072*
H2W0.35280.44910.53950.072*
O20.4427 (2)0.2766 (2)0.45383 (12)0.0452 (5)
O30.3067 (3)0.1957 (2)0.05414 (12)0.0541 (5)
H30.27400.29730.04400.081*
N10.0323 (3)0.7434 (2)0.38644 (14)0.0371 (5)
N20.2524 (3)1.4900 (3)0.03585 (15)0.0475 (6)
C90.2397 (4)1.3428 (3)0.01136 (19)0.0573 (8)
H90.26011.33890.05350.069*
C100.1977 (4)1.1936 (3)0.07644 (19)0.0513 (7)
H100.19191.09330.05490.062*
C60.1646 (3)1.1932 (3)0.17280 (17)0.0340 (6)
C70.1801 (4)1.3478 (3)0.19819 (19)0.0562 (8)
H70.15961.35570.26240.067*
C80.2257 (5)1.4904 (3)0.1290 (2)0.0617 (9)
H80.23841.59270.14880.074*
C30.1171 (3)1.0381 (3)0.24554 (17)0.0327 (6)
C40.0622 (4)0.8826 (3)0.22071 (18)0.0458 (7)
H40.05300.87360.15540.055*
C50.0210 (4)0.7414 (3)0.29101 (18)0.0465 (7)
H50.01640.63940.27130.056*
C10.0822 (4)0.8925 (3)0.41036 (17)0.0409 (6)
H10.08850.89800.47620.049*
C20.1251 (4)1.0389 (3)0.34485 (17)0.0407 (6)
H20.15971.13900.36690.049*
C110.3130 (4)0.2840 (3)0.39429 (16)0.0322 (6)
C120.3486 (3)0.1745 (3)0.31840 (16)0.0305 (5)
C130.3175 (3)0.2371 (3)0.22071 (17)0.0331 (6)
C150.3911 (4)0.0307 (3)0.18248 (18)0.0396 (6)
C160.4213 (3)0.0955 (3)0.27927 (18)0.0395 (6)
C170.4035 (3)0.0031 (3)0.34792 (17)0.0355 (6)
H170.42760.04320.41320.043*
C140.3377 (3)0.1397 (3)0.14978 (17)0.0350 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0402 (3)0.0269 (3)0.0264 (3)0.0019 (2)0.0003 (2)0.0029 (2)
F10.0817 (11)0.0280 (8)0.0353 (8)0.0021 (7)0.0036 (8)0.0012 (6)
F20.1059 (14)0.0421 (10)0.0487 (10)0.0014 (9)0.0030 (9)0.0223 (8)
F30.0996 (13)0.0275 (9)0.0604 (11)0.0124 (8)0.0129 (9)0.0065 (8)
O10.0435 (11)0.0392 (10)0.0310 (10)0.0052 (8)0.0003 (8)0.0096 (8)
O1W0.0412 (11)0.0415 (11)0.0618 (12)0.0062 (8)0.0004 (9)0.0109 (9)
O20.0460 (11)0.0439 (11)0.0478 (11)0.0067 (8)0.0111 (9)0.0128 (9)
O30.0902 (15)0.0395 (11)0.0288 (10)0.0025 (10)0.0028 (10)0.0042 (8)
N10.0477 (13)0.0311 (12)0.0310 (12)0.0070 (10)0.0016 (10)0.0018 (9)
N20.0673 (16)0.0354 (13)0.0365 (13)0.0076 (11)0.0104 (11)0.0021 (11)
C90.095 (2)0.0457 (18)0.0285 (15)0.0092 (16)0.0113 (15)0.0005 (13)
C100.082 (2)0.0330 (16)0.0375 (16)0.0059 (14)0.0067 (14)0.0051 (13)
C60.0353 (14)0.0322 (14)0.0320 (14)0.0039 (11)0.0009 (11)0.0015 (11)
C70.095 (2)0.0367 (17)0.0334 (16)0.0049 (15)0.0119 (15)0.0031 (13)
C80.107 (3)0.0311 (16)0.0451 (18)0.0064 (16)0.0170 (17)0.0033 (14)
C30.0331 (14)0.0309 (14)0.0329 (14)0.0065 (11)0.0002 (11)0.0024 (11)
C40.072 (2)0.0352 (16)0.0276 (14)0.0041 (13)0.0043 (13)0.0038 (12)
C50.073 (2)0.0285 (15)0.0345 (16)0.0011 (13)0.0019 (14)0.0046 (12)
C10.0605 (18)0.0342 (15)0.0283 (14)0.0101 (12)0.0006 (12)0.0046 (12)
C20.0596 (17)0.0270 (14)0.0339 (15)0.0057 (12)0.0003 (12)0.0038 (12)
C110.0408 (15)0.0265 (13)0.0274 (13)0.0059 (11)0.0026 (12)0.0002 (10)
C120.0277 (13)0.0318 (14)0.0308 (13)0.0026 (10)0.0028 (10)0.0061 (11)
C130.0363 (14)0.0219 (13)0.0371 (14)0.0003 (10)0.0027 (11)0.0002 (11)
C150.0461 (16)0.0366 (16)0.0371 (15)0.0008 (12)0.0003 (12)0.0153 (13)
C160.0455 (16)0.0244 (14)0.0444 (16)0.0020 (11)0.0035 (12)0.0030 (12)
C170.0385 (14)0.0330 (14)0.0307 (14)0.0009 (11)0.0038 (11)0.0015 (11)
C140.0423 (15)0.0346 (15)0.0274 (14)0.0040 (11)0.0009 (11)0.0062 (11)
Geometric parameters (Å, º) top
Mn1—O12.1335 (15)C10—H100.9300
Mn1—O1i2.1335 (15)C6—C71.378 (3)
Mn1—O1Wi2.1949 (16)C6—C31.476 (3)
Mn1—O1W2.1949 (16)C7—C81.377 (4)
Mn1—N12.3038 (19)C7—H70.9300
Mn1—N1i2.3038 (19)C8—H80.9300
F1—C131.361 (3)C3—C41.385 (3)
F2—C151.345 (3)C3—C21.389 (3)
F3—C161.354 (3)C4—C51.374 (3)
O1—C111.266 (3)C4—H40.9300
O1W—H1W0.8445C5—H50.9300
O1W—H2W0.8541C1—C21.369 (3)
O2—C111.242 (3)C1—H10.9300
O3—C141.342 (3)C2—H20.9300
O3—H30.8200C11—C121.510 (3)
N1—C11.326 (3)C12—C131.377 (3)
N1—C51.338 (3)C12—C171.392 (3)
N2—C91.316 (3)C13—C141.382 (3)
N2—C81.323 (3)C15—C161.368 (3)
C9—C101.383 (4)C15—C141.388 (3)
C9—H90.9300C16—C171.363 (3)
C10—C61.374 (3)C17—H170.9300
O1—Mn1—O1i180.0C7—C8—H8118.2
O1—Mn1—O1Wi88.91 (6)C4—C3—C2115.2 (2)
O1i—Mn1—O1Wi91.09 (6)C4—C3—C6123.1 (2)
O1—Mn1—O1W91.09 (6)C2—C3—C6121.7 (2)
O1i—Mn1—O1W88.91 (6)C5—C4—C3121.1 (2)
O1Wi—Mn1—O1W180.00 (8)C5—C4—H4119.5
O1—Mn1—N189.39 (6)C3—C4—H4119.5
O1i—Mn1—N190.61 (6)N1—C5—C4123.2 (2)
O1Wi—Mn1—N184.76 (7)N1—C5—H5118.4
O1W—Mn1—N195.24 (7)C4—C5—H5118.4
O1—Mn1—N1i90.61 (6)N1—C1—C2124.6 (2)
O1i—Mn1—N1i89.39 (6)N1—C1—H1117.7
O1Wi—Mn1—N1i95.24 (7)C2—C1—H1117.7
O1W—Mn1—N1i84.76 (7)C1—C2—C3120.2 (2)
N1—Mn1—N1i180.0C1—C2—H2119.9
C11—O1—Mn1130.94 (15)C3—C2—H2119.9
Mn1—O1W—H1W133.3O2—C11—O1125.9 (2)
Mn1—O1W—H2W102.0O2—C11—C12118.6 (2)
H1W—O1W—H2W104.9O1—C11—C12115.3 (2)
C14—O3—H3109.5C13—C12—C17118.4 (2)
C1—N1—C5115.8 (2)C13—C12—C11122.2 (2)
C1—N1—Mn1122.51 (15)C17—C12—C11119.3 (2)
C5—N1—Mn1121.30 (16)F1—C13—C12119.4 (2)
C9—N2—C8116.3 (2)F1—C13—C14116.7 (2)
N2—C9—C10123.8 (2)C12—C13—C14123.9 (2)
N2—C9—H9118.1F2—C15—C16119.9 (2)
C10—C9—H9118.1F2—C15—C14118.9 (2)
C6—C10—C9120.1 (3)C16—C15—C14121.2 (2)
C6—C10—H10119.9F3—C16—C17120.4 (2)
C9—C10—H10119.9F3—C16—C15117.6 (2)
C10—C6—C7115.8 (2)C17—C16—C15122.0 (2)
C10—C6—C3122.7 (2)C16—C17—C12118.7 (2)
C7—C6—C3121.5 (2)C16—C17—H17120.6
C8—C7—C6120.4 (3)C12—C17—H17120.6
C8—C7—H7119.8O3—C14—C13125.6 (2)
C6—C7—H7119.8O3—C14—C15118.5 (2)
N2—C8—C7123.6 (3)C13—C14—C15115.9 (2)
N2—C8—H8118.2
O1Wi—Mn1—O1—C11155.2 (2)Mn1—N1—C1—C2171.9 (2)
O1W—Mn1—O1—C1124.8 (2)N1—C1—C2—C30.3 (4)
N1—Mn1—O1—C11120.1 (2)C4—C3—C2—C10.6 (4)
N1i—Mn1—O1—C1159.9 (2)C6—C3—C2—C1179.3 (2)
O1—Mn1—N1—C1165.93 (19)Mn1—O1—C11—O210.1 (4)
O1i—Mn1—N1—C114.07 (19)Mn1—O1—C11—C12165.38 (14)
O1Wi—Mn1—N1—C1105.11 (19)O2—C11—C12—C13128.6 (2)
O1W—Mn1—N1—C174.89 (19)O1—C11—C12—C1355.6 (3)
O1—Mn1—N1—C521.15 (19)O2—C11—C12—C1755.3 (3)
O1i—Mn1—N1—C5158.85 (19)O1—C11—C12—C17120.5 (2)
O1Wi—Mn1—N1—C567.81 (19)C17—C12—C13—F1178.5 (2)
O1W—Mn1—N1—C5112.19 (19)C11—C12—C13—F15.4 (3)
C8—N2—C9—C101.1 (5)C17—C12—C13—C140.0 (4)
N2—C9—C10—C60.6 (5)C11—C12—C13—C14176.1 (2)
C9—C10—C6—C71.2 (4)F2—C15—C16—F30.3 (4)
C9—C10—C6—C3179.3 (2)C14—C15—C16—F3179.2 (2)
C10—C6—C7—C80.2 (4)F2—C15—C16—C17179.4 (2)
C3—C6—C7—C8179.6 (3)C14—C15—C16—C171.0 (4)
C9—N2—C8—C72.3 (5)F3—C16—C17—C12178.7 (2)
C6—C7—C8—N21.7 (5)C15—C16—C17—C121.5 (4)
C10—C6—C3—C414.1 (4)C13—C12—C17—C161.0 (3)
C7—C6—C3—C4166.5 (3)C11—C12—C17—C16175.2 (2)
C10—C6—C3—C2165.7 (2)F1—C13—C14—O32.3 (4)
C7—C6—C3—C213.6 (4)C12—C13—C14—O3179.2 (2)
C2—C3—C4—C50.5 (4)F1—C13—C14—C15179.1 (2)
C6—C3—C4—C5179.4 (2)C12—C13—C14—C150.5 (4)
C1—N1—C5—C41.5 (4)F2—C15—C14—O30.7 (4)
Mn1—N1—C5—C4171.9 (2)C16—C15—C14—O3178.8 (2)
C3—C4—C5—N10.6 (4)F2—C15—C14—C13179.5 (2)
C5—N1—C1—C21.3 (4)C16—C15—C14—C130.0 (4)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H2W···O20.852.042.839 (2)155
O1W—H1W···O2ii0.841.972.773 (2)159
O3—H3···N2iii0.821.892.641 (3)152
Symmetry codes: (ii) x+1, y+1, z+1; (iii) x, y+2, z.

Experimental details

Crystal data
Chemical formula[Mn(C7H2F3O3)2(C10H8N2)2(H2O)2]
Mr785.51
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)7.0706 (6), 8.2939 (7), 13.9856 (12)
α, β, γ (°)79.200 (1), 88.338 (1), 79.830 (2)
V3)792.96 (12)
Z1
Radiation typeMo Kα
µ (mm1)0.51
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.861, 0.904
No. of measured, independent and
observed [I > 2σ(I)] reflections
4185, 2792, 2101
Rint0.041
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.084, 1.01
No. of reflections2792
No. of parameters241
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.28

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H2W···O20.852.042.839 (2)155.4
O1W—H1W···O2i0.841.972.773 (2)158.5
O3—H3···N2ii0.821.892.641 (3)152.4
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+2, z.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 20863003).

References

First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGielen, M., Boualam, M., Meriem, A., Mahieu, B., Biesemans, M. & Willem, R. (1992). Heteroat. Chem. 3, 449–452.  CrossRef CAS Web of Science Google Scholar
First citationMa, C. L., Sun, J. S. & Zhang, R. F. (2006). J. Organomet. Chem. 691, 5885–5898.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, Z. Q., Ji, N. N., Zhao, R. G., Li, J. K. & Li, Z. F. (2011). Struct. Chem. 22, 225–233.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhu, X. (2009). Acta Cryst. E65, o1886.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds