metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(8-hy­dr­oxy-1-methyl­quinolin-1-ium) bis­­(1,2-di­cyano­ethene-1,2-di­thiol­ato)nickelate(II) dihydrate

aSchool of Materials Science & Engineering, Jiangsu University of Science & Technology, Zhenjiang 212003, People's Republic of China, and bSchool of Biology & Chemical Engineering, Jiangsu University of Science & Technology, Zhenjiang 212003, People's Republic of China
*Correspondence e-mail: wangfmzj@yahoo.com.cn

(Received 24 October 2011; accepted 29 October 2011; online 5 November 2011)

In the title ion-pair complex, (C10H10NO)2[Ni(C4N2S2)2]·2H2O, the anion has crystallographically imposed centre of symmetry. The NiII atom exhibits a slightly distorted square-planar coordination geometry. In the crystal, the water mol­ecule links anions and cations into a three-dimensional network via O—H⋯N, O—H⋯S and O—H⋯O hydrogen bonds. The structure is further stabilized by weak S⋯π contacts [S⋯centroid = 3.8047 (9) Å] and ππ stacking inter­actions [centriod–centroid distance = 3.8653 (7) Å].

Related literature

For background to the properties and applications of bis-1,2-dithiol­ene metal complexes, see: Brammer (2004[Brammer, L. (2004). Chem. Soc. Rev. 33, 476-489.]); Hill et al. (2005[Hill, R. J., Long, D.-L., Champness, N. R., Hubberstey, P. & Schröder, M. (2005). Acc. Chem. Res. 38, 337-350.]); Robin & Fromm (2006[Robin, A. Y. & Fromm, K. M. (2006). Coord. Chem. Rev. 250, 2127-2157.]); Carlucci et al. (2003[Carlucci, L., Ciani, G. & Proserpio, D. M. (2003). Coord. Chem. Rev. 246, 247-289.]). For details of square-planar 1,2-dithiol­ene metal complexes, see: Robertson & Cronin (2002[Robertson, N. & Cronin, L. (2002). Coord. Chem. Rev. 227, 93-127.]); Coomber et al. (1996[Coomber, A. T., Beljonne, D., Friend, R. H. J., Bredas, L., Charlton, A., Robertson, N., Underhill, A. E., Kurmoo, M. & Day, P. (1996). Nature (London), 380, 144-146.]); Ni et al. (2005[Ni, Z. P., Ren, X. M., Ma, J., Xie, J. L., Ni, C. L., Chen, Z. D. & Meng, Q. J. (2005). J. Am. Chem. Soc. 127, 14330-14338.]); Duan et al. (2010[Duan, H. B., Ren, X. M. & Meng, Q. J. (2010). Coord. Chem. Rev. 254, 1509-1522.]).

[Scheme 1]

Experimental

Crystal data
  • (C10H10NO)2[Ni(C4N2S2)2]·2H2O

  • Mr = 695.50

  • Triclinic, [P \overline 1]

  • a = 8.786 (2) Å

  • b = 9.277 (2) Å

  • c = 9.667 (2) Å

  • α = 82.064 (4)°

  • β = 78.058 (4)°

  • γ = 83.324 (4)°

  • V = 760.4 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.96 mm−1

  • T = 291 K

  • 0.35 × 0.20 × 0.15 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.796, Tmax = 0.865

  • 3798 measured reflections

  • 2679 independent reflections

  • 2179 reflections with I > 2σ(I)

  • Rint = 0.057

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.097

  • S = 1.00

  • 2679 reflections

  • 197 parameters

  • H-atom parameters constrained

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1W⋯O2 0.98 1.66 2.639 (3) 180
O2—H2B⋯S2 0.85 2.64 3.224 (3) 128
O2—H2B⋯N2i 0.85 2.51 2.948 (3) 113
Symmetry code: (i) x, y+1, z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

During the past few years, bis-1,2-dithiolene complexes of transition metals have been widely studied for their novel properties and applications in the areas of conducting and magnetic materials, dyes, non-linear optics, catalysis and others, due to their extended electronically delocalized core comprising the central metal, four sulphur atoms and the CC units (Brammer, 2004; Hill et al., 2005; Robin & Fromm, 2006; Carlucci et al., 2003). Among them, maleonitriledithiolate (mnt2-) transition metal complexes are typical examples of bis-1,2-dithiolene complexes used as building blocks for magnetic and conducting molecular materials (Robertson & Cronin, 2002; Coomber et al., 1996; Ni et al., 2005; Duan et al., 2010). To gain more insight into how the substituted groups affects the stacking mode of the Ni(mnt)22- anion, we herein present the crystal structure of a new Ni(mnt)22- salt containing the 1-methyl-8-hydroxyl-quinolinium (MeHoQl)+ cation.

As shown in Fig. 1, the title salt consists of one (MeHoQl)+ cation, half of a Ni(mnt)22- anion and one water molecule in the asymmetric unit. The anion possesses crystallographically imposed inversion centre and exhibits a slightly distorted square-planar coordination geometry. The crystal structure is stabilized by O–H···N, O–H···S and O–H···O hydrogen bonds (Table 1) involving the water molecule, linking cations and anions into a three-dimensional network. Anions and cation further interact through weak S···π contacts (S2···Cg1i = 3.8047 (9) Å) and ππ stacking interactions (Cg1···Cg2ii = 3.8653 (7) Å; Cg1 and Cg2 are the centroids of the N1/C1–C4/C9 and C4–C9 rings, respectively; symmetry codes: (i) x, y, z-1; (ii) -x, -y, 1-z).

Related literature top

For background to the properties and applications of bis-1,2-dithiolene metal complexes, see: Brammer (2004); Hill et al. (2005); Robin & Fromm (2006); Carlucci et al. (2003). For details of square-planar 1,2-dithiolene metal complexes, see: Robertson & Cronin (2002); Coomber et al. (1996); Ni et al. (2005); Duan et al. (2010).

Experimental top

The title compound was prepared by the direct reaction of equimolar mixture of NiCl2.6H2O, sodium maleonitriledithiolate and 1-methyl-8-hydroxyl-quinolinium iodide in water/ethanol (1:1 v/v). Red-brown block-like single crystals were obtained by slow evaporation of a CH3CN solution at room temperature for about two weeks.

Refinement top

The hydroxy H atom was located in a difference Fourier map and refined as riding with O–H = 0.98 Å and free isotropic displacement parameter. All other H atoms were fixed geometrically and treated as riding with C—H = 0.96 Å, O–H = 0.85 Å and with Uiso (H) = 1.2Ueq(C) or 1.5Ueq(C, O) for methyl and water H atoms.

Structure description top

During the past few years, bis-1,2-dithiolene complexes of transition metals have been widely studied for their novel properties and applications in the areas of conducting and magnetic materials, dyes, non-linear optics, catalysis and others, due to their extended electronically delocalized core comprising the central metal, four sulphur atoms and the CC units (Brammer, 2004; Hill et al., 2005; Robin & Fromm, 2006; Carlucci et al., 2003). Among them, maleonitriledithiolate (mnt2-) transition metal complexes are typical examples of bis-1,2-dithiolene complexes used as building blocks for magnetic and conducting molecular materials (Robertson & Cronin, 2002; Coomber et al., 1996; Ni et al., 2005; Duan et al., 2010). To gain more insight into how the substituted groups affects the stacking mode of the Ni(mnt)22- anion, we herein present the crystal structure of a new Ni(mnt)22- salt containing the 1-methyl-8-hydroxyl-quinolinium (MeHoQl)+ cation.

As shown in Fig. 1, the title salt consists of one (MeHoQl)+ cation, half of a Ni(mnt)22- anion and one water molecule in the asymmetric unit. The anion possesses crystallographically imposed inversion centre and exhibits a slightly distorted square-planar coordination geometry. The crystal structure is stabilized by O–H···N, O–H···S and O–H···O hydrogen bonds (Table 1) involving the water molecule, linking cations and anions into a three-dimensional network. Anions and cation further interact through weak S···π contacts (S2···Cg1i = 3.8047 (9) Å) and ππ stacking interactions (Cg1···Cg2ii = 3.8653 (7) Å; Cg1 and Cg2 are the centroids of the N1/C1–C4/C9 and C4–C9 rings, respectively; symmetry codes: (i) x, y, z-1; (ii) -x, -y, 1-z).

For background to the properties and applications of bis-1,2-dithiolene metal complexes, see: Brammer (2004); Hill et al. (2005); Robin & Fromm (2006); Carlucci et al. (2003). For details of square-planar 1,2-dithiolene metal complexes, see: Robertson & Cronin (2002); Coomber et al. (1996); Ni et al. (2005); Duan et al. (2010).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids. Atoms labeled with the suffix A are generated by the symmetry operator (1 - x, -y, 2 - z).
Bis(8-hydroxy-1-methylquinolin-1-ium) bis(1,2-dicyanoethene-1,2-dithiolato)nickelate(II) dihydrate top
Crystal data top
(C10H10NO)2[Ni(C4N2S2)2]·2H2OZ = 1
Mr = 695.50F(000) = 358
Triclinic, P1Dx = 1.519 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.786 (2) ÅCell parameters from 1684 reflections
b = 9.277 (2) Åθ = 2.4–24.2°
c = 9.667 (2) ŵ = 0.96 mm1
α = 82.064 (4)°T = 291 K
β = 78.058 (4)°Block, red-brown
γ = 83.324 (4)°0.35 × 0.20 × 0.15 mm
V = 760.4 (3) Å3
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2679 independent reflections
Radiation source: sealed tube2179 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.057
φ and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 109
Tmin = 0.796, Tmax = 0.865k = 1110
3798 measured reflectionsl = 118
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0419P)2]
where P = (Fo2 + 2Fc2)/3
2679 reflections(Δ/σ)max < 0.001
197 parametersΔρmax = 0.52 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
(C10H10NO)2[Ni(C4N2S2)2]·2H2Oγ = 83.324 (4)°
Mr = 695.50V = 760.4 (3) Å3
Triclinic, P1Z = 1
a = 8.786 (2) ÅMo Kα radiation
b = 9.277 (2) ŵ = 0.96 mm1
c = 9.667 (2) ÅT = 291 K
α = 82.064 (4)°0.35 × 0.20 × 0.15 mm
β = 78.058 (4)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2679 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2179 reflections with I > 2σ(I)
Tmin = 0.796, Tmax = 0.865Rint = 0.057
3798 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 1.00Δρmax = 0.52 e Å3
2679 reflectionsΔρmin = 0.28 e Å3
197 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1931 (4)0.1818 (4)0.2692 (4)0.0795 (10)
H1A0.25480.27420.26720.095*
C20.0785 (4)0.1531 (4)0.1891 (4)0.0880 (12)
H2A0.05840.22670.13620.106*
C30.0068 (4)0.0222 (4)0.1882 (4)0.0806 (10)
H3A0.08900.00070.13470.097*
C40.0262 (3)0.0846 (3)0.2640 (3)0.0593 (8)
C50.0561 (4)0.2226 (4)0.2571 (4)0.0722 (9)
H5A0.13340.24500.19830.087*
C60.0264 (4)0.3248 (3)0.3313 (4)0.0724 (9)
H6A0.08080.42070.32520.087*
C70.0860 (3)0.2922 (3)0.4167 (3)0.0648 (8)
H7A0.10400.36600.47040.078*
C80.1707 (3)0.1592 (3)0.4260 (3)0.0551 (7)
C90.1429 (3)0.0509 (3)0.3479 (3)0.0499 (7)
C100.3498 (4)0.1336 (3)0.4296 (4)0.0816 (10)
H10A0.39170.23160.41430.122*
H10B0.43150.06920.39970.122*
H10C0.30700.12990.52890.122*
C110.5319 (4)0.3805 (3)0.7603 (3)0.0642 (8)
C120.5454 (3)0.2796 (3)0.8553 (3)0.0529 (7)
C130.3540 (3)0.3089 (3)1.0562 (3)0.0533 (7)
C140.2600 (4)0.4443 (3)1.0453 (4)0.0684 (9)
N10.2236 (3)0.0862 (3)0.3466 (3)0.0615 (7)
N20.5227 (4)0.4590 (3)0.6826 (3)0.0914 (10)
N30.1864 (4)0.5531 (3)1.0351 (4)0.1009 (11)
Ni10.50000.00001.00000.04543 (18)
O10.2796 (2)0.1319 (2)0.5071 (2)0.0766 (6)
H1W0.28230.21430.55950.108 (13)*
O20.2867 (2)0.3545 (2)0.6480 (2)0.0839 (7)
H2B0.35660.33400.69840.126*
H2C0.30810.42950.58890.126*
S10.42937 (9)0.11519 (8)0.84759 (9)0.0614 (2)
S20.33291 (10)0.17888 (8)0.95058 (9)0.0642 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.082 (2)0.059 (2)0.094 (3)0.0075 (17)0.002 (2)0.0232 (19)
C20.091 (3)0.085 (3)0.096 (3)0.014 (2)0.013 (2)0.044 (2)
C30.074 (2)0.097 (3)0.079 (3)0.014 (2)0.0163 (18)0.030 (2)
C40.0545 (17)0.068 (2)0.0558 (18)0.0078 (14)0.0072 (14)0.0133 (15)
C50.064 (2)0.079 (2)0.076 (2)0.0047 (17)0.0257 (17)0.0060 (18)
C60.070 (2)0.0572 (19)0.091 (3)0.0102 (15)0.0244 (19)0.0137 (18)
C70.0657 (19)0.0527 (18)0.078 (2)0.0002 (15)0.0132 (17)0.0211 (16)
C80.0519 (17)0.0595 (18)0.0540 (18)0.0054 (14)0.0105 (14)0.0065 (14)
C90.0463 (15)0.0481 (16)0.0521 (17)0.0034 (12)0.0023 (13)0.0064 (13)
C100.070 (2)0.066 (2)0.102 (3)0.0150 (16)0.0217 (19)0.0055 (19)
C110.077 (2)0.0518 (17)0.068 (2)0.0134 (15)0.0130 (16)0.0142 (16)
C120.0634 (17)0.0405 (15)0.0569 (18)0.0102 (12)0.0069 (14)0.0161 (13)
C130.0656 (18)0.0344 (14)0.0603 (18)0.0057 (12)0.0091 (15)0.0109 (13)
C140.088 (2)0.0467 (18)0.073 (2)0.0078 (16)0.0168 (18)0.0117 (16)
N10.0581 (15)0.0531 (15)0.0690 (17)0.0041 (12)0.0024 (13)0.0080 (13)
N20.127 (3)0.0699 (19)0.091 (2)0.0243 (17)0.0265 (18)0.0361 (17)
N30.125 (3)0.0481 (17)0.131 (3)0.0179 (17)0.039 (2)0.0167 (18)
Ni10.0547 (3)0.0370 (3)0.0474 (3)0.0059 (2)0.0121 (2)0.0100 (2)
O10.0821 (15)0.0746 (15)0.0849 (16)0.0071 (11)0.0431 (13)0.0210 (13)
O20.0993 (17)0.0704 (14)0.0964 (18)0.0024 (12)0.0490 (14)0.0184 (13)
S10.0712 (5)0.0514 (4)0.0716 (5)0.0004 (3)0.0299 (4)0.0223 (4)
S20.0840 (6)0.0460 (4)0.0722 (5)0.0070 (4)0.0361 (4)0.0195 (4)
Geometric parameters (Å, º) top
C1—N11.319 (4)C10—H10A0.9599
C1—C21.374 (5)C10—H10B0.9599
C1—H1A0.9600C10—H10C0.9600
C2—C31.351 (5)C11—N21.135 (3)
C2—H2A0.9599C11—C121.430 (4)
C3—C41.399 (4)C12—C13i1.334 (4)
C3—H3A0.9600C12—S11.735 (3)
C4—C51.396 (4)C13—C12i1.334 (4)
C4—C91.416 (4)C13—C141.424 (4)
C5—C61.343 (4)C13—S21.733 (3)
C5—H5A0.9600C14—N31.138 (4)
C6—C71.395 (4)Ni1—S2i2.1546 (8)
C6—H6A0.9600Ni1—S22.1546 (8)
C7—C81.366 (4)Ni1—S12.1599 (7)
C7—H7A0.9600Ni1—S1i2.1599 (7)
C8—O11.340 (3)O1—H1W0.9789
C8—C91.408 (4)O2—H2B0.8500
C9—N11.383 (4)O2—H2C0.8500
C10—N11.492 (4)
N1—C1—C2122.5 (3)N1—C10—H10A110.0
N1—C1—H1A118.7N1—C10—H10B109.5
C2—C1—H1A118.8H10A—C10—H10B109.5
C3—C2—C1119.4 (3)N1—C10—H10C108.9
C3—C2—H2A120.7H10A—C10—H10C109.5
C1—C2—H2A119.8H10B—C10—H10C109.5
C2—C3—C4119.9 (3)N2—C11—C12178.7 (4)
C2—C3—H3A120.7C13i—C12—C11121.4 (3)
C4—C3—H3A119.4C13i—C12—S1121.27 (19)
C5—C4—C3120.0 (3)C11—C12—S1117.3 (2)
C5—C4—C9120.6 (3)C12i—C13—C14122.4 (2)
C3—C4—C9119.4 (3)C12i—C13—S2119.9 (2)
C6—C5—C4120.2 (3)C14—C13—S2117.7 (2)
C6—C5—H5A119.9N3—C14—C13179.1 (4)
C4—C5—H5A119.9C1—N1—C9121.0 (3)
C5—C6—C7119.8 (3)C1—N1—C10116.5 (3)
C5—C6—H6A120.6C9—N1—C10122.6 (3)
C7—C6—H6A119.6S2i—Ni1—S2180.00 (4)
C8—C7—C6122.2 (3)S2i—Ni1—S191.80 (3)
C8—C7—H7A119.3S2—Ni1—S188.20 (3)
C6—C7—H7A118.6S2i—Ni1—S1i88.20 (3)
O1—C8—C7120.8 (3)S2—Ni1—S1i91.80 (3)
O1—C8—C9120.2 (3)S1—Ni1—S1i180.000 (1)
C7—C8—C9119.0 (3)C8—O1—H1W111.5
N1—C9—C8124.1 (3)H2B—O2—H2C109.5
N1—C9—C4117.7 (3)C12—S1—Ni1103.10 (10)
C8—C9—C4118.2 (3)C13—S2—Ni1103.92 (10)
N1—C1—C2—C30.2 (6)C5—C4—C9—C81.4 (4)
C1—C2—C3—C42.5 (6)C3—C4—C9—C8178.3 (2)
C2—C3—C4—C5176.5 (3)C2—C1—N1—C91.6 (5)
C2—C3—C4—C93.7 (5)C2—C1—N1—C10179.2 (3)
C3—C4—C5—C6179.0 (3)C8—C9—N1—C1179.0 (3)
C9—C4—C5—C60.7 (5)C4—C9—N1—C10.3 (4)
C4—C5—C6—C70.7 (5)C8—C9—N1—C100.2 (4)
C5—C6—C7—C81.3 (5)C4—C9—N1—C10179.5 (3)
C6—C7—C8—O1178.9 (3)C13i—C12—S1—Ni11.1 (3)
C6—C7—C8—C90.6 (5)C11—C12—S1—Ni1177.2 (2)
O1—C8—C9—N10.9 (4)S2i—Ni1—S1—C120.20 (10)
C7—C8—C9—N1178.6 (3)S2—Ni1—S1—C12179.80 (10)
O1—C8—C9—C4179.8 (3)C12i—C13—S2—Ni12.0 (3)
C7—C8—C9—C40.7 (4)C14—C13—S2—Ni1178.6 (2)
C5—C4—C9—N1178.0 (2)S1—Ni1—S2—C13178.97 (10)
C3—C4—C9—N12.3 (4)S1i—Ni1—S2—C131.03 (10)
Symmetry code: (i) x+1, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1W···O20.981.662.639 (3)180
O2—H2B···S20.852.643.224 (3)128
O2—H2B···N2ii0.852.512.948 (3)113
Symmetry code: (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formula(C10H10NO)2[Ni(C4N2S2)2]·2H2O
Mr695.50
Crystal system, space groupTriclinic, P1
Temperature (K)291
a, b, c (Å)8.786 (2), 9.277 (2), 9.667 (2)
α, β, γ (°)82.064 (4), 78.058 (4), 83.324 (4)
V3)760.4 (3)
Z1
Radiation typeMo Kα
µ (mm1)0.96
Crystal size (mm)0.35 × 0.20 × 0.15
Data collection
DiffractometerBruker SMART APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.796, 0.865
No. of measured, independent and
observed [I > 2σ(I)] reflections
3798, 2679, 2179
Rint0.057
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.097, 1.00
No. of reflections2679
No. of parameters197
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.52, 0.28

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1W···O20.981.662.639 (3)179.8
O2—H2B···S20.852.643.224 (3)127.5
O2—H2B···N2i0.852.512.948 (3)112.7
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

This work was supported by a start-up grant from Jiangsu University of Science and Technology and by the Foundation of Jiangsu Educational Committee (11KJB150004), People's Republic of China.

References

First citationBrammer, L. (2004). Chem. Soc. Rev. 33, 476–489.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCarlucci, L., Ciani, G. & Proserpio, D. M. (2003). Coord. Chem. Rev. 246, 247–289.  Web of Science CrossRef CAS Google Scholar
First citationCoomber, A. T., Beljonne, D., Friend, R. H. J., Bredas, L., Charlton, A., Robertson, N., Underhill, A. E., Kurmoo, M. & Day, P. (1996). Nature (London), 380, 144–146.  CrossRef CAS Web of Science Google Scholar
First citationDuan, H. B., Ren, X. M. & Meng, Q. J. (2010). Coord. Chem. Rev. 254, 1509–1522.  Web of Science CrossRef CAS Google Scholar
First citationHill, R. J., Long, D.-L., Champness, N. R., Hubberstey, P. & Schröder, M. (2005). Acc. Chem. Res. 38, 337–350.  Web of Science CrossRef Google Scholar
First citationNi, Z. P., Ren, X. M., Ma, J., Xie, J. L., Ni, C. L., Chen, Z. D. & Meng, Q. J. (2005). J. Am. Chem. Soc. 127, 14330–14338.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRobertson, N. & Cronin, L. (2002). Coord. Chem. Rev. 227, 93–127.  Web of Science CrossRef CAS Google Scholar
First citationRobin, A. Y. & Fromm, K. M. (2006). Coord. Chem. Rev. 250, 2127–2157.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds