inorganic compounds
Barium manganese(II) selenostannate(IV), BaMnSnSe4
aDepartment of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
*Correspondence e-mail: kleinke@uwaterloo.ca
The title compound, BaMnSnSe4, was obtained by reaction of the elements at 1123 K in an evacuated silica tube. It adopts the BaCdSnS4 structure type, which is a variant of the SrIn2Se4 structure type. Its structure consists of distorted edge-sharing tetrahedra, alternating with Mn and Sn atoms as central atom. These [MnSnSe6] units display corner sharing, forming stacked infinite layers in the ac plane. The three different Ba2+ atoms are located between the [MnSnSe6] layers, two on twofold rotation axes, and exhibit distorted square-antiprismatic coordinations.
Related literature
For the synthesis and structures of quaternary AIIMIIBIVS4 (AII = Ba, MII = Zn, Cd, Hg, Mn, BIV = Ge, Sn), see: Teske (1980a,b,c,d). For the SrIn2Se4 structure type, see: Eisenmann & Hofmann (1991) and for the BaCdSnS4 structure type, see: Assoud et al. (2004).
Experimental
Crystal data
|
Data collection: SMART (Bruker, 2000); cell SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97.
Supporting information
https://doi.org/10.1107/S1600536811047283/ru2017sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536811047283/ru2017Isup2.hkl
The elements were acquired either in large blocks (Ba, 99.95% nominal purity, ALFA AESAR) or in powder form (Sn, 99.8%, -325 mesh, ALFA AESAR; Se, 99.5%, -100 mesh, Aldrich; Mn, 99.9%, -100 mesh, Aldrich). Because of the air sensitive nature of barium, all elements were handled in an argon-filled
The elements were loaded in a silica tube (in 1:1:1:4 ratio), which was evacuated and sealed under dynamic vacuum, then placed into a temperature controlled resistance furnace. The silica tube was heated to 850°C within 24 h, kept at 850°C for a period of 4 days, and then cooled to 200°C within 8 days. Thereafter, the furnace was turned off. The samples looked homogeneous, comprising mostly microcrystalline red powder.A number of quaternary
AIIMIIBIVS4 (AII = Ba, MII = Zn, Cd, Hg, Mn, BIV = Ge, Sn) were synthesized and reported in 1980 (Teske, 1980a,b,c,d). They adopt the BaCdSnS4 structure type and crystallize in the Fdd2, with the exception of BaHgSnS4, which adopts the Pnn2 group with the same structural motifs. These structures are variants of the SrIn2Se4 type (Fddd) (Eisenmann et al., 1991) through the loss of the inversion centre due to the presence of two different MII and BIV centering cations. Here we report the synthesis and the of the first selenide-based compound of this family, denoted BaMnSnSe4.One dark red block-like single-crystal of BaMnSnSe4 was chosen under an optical microscope for study via single-crystal X-ray diffraction. The diffraction data were measured with the use of graphite-monochromated Mo—Kα radiation on a BRUKER Smart APEX CCD diffractometer. Data were collected by scans of 0.3° in two groups of 606 frames at φ = 0° and 90°. The exposure times per frame were 40 s. The data were corrected for Lorentz and polarization effects. Absorption corrections were based on fitting a function to the empirical transmission surface as sampled by multiple equivalent measurements using SADABS.
The
gave an orthorhombic F-centered cell with a = 22.3143 (10) Å, b = 22.7057 (11) Å, c = 13.4523 (6) Å, V = 6815.8 (5) Å3. The structure was performed using the SrSn2Se4 model, producing satisfying residual factors. The Ba atoms replaced Sr atoms, the tetravalent Sn3 and Sn4 atoms remained in the same Wyckoff positions and the divalent Sn1 and Sn2 of SrSn2Se4 were reassigned as Mn1 and Mn2, while the Se positions were retained.The new selenide, BaMnSnSe4 crystallizes in the BaCdSnS4 structure type, which - as previously mentioned - is a variant of the SrIn2Se4 structure type (Eisenmann et al., 1991). We present just a short summary of the principal features of the structure since it has since been described elsewhere (Assoud et al., 2004; Eisenmann et al., 1991; Teske, 1980a,b,c,d). Fig. 1 shows a
projection along the c-axis.In this structure, there are four crystallographically independent metal atom sites, namely Mn1, Mn2, Sn3 and Sn4, which are each tetrahedrally coordinated by Se atoms. The tetrahedra are severely distorted, with Se—Mn—Se and Se—Sn—Se angles between 96° and 126°. The Mn—Se and Sn—Se bonds vary from 2.50 Å to 2.61 Å and 2.49 Å to 2.54 Å, respectively. Similar distortions were observed in the case of the mixed valent selenostannate SrSn2Se4, in SrMgSnSe4, (Assoud et al., 2004) and in BaMSnS4 (M = Mn, Zn, Cd, Hg) (Teske, 1980a,b,c,d), with Se—Sn—Se bond angles ranging from 94° to 129°. The tetrahedra in BaMnSnSe4 are interconnected by sharing edges between the MnSe4 and SnSe4 units. These [MnSnSe6] units then share corners with four identical units (two per tetrahedron) forming an infinite two-dimensional layer in the ac plane. The Ba atoms are in a square antiprismatic coordination, with Ba—Se bonds between 3.33 Å and 3.39 Å, occupying the space between the [MnSnSe6] layers. A single MnSnSe42- layer is displayed in Fig. 2.
For the synthesis and structures of quaternary
AIIMIIBIVS4 (AII = Ba, MII = Zn, Cd, Hg, Mn, BIV = Ge, Sn), see: Teske (1980a,b,c,d). For the the SrIn2Se4 structure type, see: Eisenmann et al. (1991) and for the BaCdSnS4 structure type, see: Assoud et al. (2004).Data collection: SMART (Bruker, 2000); cell
SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).BaMnSnSe4 | Dx = 4.887 Mg m−3 |
Mr = 626.81 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Fdd2 | Cell parameters from 1000 reflections |
a = 22.3143 (10) Å | θ = 2.0–35° |
b = 22.7057 (11) Å | µ = 25.93 mm−1 |
c = 13.4523 (6) Å | T = 298 K |
V = 6815.8 (5) Å3 | Block, red |
Z = 32 | 0.17 × 0.13 × 0.07 mm |
F(000) = 8544 |
Bruker SMART APEX CCD diffractometer | 6703 independent reflections |
Radiation source: fine-focus sealed tube | 4800 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.031 |
ω scans | θmax = 35.0°, θmin = 2.0° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −35→35 |
Tmin = 0.67, Tmax = 0.97 | k = −32→36 |
18387 measured reflections | l = −21→16 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.0177P)2 + 37.4914P] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.028 | (Δ/σ)max = 0.001 |
wR(F2) = 0.072 | Δρmax = 1.95 e Å−3 |
S = 1.13 | Δρmin = −1.64 e Å−3 |
6703 reflections | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
129 parameters | Extinction coefficient: 0.0000363 (16) |
1 restraint | Absolute structure: Flack (1983), 2823 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.044 (12) |
BaMnSnSe4 | V = 6815.8 (5) Å3 |
Mr = 626.81 | Z = 32 |
Orthorhombic, Fdd2 | Mo Kα radiation |
a = 22.3143 (10) Å | µ = 25.93 mm−1 |
b = 22.7057 (11) Å | T = 298 K |
c = 13.4523 (6) Å | 0.17 × 0.13 × 0.07 mm |
Bruker SMART APEX CCD diffractometer | 6703 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 4800 reflections with I > 2σ(I) |
Tmin = 0.67, Tmax = 0.97 | Rint = 0.031 |
18387 measured reflections |
R[F2 > 2σ(F2)] = 0.028 | w = 1/[σ2(Fo2) + (0.0177P)2 + 37.4914P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.072 | Δρmax = 1.95 e Å−3 |
S = 1.13 | Δρmin = −1.64 e Å−3 |
6703 reflections | Absolute structure: Flack (1983), 2823 Friedel pairs |
129 parameters | Absolute structure parameter: 0.044 (12) |
1 restraint |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ba1 | 0.5000 | 0.0000 | 0.51434 (7) | 0.01461 (15) | |
Ba2 | 0.2500 | 0.2500 | 0.76741 (7) | 0.01464 (14) | |
Ba3 | 0.498642 (19) | 0.252102 (14) | 0.51495 (6) | 0.01478 (13) | |
Mn1 | 0.42578 (5) | 0.12560 (6) | 0.80278 (9) | 0.0199 (2) | |
Mn2 | 0.38807 (5) | 0.12366 (6) | 0.26964 (9) | 0.0198 (2) | |
Sn3 | 0.36418 (2) | 0.12530 (3) | 0.51561 (4) | 0.01241 (9) | |
Sn4 | 0.56889 (2) | 0.12516 (3) | 0.22465 (4) | 0.01295 (9) | |
Se1 | 0.45804 (3) | 0.12557 (5) | 0.62286 (5) | 0.01312 (14) | |
Se2 | 0.37358 (3) | 0.03939 (4) | 0.89544 (8) | 0.01486 (19) | |
Se3 | 0.37316 (3) | 0.21127 (4) | 0.89774 (8) | 0.0156 (2) | |
Se4 | 0.28052 (3) | 0.12657 (5) | 0.63900 (6) | 0.01672 (14) | |
Se5 | 0.46781 (3) | 0.12444 (5) | 0.13819 (6) | 0.01467 (15) | |
Se6 | 0.37314 (4) | 0.20988 (4) | 0.39409 (7) | 0.0160 (2) | |
Se7 | 0.37225 (4) | 0.03902 (4) | 0.39730 (7) | 0.01519 (19) | |
Se8 | 0.54326 (3) | 0.12649 (5) | 0.40527 (6) | 0.01468 (13) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ba1 | 0.0128 (3) | 0.0114 (3) | 0.0196 (4) | 0.0003 (3) | 0.000 | 0.000 |
Ba2 | 0.0142 (3) | 0.0128 (3) | 0.0169 (4) | 0.0001 (3) | 0.000 | 0.000 |
Ba3 | 0.0134 (2) | 0.0122 (2) | 0.0188 (4) | −0.0004 (2) | 0.00082 (10) | −0.00034 (18) |
Mn1 | 0.0209 (5) | 0.0239 (6) | 0.0148 (6) | −0.0002 (5) | 0.0049 (4) | 0.0000 (5) |
Mn2 | 0.0183 (4) | 0.0271 (6) | 0.0141 (6) | −0.0004 (5) | 0.0029 (4) | 0.0001 (6) |
Sn3 | 0.01249 (14) | 0.0135 (2) | 0.0113 (2) | 0.00023 (18) | 0.00052 (16) | 0.0000 (2) |
Sn4 | 0.01337 (17) | 0.0137 (2) | 0.0118 (2) | 0.00020 (16) | 0.00104 (15) | 0.00006 (19) |
Se1 | 0.0133 (2) | 0.0150 (4) | 0.0111 (4) | 0.0002 (3) | 0.0004 (2) | 0.0001 (4) |
Se2 | 0.0131 (4) | 0.0128 (5) | 0.0187 (5) | 0.0012 (2) | −0.0017 (4) | −0.0018 (3) |
Se3 | 0.0142 (4) | 0.0134 (5) | 0.0192 (5) | −0.0018 (2) | −0.0021 (4) | 0.0019 (3) |
Se4 | 0.0161 (3) | 0.0176 (3) | 0.0164 (4) | −0.0001 (3) | 0.0056 (3) | 0.0003 (4) |
Se5 | 0.0129 (3) | 0.0175 (4) | 0.0136 (4) | −0.0002 (3) | 0.0017 (2) | 0.0000 (4) |
Se6 | 0.0183 (5) | 0.0133 (5) | 0.0165 (5) | −0.0007 (3) | −0.0050 (4) | 0.0024 (3) |
Se7 | 0.0166 (4) | 0.0129 (5) | 0.0160 (5) | 0.0007 (3) | −0.0039 (4) | −0.0021 (3) |
Se8 | 0.0172 (2) | 0.0150 (3) | 0.0119 (3) | 0.0007 (3) | 0.0025 (2) | −0.0003 (4) |
Ba1—Se1i | 3.3373 (11) | Mn1—Se3 | 2.6067 (17) |
Ba1—Se1 | 3.3373 (11) | Mn1—Se4ii | 2.6097 (13) |
Ba1—Se8i | 3.3664 (11) | Mn2—Se5 | 2.5086 (14) |
Ba1—Se8 | 3.3664 (11) | Mn2—Se6 | 2.5974 (18) |
Ba1—Se7 | 3.3748 (9) | Mn2—Se7 | 2.6014 (17) |
Ba1—Se7i | 3.3748 (9) | Mn2—Se8vii | 2.6160 (14) |
Ba1—Se6ii | 3.3804 (10) | Sn3—Se4 | 2.4982 (8) |
Ba1—Se6iii | 3.3804 (10) | Sn3—Se6 | 2.5299 (12) |
Ba2—Se5iv | 3.3375 (12) | Sn3—Se7 | 2.5304 (11) |
Ba2—Se5v | 3.3375 (12) | Sn3—Se1 | 2.5431 (8) |
Ba2—Se4 | 3.3619 (12) | Sn4—Se8 | 2.4963 (10) |
Ba2—Se4vi | 3.3620 (12) | Sn4—Se3xi | 2.5276 (11) |
Ba2—Se3vi | 3.3764 (10) | Sn4—Se2xi | 2.5277 (11) |
Ba2—Se3 | 3.3765 (10) | Sn4—Se5 | 2.5377 (7) |
Ba2—Se2vii | 3.3838 (9) | Se2—Sn4v | 2.5276 (11) |
Ba2—Se2viii | 3.3838 (9) | Se2—Ba3iii | 3.3520 (10) |
Ba3—Se5ix | 3.3417 (12) | Se2—Ba2ii | 3.3838 (9) |
Ba3—Se1 | 3.3440 (11) | Se3—Sn4v | 2.5275 (11) |
Ba3—Se2viii | 3.3521 (10) | Se3—Ba3ix | 3.3705 (10) |
Ba3—Se4viii | 3.3587 (12) | Se4—Mn1vii | 2.6097 (13) |
Ba3—Se8 | 3.3619 (11) | Se4—Ba3iii | 3.3586 (12) |
Ba3—Se3x | 3.3706 (10) | Se5—Ba2xi | 3.3375 (12) |
Ba3—Se6 | 3.3772 (10) | Se5—Ba3x | 3.3416 (12) |
Ba3—Se7ii | 3.4132 (10) | Se6—Ba1vii | 3.3804 (10) |
Mn1—Se1 | 2.5251 (15) | Se7—Ba3vii | 3.4133 (10) |
Mn1—Se2 | 2.5965 (17) | Se8—Mn2ii | 2.6160 (14) |
Se1i—Ba1—Se1 | 128.12 (4) | Se1—Ba3—Se7ii | 75.97 (2) |
Se1i—Ba1—Se8i | 62.758 (16) | Se2viii—Ba3—Se7ii | 116.97 (3) |
Se1—Ba1—Se8i | 147.042 (13) | Se4viii—Ba3—Se7ii | 130.54 (2) |
Se1i—Ba1—Se8 | 147.044 (13) | Se8—Ba3—Se7ii | 75.97 (2) |
Se1—Ba1—Se8 | 62.757 (16) | Se3x—Ba3—Se7ii | 68.02 (3) |
Se8i—Ba1—Se8 | 128.32 (4) | Se6—Ba3—Se7ii | 147.523 (18) |
Se1i—Ba1—Se7 | 131.71 (2) | Se1—Mn1—Se2 | 126.01 (6) |
Se1—Ba1—Se7 | 75.09 (2) | Se1—Mn1—Se3 | 126.75 (7) |
Se8i—Ba1—Se7 | 77.20 (2) | Se2—Mn1—Se3 | 97.19 (5) |
Se8—Ba1—Se7 | 79.33 (2) | Se1—Mn1—Se4ii | 99.83 (4) |
Se1i—Ba1—Se7i | 75.10 (2) | Se2—Mn1—Se4ii | 100.04 (5) |
Se1—Ba1—Se7i | 131.71 (2) | Se3—Mn1—Se4ii | 101.51 (5) |
Se8i—Ba1—Se7i | 79.33 (2) | Se5—Mn2—Se6 | 122.69 (6) |
Se8—Ba1—Se7i | 77.20 (2) | Se5—Mn2—Se7 | 124.52 (6) |
Se7—Ba1—Se7i | 124.38 (4) | Se6—Mn2—Se7 | 96.54 (5) |
Se1i—Ba1—Se6ii | 77.07 (2) | Se5—Mn2—Se8vii | 99.15 (5) |
Se1—Ba1—Se6ii | 76.82 (2) | Se6—Mn2—Se8vii | 106.04 (5) |
Se8i—Ba1—Se6ii | 133.47 (2) | Se7—Mn2—Se8vii | 106.12 (5) |
Se8—Ba1—Se6ii | 76.24 (2) | Se4—Sn3—Se6 | 118.66 (4) |
Se7—Ba1—Se6ii | 148.952 (15) | Se4—Sn3—Se7 | 118.69 (4) |
Se7i—Ba1—Se6ii | 67.98 (2) | Se6—Sn3—Se7 | 100.12 (4) |
Se1i—Ba1—Se6iii | 76.82 (2) | Se4—Sn3—Se1 | 103.79 (3) |
Se1—Ba1—Se6iii | 77.07 (2) | Se6—Sn3—Se1 | 107.44 (4) |
Se8i—Ba1—Se6iii | 76.24 (2) | Se7—Sn3—Se1 | 107.46 (3) |
Se8—Ba1—Se6iii | 133.47 (2) | Se8—Sn4—Se3xi | 121.17 (4) |
Se7—Ba1—Se6iii | 67.98 (2) | Se8—Sn4—Se2xi | 120.77 (4) |
Se7i—Ba1—Se6iii | 148.952 (15) | Se3xi—Sn4—Se2xi | 101.07 (3) |
Se6ii—Ba1—Se6iii | 117.82 (4) | Se8—Sn4—Se5 | 104.04 (3) |
Se5iv—Ba2—Se5v | 121.73 (4) | Se3xi—Sn4—Se5 | 103.49 (4) |
Se5iv—Ba2—Se4 | 155.821 (13) | Se2xi—Sn4—Se5 | 103.94 (4) |
Se5v—Ba2—Se4 | 65.669 (17) | Mn1—Se1—Sn3 | 108.00 (4) |
Se5iv—Ba2—Se4vi | 65.669 (17) | Mn1—Se1—Ba1 | 119.97 (5) |
Se5v—Ba2—Se4vi | 155.821 (13) | Sn3—Se1—Ba1 | 88.90 (3) |
Se4—Ba2—Se4vi | 118.17 (4) | Mn1—Se1—Ba3 | 119.55 (5) |
Se5iv—Ba2—Se3vi | 72.66 (2) | Sn3—Se1—Ba3 | 88.79 (3) |
Se5v—Ba2—Se3vi | 78.02 (3) | Ba1—Se1—Ba3 | 117.91 (3) |
Se4—Ba2—Se3vi | 130.45 (2) | Sn4v—Se2—Mn1 | 80.81 (4) |
Se4vi—Ba2—Se3vi | 83.38 (2) | Sn4v—Se2—Ba3iii | 91.25 (3) |
Se5iv—Ba2—Se3 | 78.03 (3) | Mn1—Se2—Ba3iii | 107.70 (4) |
Se5v—Ba2—Se3 | 72.66 (2) | Sn4v—Se2—Ba2ii | 113.64 (4) |
Se4—Ba2—Se3 | 83.38 (2) | Mn1—Se2—Ba2ii | 93.33 (3) |
Se4vi—Ba2—Se3 | 130.45 (2) | Ba3iii—Se2—Ba2ii | 149.93 (3) |
Se3vi—Ba2—Se3 | 117.43 (4) | Sn4v—Se3—Mn1 | 80.62 (4) |
Se5iv—Ba2—Se2vii | 129.74 (2) | Sn4v—Se3—Ba3ix | 114.00 (4) |
Se5v—Ba2—Se2vii | 80.38 (2) | Mn1—Se3—Ba3ix | 91.78 (3) |
Se4—Ba2—Se2vii | 72.51 (2) | Sn4v—Se3—Ba2 | 91.42 (3) |
Se4vi—Ba2—Se2vii | 78.60 (2) | Mn1—Se3—Ba2 | 107.85 (4) |
Se3vi—Ba2—Se2vii | 69.03 (2) | Ba3ix—Se3—Ba2 | 150.40 (3) |
Se3—Ba2—Se2vii | 149.488 (14) | Sn3—Se4—Mn1vii | 111.94 (4) |
Se5iv—Ba2—Se2viii | 80.38 (2) | Sn3—Se4—Ba3iii | 118.05 (4) |
Se5v—Ba2—Se2viii | 129.74 (2) | Mn1vii—Se4—Ba3iii | 92.00 (4) |
Se4—Ba2—Se2viii | 78.60 (2) | Sn3—Se4—Ba2 | 120.16 (4) |
Se4vi—Ba2—Se2viii | 72.51 (2) | Mn1vii—Se4—Ba2 | 93.59 (4) |
Se3vi—Ba2—Se2viii | 149.489 (15) | Ba3iii—Se4—Ba2 | 113.76 (3) |
Se3—Ba2—Se2viii | 69.03 (2) | Mn2—Se5—Sn4 | 107.90 (4) |
Se2vii—Ba2—Se2viii | 121.99 (4) | Mn2—Se5—Ba2xi | 119.33 (5) |
Se5ix—Ba3—Se1 | 124.48 (3) | Sn4—Se5—Ba2xi | 92.14 (3) |
Se5ix—Ba3—Se2viii | 73.18 (2) | Mn2—Se5—Ba3x | 120.96 (5) |
Se1—Ba3—Se2viii | 76.66 (2) | Sn4—Se5—Ba3x | 91.31 (3) |
Se5ix—Ba3—Se4viii | 65.659 (18) | Ba2xi—Se5—Ba3x | 114.86 (3) |
Se1—Ba3—Se4viii | 152.79 (2) | Sn3—Se6—Mn2 | 81.63 (4) |
Se2viii—Ba3—Se4viii | 83.91 (2) | Sn3—Se6—Ba3 | 88.28 (3) |
Se5ix—Ba3—Se8 | 149.66 (2) | Mn2—Se6—Ba3 | 114.70 (4) |
Se1—Ba3—Se8 | 62.735 (17) | Sn3—Se6—Ba1vii | 118.29 (3) |
Se2viii—Ba3—Se8 | 133.24 (2) | Mn2—Se6—Ba1vii | 88.54 (4) |
Se4viii—Ba3—Se8 | 123.35 (3) | Ba3—Se6—Ba1vii | 147.80 (3) |
Se5ix—Ba3—Se3x | 80.50 (2) | Sn3—Se7—Mn2 | 81.55 (4) |
Se1—Ba3—Se3x | 130.17 (2) | Sn3—Se7—Ba1 | 88.28 (3) |
Se2viii—Ba3—Se3x | 150.829 (18) | Mn2—Se7—Ba1 | 112.79 (4) |
Se4viii—Ba3—Se3x | 73.79 (2) | Sn3—Se7—Ba3vii | 118.84 (3) |
Se8—Ba3—Se3x | 75.68 (2) | Mn2—Se7—Ba3vii | 88.13 (4) |
Se5ix—Ba3—Se6 | 131.51 (2) | Ba1—Se7—Ba3vii | 148.66 (3) |
Se1—Ba3—Se6 | 74.95 (2) | Sn4—Se8—Mn2ii | 112.78 (4) |
Se2viii—Ba3—Se6 | 69.46 (3) | Sn4—Se8—Ba3 | 120.35 (4) |
Se4viii—Ba3—Se6 | 80.52 (2) | Mn2ii—Se8—Ba3 | 89.00 (4) |
Se8—Ba3—Se6 | 78.08 (2) | Sn4—Se8—Ba1 | 118.66 (4) |
Se3x—Ba3—Se6 | 123.27 (4) | Mn2ii—Se8—Ba1 | 88.53 (4) |
Se5ix—Ba3—Se7ii | 77.86 (2) | Ba3—Se8—Ba1 | 116.59 (3) |
Symmetry codes: (i) −x+1, −y, z; (ii) x+1/4, −y+1/4, z+1/4; (iii) −x+3/4, y−1/4, z+1/4; (iv) −x+3/4, y+1/4, z+3/4; (v) x−1/4, −y+1/4, z+3/4; (vi) −x+1/2, −y+1/2, z; (vii) x−1/4, −y+1/4, z−1/4; (viii) −x+3/4, y+1/4, z−1/4; (ix) −x+1, −y+1/2, z+1/2; (x) −x+1, −y+1/2, z−1/2; (xi) x+1/4, −y+1/4, z−3/4. |
Experimental details
Crystal data | |
Chemical formula | BaMnSnSe4 |
Mr | 626.81 |
Crystal system, space group | Orthorhombic, Fdd2 |
Temperature (K) | 298 |
a, b, c (Å) | 22.3143 (10), 22.7057 (11), 13.4523 (6) |
V (Å3) | 6815.8 (5) |
Z | 32 |
Radiation type | Mo Kα |
µ (mm−1) | 25.93 |
Crystal size (mm) | 0.17 × 0.13 × 0.07 |
Data collection | |
Diffractometer | Bruker SMART APEX CCD |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.67, 0.97 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 18387, 6703, 4800 |
Rint | 0.031 |
(sin θ/λ)max (Å−1) | 0.807 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.028, 0.072, 1.13 |
No. of reflections | 6703 |
No. of parameters | 129 |
No. of restraints | 1 |
w = 1/[σ2(Fo2) + (0.0177P)2 + 37.4914P] where P = (Fo2 + 2Fc2)/3 | |
Δρmax, Δρmin (e Å−3) | 1.95, −1.64 |
Absolute structure | Flack (1983), 2823 Friedel pairs |
Absolute structure parameter | 0.044 (12) |
Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999).
Acknowledgements
Financial support from the Natural Sciences and Engineering Research Council of Canada is gratefully acknowledged.
References
Assoud, A., Soheilnia, N. & Kleinke, H. (2004). Chem. Mater. 16, 2215–2221. Web of Science CrossRef CAS Google Scholar
Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2000). SMART. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Eisenmann, B. & Hofmann, A. (1991). Z. Kristallogr. 197, 167–168. CrossRef CAS Web of Science Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Teske, C. L. (1980a). Z. Anorg. Allg. Chem. 460, 163–168. CrossRef CAS Web of Science Google Scholar
Teske, C. L. (1980b). Z. Anorg. Allg. Chem. 468, 27–34. CrossRef CAS Google Scholar
Teske, C. L. (1980c). Z. Naturforsch. Teil B, 35, 7–11. Google Scholar
Teske, C. L. (1980d). Z. Naturforsch. Teil B, 35, 509–510. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
A number of quaternary sulfides AIIMIIBIVS4 (AII = Ba, MII = Zn, Cd, Hg, Mn, BIV = Ge, Sn) were synthesized and reported in 1980 (Teske, 1980a,b,c,d). They adopt the BaCdSnS4 structure type and crystallize in the space group Fdd2, with the exception of BaHgSnS4, which adopts the Pnn2 group with the same structural motifs. These structures are variants of the SrIn2Se4 type (Fddd) (Eisenmann et al., 1991) through the loss of the inversion centre due to the presence of two different MII and BIV centering cations. Here we report the synthesis and the crystal structure of the first selenide-based compound of this family, denoted BaMnSnSe4.
One dark red block-like single-crystal of BaMnSnSe4 was chosen under an optical microscope for study via single-crystal X-ray diffraction. The diffraction data were measured with the use of graphite-monochromated Mo—Kα radiation on a BRUKER Smart APEX CCD diffractometer. Data were collected by scans of 0.3° in two groups of 606 frames at φ = 0° and 90°. The exposure times per frame were 40 s. The data were corrected for Lorentz and polarization effects. Absorption corrections were based on fitting a function to the empirical transmission surface as sampled by multiple equivalent measurements using SADABS.
The unit cell refinement gave an orthorhombic F-centered cell with a = 22.3143 (10) Å, b = 22.7057 (11) Å, c = 13.4523 (6) Å, V = 6815.8 (5) Å3. The structure refinement was performed using the SrSn2Se4 model, producing satisfying residual factors. The Ba atoms replaced Sr atoms, the tetravalent Sn3 and Sn4 atoms remained in the same Wyckoff positions and the divalent Sn1 and Sn2 of SrSn2Se4 were reassigned as Mn1 and Mn2, while the Se positions were retained.
The new selenide, BaMnSnSe4 crystallizes in the BaCdSnS4 structure type, which - as previously mentioned - is a variant of the SrIn2Se4 structure type (Eisenmann et al., 1991). We present just a short summary of the principal features of the structure since it has since been described elsewhere (Assoud et al., 2004; Eisenmann et al., 1991; Teske, 1980a,b,c,d). Fig. 1 shows a unit cell projection along the c-axis.
In this structure, there are four crystallographically independent metal atom sites, namely Mn1, Mn2, Sn3 and Sn4, which are each tetrahedrally coordinated by Se atoms. The tetrahedra are severely distorted, with Se—Mn—Se and Se—Sn—Se angles between 96° and 126°. The Mn—Se and Sn—Se bonds vary from 2.50 Å to 2.61 Å and 2.49 Å to 2.54 Å, respectively. Similar distortions were observed in the case of the mixed valent selenostannate SrSn2Se4, in SrMgSnSe4, (Assoud et al., 2004) and in BaMSnS4 (M = Mn, Zn, Cd, Hg) (Teske, 1980a,b,c,d), with Se—Sn—Se bond angles ranging from 94° to 129°. The tetrahedra in BaMnSnSe4 are interconnected by sharing edges between the MnSe4 and SnSe4 units. These [MnSnSe6] units then share corners with four identical units (two per tetrahedron) forming an infinite two-dimensional layer in the ac plane. The Ba atoms are in a square antiprismatic coordination, with Ba—Se bonds between 3.33 Å and 3.39 Å, occupying the space between the [MnSnSe6] layers. A single MnSnSe42- layer is displayed in Fig. 2.