organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(2,4-Di­chloro­phen­yl)-5,5-di­methyl-2-(3-silatranyl­propyl­mino)-1,3,2-dioxa­phospho­rinane 2-oxide

aSchool of Chemical and Environmental Engineering, Hubei University for Nationalities, Enshi, Hubei 445000, People's Republic of China
*Correspondence e-mail: wy04971@163.com

(Received 14 October 2011; accepted 26 October 2011; online 12 November 2011)

In the title compound, C20H31Cl2N2O6PSi, the dioxaphospho­rinane ring adopts a cis conformation. The silatrane fragment forms a cage-like structure in which there exists an intra­molecular Si—N donor–acceptor bond. In the crystal, centrosymmetrically related mol­ecules are linked by pairs of N—H⋯O hydrogen bonds into inversion dimers, generating rings with graph-set motif R22(8). The dimers are further connected into ribbons parallel to the a axis by inter­molecular C—H⋯O hydrogen bonds.

Related literature

For the biological activity of 1,3,2-dioxaphospho­rinane compounds, see: Shi et al. (2006[Shi, D. Q., Feras, A., Hamdan, Y., Liu, Y. & Tan, X. S. (2006). Phosphorus Sulfur Silicon Relat. Elem. 181, 1831-1838.]); Sun et al. (2006[Sun, F. M., Shi, D. Q., Tian, M. M. & Tan, X. S. (2006). Chem. J. Chin. Univ. 27, 2092-2096.]) and of γ-amino­propyl­silatrane, see: Puri et al. (2011[Puri, J. K., Singh, R. & Chahal, V. K. (2011). Chem. Soc. Rev. 40, 1791-1840.]). For the synthesis of the title compound, see: Wan et al. (2005[Wan, S. G., Yang, X. Y., Yu, Y. & liu, C. (2005). Phosphorus Sulfur Silicon Relat. Elem. 180, 2813-2821.]).

[Scheme 1]

Experimental

Crystal data
  • C20H31Cl2N2O6PSi

  • Mr = 525.43

  • Triclinic, [P \overline 1]

  • a = 10.7738 (12) Å

  • b = 10.9320 (13) Å

  • c = 11.2807 (13) Å

  • α = 111.135 (2)°

  • β = 95.926 (2)°

  • γ = 90.424 (2)°

  • V = 1231.2 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.42 mm−1

  • T = 298 K

  • 0.20 × 0.15 × 0.08 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • 6745 measured reflections

  • 4720 independent reflections

  • 2997 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.194

  • S = 1.00

  • 4720 reflections

  • 291 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O3i 0.86 2.05 2.857 (5) 155
C6—H6⋯O6ii 0.93 2.45 3.332 (6) 158
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) x+1, y, z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

1,3,2-Dioxaphosphorinane compounds have attracted many chemists' interest owing to their stereochemistry and wide biological activities, such as fungicidal, insecticidal as well as herbicidal activities (Shi et al., 2006; Sun et al., 2006). γ-Aminopropylsilatrane has been found to have good biological activity (Puri et al., 2011). In view of this and as a continuation of our research on the stereochemistry and biological properties of this class of compounds, we investigates 1,3,2-dioxaphosphinane derivatives containing γ-aminopropyl silatrane, including the title compound, (I), whose crystal structure is reported herein.

The crystal structure of (I) (Fig. 1) reveals that the cyclic dioxaphosphorinane ring in the molecule adopts a thermodynamically stable cis conformation, while the silatrane fragment forms a cage-like structure in which there exists an intramolecular SiN donor-acceptor bond (Si1—N2 = 2.148 (4) Å), which is remarkably longer than an usual Si—N single bond (1.7–1.8 Å). In the crystal structure, molecules are linked by pairs of complementary N—H···O hydrogen bonds into centrosymmetric dimers, forming rings of graph-set motif R22(8) (Table 1; Fig. 2). The dimers are further linked into ribbon parallel to the a axis by intermolecular C—H···O hydrogen bonds.

Related literature top

For the biological activity of 1,3,2-dioxaphosphorinane compounds, see: Shi et al. (2006); Sun et al. (2006) and of γ-aminopropylsilatrane, see: Puri et al. (2011). For the synthesis of the title compound, see: Wan et al. (2005).

Experimental top

The title compound was prepared according to the procedure of Wan et al. (2005). Suitable crystals were obtained by vapor diffusion of tetrahydrofuran (THF) at room temperature (m.p. 522–523 K). Elemental analysis: calculated for C20H31Cl2N2O6PSi: C 45.72, H 5.95, N 5.33%; found: C 45.89, H 6.11, N 5.22%.

Refinement top

All H atoms were positioned geometrically and constrained to ride on their parent atoms, with C—H = 0.93–0.98 Å, N—H = 0.86Å, and with Uiso(H) = 1.2Ueq(C, N) or 1.5Ueq(C) for methyl H atoms.

Structure description top

1,3,2-Dioxaphosphorinane compounds have attracted many chemists' interest owing to their stereochemistry and wide biological activities, such as fungicidal, insecticidal as well as herbicidal activities (Shi et al., 2006; Sun et al., 2006). γ-Aminopropylsilatrane has been found to have good biological activity (Puri et al., 2011). In view of this and as a continuation of our research on the stereochemistry and biological properties of this class of compounds, we investigates 1,3,2-dioxaphosphinane derivatives containing γ-aminopropyl silatrane, including the title compound, (I), whose crystal structure is reported herein.

The crystal structure of (I) (Fig. 1) reveals that the cyclic dioxaphosphorinane ring in the molecule adopts a thermodynamically stable cis conformation, while the silatrane fragment forms a cage-like structure in which there exists an intramolecular SiN donor-acceptor bond (Si1—N2 = 2.148 (4) Å), which is remarkably longer than an usual Si—N single bond (1.7–1.8 Å). In the crystal structure, molecules are linked by pairs of complementary N—H···O hydrogen bonds into centrosymmetric dimers, forming rings of graph-set motif R22(8) (Table 1; Fig. 2). The dimers are further linked into ribbon parallel to the a axis by intermolecular C—H···O hydrogen bonds.

For the biological activity of 1,3,2-dioxaphosphorinane compounds, see: Shi et al. (2006); Sun et al. (2006) and of γ-aminopropylsilatrane, see: Puri et al. (2011). For the synthesis of the title compound, see: Wan et al. (2005).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are represented by circles of arbitrary size.
[Figure 2] Fig. 2. A partial packing diagram of ther title compound, showing the intermolecular hydrogen bonds (dashed lines).
4-(2,4-Dichlorophenyl)-5,5-dimethyl-2-(3-silatranylpropylmino)- 1,3,2-dioxaphosphorinane 2-oxide top
Crystal data top
C20H31Cl2N2O6PSiZ = 2
Mr = 525.43F(000) = 552
Triclinic, P1Dx = 1.417 Mg m3
Dm = 1.417 Mg m3
Dm measured by not measured
Hall symbol: -P 1Melting point = 522–523 K
a = 10.7738 (12) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.9320 (13) ÅCell parameters from 1174 reflections
c = 11.2807 (13) Åθ = 2.2–19.3°
α = 111.135 (2)°µ = 0.42 mm1
β = 95.926 (2)°T = 298 K
γ = 90.424 (2)°Needle, colorless
V = 1231.2 (2) Å30.20 × 0.15 × 0.08 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2997 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.033
Graphite monochromatorθmax = 26.0°, θmin = 1.9°
φ and ω scansh = 136
6745 measured reflectionsk = 1313
4720 independent reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.194H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0969P)2]
where P = (Fo2 + 2Fc2)/3
4720 reflections(Δ/σ)max < 0.001
291 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
C20H31Cl2N2O6PSiγ = 90.424 (2)°
Mr = 525.43V = 1231.2 (2) Å3
Triclinic, P1Z = 2
a = 10.7738 (12) ÅMo Kα radiation
b = 10.9320 (13) ŵ = 0.42 mm1
c = 11.2807 (13) ÅT = 298 K
α = 111.135 (2)°0.20 × 0.15 × 0.08 mm
β = 95.926 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2997 reflections with I > 2σ(I)
6745 measured reflectionsRint = 0.033
4720 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0650 restraints
wR(F2) = 0.194H-atom parameters constrained
S = 1.00Δρmax = 0.36 e Å3
4720 reflectionsΔρmin = 0.35 e Å3
291 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.0122 (4)0.6821 (4)0.7954 (4)0.0437 (11)
C20.9035 (4)0.7254 (4)0.8460 (4)0.0358 (9)
C30.8260 (4)0.7889 (4)0.7813 (4)0.0438 (11)
H30.75040.81840.81140.053*
C40.8579 (4)0.8088 (4)0.6755 (4)0.0457 (11)
H40.80370.84990.63370.055*
C50.9678 (5)0.7691 (5)0.6316 (4)0.0514 (12)
C61.0482 (4)0.7019 (5)0.6884 (4)0.0501 (12)
H61.12280.67150.65630.060*
C70.8618 (4)0.7051 (4)0.9614 (4)0.0379 (10)
H70.89790.62550.96800.045*
C80.8945 (4)0.8210 (4)1.0912 (4)0.0425 (10)
C90.8522 (4)0.9521 (4)1.0853 (5)0.0531 (12)
H9A0.76470.94431.05540.080*
H9B0.89860.97531.02770.080*
H9C0.86661.01901.16900.080*
C101.0350 (4)0.8302 (5)1.1341 (5)0.0645 (15)
H10A1.08000.84931.07310.097*
H10B1.06010.74811.13950.097*
H10C1.05300.89881.21640.097*
C110.8290 (5)0.7924 (5)1.1928 (4)0.0567 (13)
H11A0.85970.71241.20110.068*
H11B0.84990.86341.27450.068*
C120.4695 (4)0.7914 (4)0.9460 (4)0.0436 (10)
H12A0.53210.86330.97870.052*
H12B0.39100.82500.97630.052*
C130.4549 (4)0.7405 (4)0.8012 (4)0.0423 (10)
H13A0.38940.67140.76990.051*
H13B0.53200.70140.77200.051*
C140.4239 (4)0.8422 (4)0.7415 (4)0.0454 (11)
H14A0.48790.91260.77440.054*
H14B0.34530.87930.76800.054*
C150.6068 (5)0.6880 (5)0.4263 (5)0.0603 (13)
H15A0.67070.62630.42770.072*
H15B0.64430.75970.40880.072*
C160.5014 (5)0.6206 (5)0.3235 (4)0.0556 (13)
H16A0.52330.61400.24020.067*
H16B0.48300.53300.32180.067*
C170.3320 (5)0.9231 (4)0.4212 (4)0.0544 (13)
H17A0.35511.00930.42190.065*
H17B0.24200.90930.40150.065*
C180.3951 (5)0.8196 (5)0.3220 (4)0.0540 (12)
H18A0.35080.80100.23760.065*
H18B0.48050.84840.32190.065*
C190.2604 (5)0.5652 (5)0.4171 (4)0.0592 (13)
H19A0.17370.53940.41540.071*
H19B0.30900.48750.39890.071*
C200.2724 (5)0.6263 (5)0.3168 (4)0.0561 (13)
H20A0.27210.55890.23260.067*
H20B0.20420.68320.31480.067*
Cl11.11497 (12)0.59273 (13)0.86003 (13)0.0648 (4)
Cl21.01035 (15)0.8000 (2)0.50014 (16)0.1002 (7)
N10.5068 (3)0.6877 (3)0.9955 (3)0.0420 (9)
H10.44810.63881.00410.050*
N20.3930 (3)0.7025 (3)0.3565 (3)0.0455 (9)
O10.7265 (2)0.6839 (3)0.9344 (3)0.0386 (7)
O20.6939 (3)0.7780 (3)1.1629 (3)0.0526 (8)
O30.6623 (3)0.5297 (3)1.0444 (3)0.0529 (8)
O40.5583 (3)0.7371 (3)0.5471 (3)0.0515 (8)
O50.3694 (3)0.9157 (3)0.5428 (3)0.0493 (8)
O60.3041 (3)0.6576 (3)0.5381 (3)0.0481 (8)
P10.64665 (11)0.65882 (11)1.03461 (10)0.0383 (3)
Si10.41111 (11)0.77709 (11)0.56192 (11)0.0373 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.036 (3)0.049 (3)0.051 (3)0.001 (2)0.000 (2)0.027 (2)
C20.028 (2)0.036 (2)0.048 (2)0.0010 (18)0.0038 (18)0.0212 (19)
C30.033 (2)0.050 (3)0.055 (3)0.000 (2)0.001 (2)0.028 (2)
C40.037 (3)0.059 (3)0.047 (3)0.000 (2)0.001 (2)0.027 (2)
C50.047 (3)0.067 (3)0.050 (3)0.003 (2)0.005 (2)0.033 (2)
C60.038 (3)0.060 (3)0.057 (3)0.001 (2)0.009 (2)0.027 (2)
C70.034 (2)0.038 (2)0.047 (2)0.0011 (18)0.0017 (19)0.023 (2)
C80.036 (3)0.047 (3)0.045 (3)0.008 (2)0.0044 (19)0.021 (2)
C90.053 (3)0.044 (3)0.058 (3)0.010 (2)0.003 (2)0.015 (2)
C100.049 (3)0.070 (4)0.067 (3)0.012 (3)0.016 (3)0.021 (3)
C110.059 (3)0.065 (3)0.041 (3)0.019 (3)0.010 (2)0.018 (2)
C120.045 (3)0.043 (2)0.046 (3)0.007 (2)0.011 (2)0.018 (2)
C130.048 (3)0.036 (2)0.041 (2)0.002 (2)0.005 (2)0.0121 (19)
C140.052 (3)0.041 (2)0.045 (3)0.009 (2)0.006 (2)0.017 (2)
C150.051 (3)0.067 (3)0.066 (3)0.018 (3)0.022 (3)0.024 (3)
C160.067 (4)0.054 (3)0.047 (3)0.015 (3)0.028 (2)0.013 (2)
C170.062 (3)0.047 (3)0.060 (3)0.002 (2)0.007 (2)0.029 (2)
C180.066 (3)0.053 (3)0.046 (3)0.001 (2)0.005 (2)0.023 (2)
C190.068 (4)0.052 (3)0.051 (3)0.016 (3)0.007 (3)0.012 (2)
C200.067 (4)0.053 (3)0.041 (3)0.009 (2)0.003 (2)0.009 (2)
Cl10.0502 (8)0.0797 (9)0.0828 (10)0.0257 (7)0.0131 (7)0.0496 (8)
Cl20.0808 (12)0.1756 (19)0.0855 (11)0.0259 (11)0.0294 (9)0.0912 (13)
N10.041 (2)0.051 (2)0.045 (2)0.0031 (17)0.0070 (16)0.0286 (18)
N20.054 (3)0.041 (2)0.043 (2)0.0000 (18)0.0076 (18)0.0159 (17)
O10.0308 (16)0.0466 (17)0.0395 (16)0.0060 (13)0.0009 (12)0.0180 (13)
O20.052 (2)0.066 (2)0.0388 (17)0.0108 (16)0.0013 (15)0.0198 (16)
O30.0414 (19)0.0554 (19)0.072 (2)0.0042 (15)0.0008 (15)0.0372 (17)
O40.0430 (19)0.068 (2)0.0493 (19)0.0093 (16)0.0092 (15)0.0270 (16)
O50.068 (2)0.0364 (16)0.0422 (17)0.0120 (15)0.0025 (15)0.0140 (14)
O60.054 (2)0.0482 (18)0.0408 (17)0.0099 (15)0.0080 (14)0.0145 (14)
P10.0384 (7)0.0428 (7)0.0382 (6)0.0051 (5)0.0029 (5)0.0204 (5)
Si10.0385 (7)0.0367 (7)0.0372 (6)0.0038 (5)0.0048 (5)0.0140 (5)
Geometric parameters (Å, º) top
C1—C21.368 (6)C14—Si11.879 (4)
C1—C61.392 (6)C14—H14A0.9700
C1—Cl11.754 (4)C14—H14B0.9700
C2—C31.400 (5)C15—O41.429 (5)
C2—C71.508 (5)C15—C161.509 (7)
C3—C41.365 (6)C15—H15A0.9700
C3—H30.9300C15—H15B0.9700
C4—C51.345 (6)C16—N21.472 (6)
C4—H40.9300C16—H16A0.9700
C5—C61.390 (6)C16—H16B0.9700
C5—Cl21.739 (5)C17—O51.420 (5)
C6—H60.9300C17—C181.501 (7)
C7—O11.458 (5)C17—H17A0.9700
C7—C81.557 (6)C17—H17B0.9700
C7—H70.9800C18—N21.467 (5)
C8—C111.527 (6)C18—H18A0.9700
C8—C91.529 (6)C18—H18B0.9700
C8—C101.532 (6)C19—O61.405 (5)
C9—H9A0.9600C19—C201.522 (6)
C9—H9B0.9600C19—H19A0.9700
C9—H9C0.9600C19—H19B0.9700
C10—H10A0.9600C20—N21.475 (6)
C10—H10B0.9600C20—H20A0.9700
C10—H10C0.9600C20—H20B0.9700
C11—O21.454 (5)N1—P11.592 (3)
C11—H11A0.9700N1—H10.8600
C11—H11B0.9700N2—Si12.148 (4)
C12—N11.474 (5)O1—P11.585 (3)
C12—C131.514 (5)O2—P11.590 (3)
C12—H12A0.9700O3—P11.465 (3)
C12—H12B0.9700O4—Si11.657 (3)
C13—C141.517 (5)O5—Si11.665 (3)
C13—H13A0.9700O6—Si11.664 (3)
C13—H13B0.9700
C2—C1—C6123.3 (4)O4—C15—C16108.8 (4)
C2—C1—Cl1121.6 (3)O4—C15—H15A109.9
C6—C1—Cl1115.1 (3)C16—C15—H15A109.9
C1—C2—C3116.1 (4)O4—C15—H15B109.9
C1—C2—C7124.6 (4)C16—C15—H15B109.9
C3—C2—C7119.3 (4)H15A—C15—H15B108.3
C4—C3—C2122.1 (4)N2—C16—C15106.1 (4)
C4—C3—H3119.0N2—C16—H16A110.5
C2—C3—H3119.0C15—C16—H16A110.5
C5—C4—C3120.0 (4)N2—C16—H16B110.5
C5—C4—H4120.0C15—C16—H16B110.5
C3—C4—H4120.0H16A—C16—H16B108.7
C4—C5—C6121.3 (4)O5—C17—C18108.9 (4)
C4—C5—Cl2119.7 (4)O5—C17—H17A109.9
C6—C5—Cl2118.9 (4)C18—C17—H17A109.9
C5—C6—C1117.2 (4)O5—C17—H17B109.9
C5—C6—H6121.4C18—C17—H17B109.9
C1—C6—H6121.4H17A—C17—H17B108.3
O1—C7—C2105.1 (3)N2—C18—C17106.2 (4)
O1—C7—C8109.2 (3)N2—C18—H18A110.5
C2—C7—C8115.6 (3)C17—C18—H18A110.5
O1—C7—H7108.9N2—C18—H18B110.5
C2—C7—H7108.9C17—C18—H18B110.5
C8—C7—H7108.9H18A—C18—H18B108.7
C11—C8—C9108.6 (4)O6—C19—C20108.9 (4)
C11—C8—C10106.7 (4)O6—C19—H19A109.9
C9—C8—C10110.2 (4)C20—C19—H19A109.9
C11—C8—C7108.3 (3)O6—C19—H19B109.9
C9—C8—C7112.3 (3)C20—C19—H19B109.9
C10—C8—C7110.5 (4)H19A—C19—H19B108.3
C8—C9—H9A109.5N2—C20—C19105.2 (4)
C8—C9—H9B109.5N2—C20—H20A110.7
H9A—C9—H9B109.5C19—C20—H20A110.7
C8—C9—H9C109.5N2—C20—H20B110.7
H9A—C9—H9C109.5C19—C20—H20B110.7
H9B—C9—H9C109.5H20A—C20—H20B108.8
C8—C10—H10A109.5C12—N1—P1125.4 (3)
C8—C10—H10B109.5C12—N1—H1117.3
H10A—C10—H10B109.5P1—N1—H1117.3
C8—C10—H10C109.5C18—N2—C16114.4 (4)
H10A—C10—H10C109.5C18—N2—C20113.7 (4)
H10B—C10—H10C109.5C16—N2—C20113.3 (4)
O2—C11—C8112.8 (3)C18—N2—Si1104.9 (3)
O2—C11—H11A109.0C16—N2—Si1104.3 (3)
C8—C11—H11A109.0C20—N2—Si1104.9 (3)
O2—C11—H11B109.0C7—O1—P1120.6 (2)
C8—C11—H11B109.0C11—O2—P1114.1 (3)
H11A—C11—H11B107.8C15—O4—Si1122.9 (3)
N1—C12—C13111.7 (3)C17—O5—Si1123.0 (3)
N1—C12—H12A109.3C19—O6—Si1123.8 (3)
C13—C12—H12A109.3O3—P1—O1113.75 (18)
N1—C12—H12B109.3O3—P1—O2113.69 (17)
C13—C12—H12B109.3O1—P1—O2102.17 (16)
H12A—C12—H12B107.9O3—P1—N1114.75 (18)
C12—C13—C14115.4 (3)O1—P1—N1105.51 (16)
C12—C13—H13A108.4O2—P1—N1105.78 (18)
C14—C13—H13A108.4O4—Si1—O6118.09 (17)
C12—C13—H13B108.4O4—Si1—O5117.49 (17)
C14—C13—H13B108.4O6—Si1—O5120.06 (17)
H13A—C13—H13B107.5O4—Si1—C1497.52 (18)
C13—C14—Si1114.4 (3)O6—Si1—C1496.54 (18)
C13—C14—H14A108.7O5—Si1—C1496.87 (16)
Si1—C14—H14A108.7O4—Si1—N283.46 (15)
C13—C14—H14B108.7O6—Si1—N282.74 (14)
Si1—C14—H14B108.7O5—Si1—N282.90 (14)
H14A—C14—H14B107.6C14—Si1—N2178.98 (19)
C6—C1—C2—C31.9 (6)C19—C20—N2—Si134.7 (4)
Cl1—C1—C2—C3176.4 (3)C2—C7—O1—P1179.8 (2)
C6—C1—C2—C7179.8 (4)C8—C7—O1—P155.2 (4)
Cl1—C1—C2—C71.5 (6)C8—C11—O2—P162.2 (5)
C1—C2—C3—C41.2 (6)C16—C15—O4—Si126.8 (5)
C7—C2—C3—C4179.2 (4)C18—C17—O5—Si128.5 (5)
C2—C3—C4—C51.2 (7)C20—C19—O6—Si127.5 (5)
C3—C4—C5—C63.1 (7)C7—O1—P1—O371.7 (3)
C3—C4—C5—Cl2177.7 (4)C7—O1—P1—O251.2 (3)
C4—C5—C6—C12.4 (7)C7—O1—P1—N1161.7 (3)
Cl2—C5—C6—C1178.4 (4)C11—O2—P1—O371.4 (3)
C2—C1—C6—C50.2 (7)C11—O2—P1—O151.6 (3)
Cl1—C1—C6—C5178.2 (3)C11—O2—P1—N1161.7 (3)
C1—C2—C7—O1143.9 (4)C12—N1—P1—O3162.7 (3)
C3—C2—C7—O133.9 (5)C12—N1—P1—O136.6 (4)
C1—C2—C7—C895.6 (5)C12—N1—P1—O271.2 (4)
C3—C2—C7—C886.5 (5)C15—O4—Si1—O682.5 (4)
O1—C7—C8—C1153.4 (4)C15—O4—Si1—O574.1 (4)
C2—C7—C8—C11171.6 (4)C15—O4—Si1—C14175.9 (4)
O1—C7—C8—C966.6 (4)C15—O4—Si1—N24.3 (4)
C2—C7—C8—C951.6 (5)C19—O6—Si1—O473.6 (4)
O1—C7—C8—C10169.9 (3)C19—O6—Si1—O582.4 (4)
C2—C7—C8—C1071.8 (5)C19—O6—Si1—C14175.7 (4)
C9—C8—C11—O262.5 (5)C19—O6—Si1—N25.0 (3)
C10—C8—C11—O2178.7 (4)C17—O5—Si1—O485.1 (4)
C7—C8—C11—O259.7 (5)C17—O5—Si1—O671.1 (4)
N1—C12—C13—C14176.7 (4)C17—O5—Si1—C14172.7 (4)
C12—C13—C14—Si1178.2 (3)C17—O5—Si1—N26.3 (4)
O4—C15—C16—N240.0 (5)C13—C14—Si1—O464.2 (4)
O5—C17—C18—N239.9 (5)C13—C14—Si1—O655.4 (4)
O6—C19—C20—N240.0 (5)C13—C14—Si1—O5176.8 (3)
C13—C12—N1—P193.0 (4)C18—N2—Si1—O4101.5 (3)
C17—C18—N2—C16147.6 (4)C16—N2—Si1—O419.1 (3)
C17—C18—N2—C2080.1 (4)C20—N2—Si1—O4138.4 (3)
C17—C18—N2—Si133.9 (4)C18—N2—Si1—O6139.0 (3)
C15—C16—N2—C1879.0 (5)C16—N2—Si1—O6100.4 (3)
C15—C16—N2—C20148.5 (4)C20—N2—Si1—O619.0 (3)
C15—C16—N2—Si135.1 (4)C18—N2—Si1—O517.4 (3)
C19—C20—N2—C18148.7 (4)C16—N2—Si1—O5138.0 (3)
C19—C20—N2—C1678.4 (5)C20—N2—Si1—O5102.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.862.052.857 (5)155
C6—H6···O6ii0.932.453.332 (6)158
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC20H31Cl2N2O6PSi
Mr525.43
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)10.7738 (12), 10.9320 (13), 11.2807 (13)
α, β, γ (°)111.135 (2), 95.926 (2), 90.424 (2)
V3)1231.2 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.42
Crystal size (mm)0.20 × 0.15 × 0.08
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6745, 4720, 2997
Rint0.033
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.194, 1.00
No. of reflections4720
No. of parameters291
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.35

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.862.052.857 (5)155.4
C6—H6···O6ii0.932.453.332 (6)157.9
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y, z.
 

Acknowledgements

The authors acknowledge financial support from the College Students' Innovative project in School of Chemical and Environmental Engineering, Hubei University for Nationalities, China (grant No. 2011 C005).

References

First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationPuri, J. K., Singh, R. & Chahal, V. K. (2011). Chem. Soc. Rev. 40, 1791–1840.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, D. Q., Feras, A., Hamdan, Y., Liu, Y. & Tan, X. S. (2006). Phosphorus Sulfur Silicon Relat. Elem. 181, 1831–1838.  Web of Science CrossRef CAS Google Scholar
First citationSun, F. M., Shi, D. Q., Tian, M. M. & Tan, X. S. (2006). Chem. J. Chin. Univ. 27, 2092–2096.  CAS Google Scholar
First citationWan, S. G., Yang, X. Y., Yu, Y. & liu, C. (2005). Phosphorus Sulfur Silicon Relat. Elem. 180, 2813–2821.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds