organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{5-Chloro-2-[(4-nitro­benzyl­­idene)amino]­phen­yl}(phen­yl)methanone

aPharmaceutical Research Centre, PCSIR Labs. Complex, Karachi, Pakistan, bDepartment of Chemistry, University of Karachi, Karachi, Pakistan, and cH.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
*Correspondence e-mail: dr.sammer.yousuf@gmail.com

(Received 26 October 2011; accepted 2 November 2011; online 5 November 2011)

The mol­ecule of the title Schiff base compound, C20H13ClN2O3, assumes an E configuration about the C=N bond. The aromatic rings of the nitro­benzene and chloro­benzene groups are twisted by 13.89 (13)° and form dihedral angles of 76.38 (13) and 84.64 (13)°, respectively, with the phenyl ring. In the crystal, mol­ecules are linked into chains parallel to the b axis by C—H⋯π inter­actions.

Related literature

For the biological activity of Schiff bases, see: Khan et al. (2009[Khan, K. M., Khan, M., Ali, M., Taha, M., Rasheed, S., Perveen, S. & Choudhary, M. I. (2009). Bioorg. Med. Chem. 17, 7795-7801.]); Gerdemann et al. (2002[Gerdemann, C., Eicken, C. & Krebs, B. (2002). Acc. Chem. Res. 35, 183-191.]); Samadhiya & Halve (2001[Samadhiya, S. & Halve, A. (2001). Orient. J. Chem. 17, 119-122.]); Mallikarjun & Sangamesh (1997[Mallikarjun, S. Y. & Sangamesh, A. P. (1997). Transition Met. Chem. 22, 220-224.]); Fioravanti et al. (1995[Fioravanti, R., Biava, M., Porretta, G. C., Landolfi, C., Simonetti, N., Villa, A., Conte, E. & Porta-Puglia, A. (1995). Eur. J. Med. Chem. 30, 123-132.]); Solomon & Lowery (1993[Solomon, E. I. & Lowery, M. D. (1993). Science, 259, 1575-1581.]). For related structures, see: Zeb & Yousuf (2011[Zeb, A. & Yousuf, S. (2011). Acta Cryst. E67, o2801.]); Cox et al. (2008[Cox, P. J., Kechagias, D. & Kelly, O. (2008). Acta Cryst. B64, 206-216.]); Vasco-Mendez et al. (1996[Vasco-Mendez, N. L., Panneerselvam, K., Rudino-Pinera, E. & Soriano-Garcia, M. (1996). Anal. Sci. 12, 677-678.]).

[Scheme 1]

Experimental

Crystal data
  • C20H13ClN2O3

  • Mr = 364.77

  • Monoclinic, P 21 /n

  • a = 7.231 (2) Å

  • b = 20.235 (6) Å

  • c = 11.942 (4) Å

  • β = 98.030 (6)°

  • V = 1730.1 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 273 K

  • 0.22 × 0.13 × 0.11 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.948, Tmax = 0.974

  • 9867 measured reflections

  • 3117 independent reflections

  • 2059 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.125

  • S = 1.06

  • 3117 reflections

  • 235 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C19—H19ACg1i 0.93 2.68 3.538 (3) 154
Symmetry code: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Schiff bases are well known reaction products of aldehyde/ketone functionalities with amines and are considered as important ligands in coordination chemistry. They are also well known to possess a wide range of biological activities including antifungal, antiinflammatory, anti-HIV, antibacterial, herbicidal, antiproliferative, cytotoxic, anticonvulsant and anticancer activities (Khan et al., 2009; Gerdemann et al., 2002; Samadhiya & Halve, 2001; Mallikarjun & Sangamesh, 1997; Fioravanti et al., 1995; Solomon & Lowery, 1993). The title compound was prepared and crystallized during our ongoing research on bioactive compounds.

The structure of title compound (Fig. 1) is composed of three aromatic rings AC (C1-C6, C8-C13 and C15-C20) with dihedral angles of 76.38 (13)°, 84.64 (13)° and 13.89 (13)° between the A/B, A/C and B/C planes, respectively. The azomethine CN double bond adopts an E configuration, with a C13–N1–C14–C15 torsion angle of 177.1 (2)°. The bond lengths and angles are similar to those observed in other structurally related compounds (Cox et al., 2008; Vasco-Mendez et al., 1996; Zeb & Yousuf, 2011). The bond length of the azomethine double bond is 1.249 (3)Å. In the crystal structure (Fig. 2), the molecules are arranged into chains parallel to the b axis by C—H···π interactions (Table 1).

Related literature top

For the biological activity of Schiff bases, see: Khan et al. (2009); Gerdemann et al. (2002); Samadhiya & Halve (2001); Mallikarjun & Sangamesh (1997); Fioravanti et al. (1995); Solomon & Lowery (1993). For related structures, see: Zeb & Yousuf (2011); Cox et al. (2008); Vasco-Mendez et al. (1996).

Experimental top

The synthesis of title compound was carried out by refluxing a mixture of 4-nitrobenzaldehyde (1 mol) and 2-amino-5-chlorobenzophenone (1 mol) in ethanol (50 ml) along with 3 drops of conc. H2SO4 for 5 h at 70 °C. After cooling down to room temperature, the crystalline product was collected by filtration, washed with methanol and dried to afford the title compound in 85% yield. Recrystallization from methanol afforded yellow crystals found suitable for single-crystal X-ray diffraction studies. All chemicals were purchased from Sigma-Aldrich.

Refinement top

H atoms were positioned geometrically with C—H = 0.93 Å, and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).

Structure description top

Schiff bases are well known reaction products of aldehyde/ketone functionalities with amines and are considered as important ligands in coordination chemistry. They are also well known to possess a wide range of biological activities including antifungal, antiinflammatory, anti-HIV, antibacterial, herbicidal, antiproliferative, cytotoxic, anticonvulsant and anticancer activities (Khan et al., 2009; Gerdemann et al., 2002; Samadhiya & Halve, 2001; Mallikarjun & Sangamesh, 1997; Fioravanti et al., 1995; Solomon & Lowery, 1993). The title compound was prepared and crystallized during our ongoing research on bioactive compounds.

The structure of title compound (Fig. 1) is composed of three aromatic rings AC (C1-C6, C8-C13 and C15-C20) with dihedral angles of 76.38 (13)°, 84.64 (13)° and 13.89 (13)° between the A/B, A/C and B/C planes, respectively. The azomethine CN double bond adopts an E configuration, with a C13–N1–C14–C15 torsion angle of 177.1 (2)°. The bond lengths and angles are similar to those observed in other structurally related compounds (Cox et al., 2008; Vasco-Mendez et al., 1996; Zeb & Yousuf, 2011). The bond length of the azomethine double bond is 1.249 (3)Å. In the crystal structure (Fig. 2), the molecules are arranged into chains parallel to the b axis by C—H···π interactions (Table 1).

For the biological activity of Schiff bases, see: Khan et al. (2009); Gerdemann et al. (2002); Samadhiya & Halve (2001); Mallikarjun & Sangamesh (1997); Fioravanti et al. (1995); Solomon & Lowery (1993). For related structures, see: Zeb & Yousuf (2011); Cox et al. (2008); Vasco-Mendez et al. (1996).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at 30% probability level.
[Figure 2] Fig. 2. Crystal packing of the title compound viewed along the a axis.
{5-Chloro-2-[(4-nitrobenzylidene)amino]phenyl}(phenyl)methanone top
Crystal data top
C20H13ClN2O3F(000) = 752
Mr = 364.77Dx = 1.400 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1927 reflections
a = 7.231 (2) Åθ = 2.7–22.4°
b = 20.235 (6) ŵ = 0.24 mm1
c = 11.942 (4) ÅT = 273 K
β = 98.030 (6)°Block, yellow
V = 1730.1 (9) Å30.22 × 0.13 × 0.11 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3117 independent reflections
Radiation source: fine-focus sealed tube2059 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ω scanθmax = 25.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 88
Tmin = 0.948, Tmax = 0.974k = 2424
9867 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0442P)2 + 0.6878P]
where P = (Fo2 + 2Fc2)/3
3117 reflections(Δ/σ)max < 0.001
235 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C20H13ClN2O3V = 1730.1 (9) Å3
Mr = 364.77Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.231 (2) ŵ = 0.24 mm1
b = 20.235 (6) ÅT = 273 K
c = 11.942 (4) Å0.22 × 0.13 × 0.11 mm
β = 98.030 (6)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3117 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2059 reflections with I > 2σ(I)
Tmin = 0.948, Tmax = 0.974Rint = 0.034
9867 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.125H-atom parameters constrained
S = 1.06Δρmax = 0.17 e Å3
3117 reflectionsΔρmin = 0.22 e Å3
235 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.19880 (13)0.14369 (6)0.09091 (6)0.0991 (4)
O10.5383 (3)0.18026 (11)0.52750 (17)0.0748 (6)
O20.2903 (3)0.18427 (11)1.03849 (16)0.0729 (6)
O30.3022 (4)0.08484 (12)1.09952 (18)0.1055 (9)
N10.2719 (3)0.02909 (11)0.54984 (17)0.0546 (6)
N20.2951 (3)0.12485 (13)1.02346 (19)0.0610 (6)
C10.0800 (4)0.16884 (13)0.6054 (2)0.0559 (7)
H1B0.01520.15940.53440.067*
C20.0173 (4)0.18077 (15)0.6959 (3)0.0705 (9)
H2A0.14720.17970.68540.085*
C30.0798 (5)0.19418 (15)0.8012 (3)0.0682 (9)
H3A0.01510.20160.86200.082*
C40.2711 (5)0.19659 (15)0.8168 (2)0.0631 (8)
H4A0.33570.20580.88790.076*
C50.3672 (4)0.18538 (13)0.7273 (2)0.0535 (7)
H5A0.49700.18750.73820.064*
C60.2730 (4)0.17095 (11)0.6210 (2)0.0442 (6)
C70.3806 (4)0.15890 (12)0.5257 (2)0.0472 (6)
C80.2958 (3)0.11941 (13)0.42535 (19)0.0444 (6)
C90.2807 (4)0.14706 (15)0.3181 (2)0.0563 (7)
H9A0.31180.19120.30930.068*
C100.2197 (4)0.10903 (17)0.2252 (2)0.0590 (8)
C110.1768 (4)0.04369 (17)0.2359 (2)0.0614 (8)
H11A0.13750.01840.17190.074*
C120.1918 (4)0.01582 (14)0.3409 (2)0.0610 (8)
H12A0.16180.02850.34800.073*
C130.2515 (4)0.05276 (13)0.43751 (19)0.0462 (6)
C140.2730 (4)0.03103 (13)0.5735 (2)0.0488 (7)
H14A0.26570.06190.51540.059*
C150.2857 (3)0.05421 (12)0.6908 (2)0.0448 (6)
C160.3020 (4)0.01050 (14)0.7803 (2)0.0566 (7)
H16A0.31020.03460.76670.068*
C170.3062 (4)0.03285 (14)0.8895 (2)0.0581 (8)
H17A0.31800.00340.94980.070*
C180.2927 (4)0.09993 (13)0.9074 (2)0.0478 (6)
C190.2786 (4)0.14440 (13)0.8209 (2)0.0531 (7)
H19A0.27190.18950.83510.064*
C200.2745 (4)0.12143 (13)0.7120 (2)0.0528 (7)
H20A0.26420.15120.65220.063*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0832 (7)0.1653 (10)0.0474 (4)0.0118 (6)0.0041 (4)0.0365 (5)
O10.0597 (14)0.0966 (17)0.0717 (14)0.0256 (12)0.0214 (11)0.0183 (11)
O20.0972 (18)0.0613 (14)0.0608 (13)0.0026 (13)0.0128 (11)0.0164 (10)
O30.186 (3)0.0809 (17)0.0499 (13)0.0053 (18)0.0163 (15)0.0056 (12)
N10.0755 (18)0.0418 (13)0.0458 (12)0.0014 (12)0.0063 (11)0.0035 (9)
N20.0676 (17)0.0663 (17)0.0484 (14)0.0002 (14)0.0057 (12)0.0003 (12)
C10.0523 (19)0.0556 (18)0.0602 (17)0.0004 (14)0.0091 (14)0.0060 (13)
C20.059 (2)0.072 (2)0.085 (2)0.0021 (16)0.0268 (18)0.0072 (17)
C30.089 (3)0.063 (2)0.0586 (19)0.0127 (18)0.0333 (18)0.0035 (14)
C40.075 (2)0.069 (2)0.0452 (16)0.0092 (17)0.0094 (15)0.0049 (13)
C50.0576 (18)0.0553 (17)0.0476 (15)0.0049 (14)0.0077 (13)0.0037 (12)
C60.0493 (17)0.0368 (14)0.0471 (14)0.0004 (12)0.0083 (12)0.0031 (11)
C70.0489 (17)0.0454 (16)0.0477 (15)0.0028 (13)0.0080 (12)0.0039 (11)
C80.0408 (15)0.0512 (16)0.0424 (14)0.0023 (12)0.0108 (11)0.0033 (11)
C90.0538 (18)0.0645 (19)0.0509 (17)0.0034 (15)0.0085 (13)0.0164 (14)
C100.0458 (18)0.091 (2)0.0409 (15)0.0045 (16)0.0086 (13)0.0125 (15)
C110.0555 (19)0.085 (2)0.0417 (15)0.0083 (17)0.0012 (13)0.0088 (14)
C120.075 (2)0.0539 (18)0.0529 (17)0.0018 (15)0.0046 (15)0.0083 (13)
C130.0501 (17)0.0494 (16)0.0397 (13)0.0052 (13)0.0081 (12)0.0005 (11)
C140.0530 (18)0.0473 (17)0.0476 (15)0.0010 (13)0.0122 (12)0.0015 (12)
C150.0436 (16)0.0422 (15)0.0494 (15)0.0013 (12)0.0098 (12)0.0021 (11)
C160.071 (2)0.0431 (16)0.0543 (17)0.0057 (14)0.0019 (14)0.0019 (12)
C170.072 (2)0.0481 (17)0.0514 (16)0.0011 (15)0.0002 (14)0.0074 (13)
C180.0462 (16)0.0528 (17)0.0433 (14)0.0020 (13)0.0027 (12)0.0047 (12)
C190.0625 (19)0.0424 (16)0.0556 (16)0.0003 (13)0.0130 (14)0.0037 (12)
C200.0646 (19)0.0447 (16)0.0500 (15)0.0019 (14)0.0111 (13)0.0013 (12)
Geometric parameters (Å, º) top
Cl1—C101.738 (3)C8—C131.398 (3)
O1—C71.217 (3)C9—C101.371 (4)
O2—N21.217 (3)C9—H9A0.9300
O3—N21.213 (3)C10—C111.368 (4)
N1—C141.249 (3)C11—C121.366 (4)
N1—C131.413 (3)C11—H11A0.9300
N2—C181.472 (3)C12—C131.392 (4)
C1—C61.383 (4)C12—H12A0.9300
C1—C21.390 (4)C14—C151.468 (3)
C1—H1B0.9300C14—H14A0.9300
C2—C31.379 (4)C15—C161.379 (4)
C2—H2A0.9300C15—C201.388 (3)
C3—C41.370 (4)C16—C171.377 (4)
C3—H3A0.9300C16—H16A0.9300
C4—C51.372 (4)C17—C181.380 (4)
C4—H4A0.9300C17—H17A0.9300
C5—C61.386 (3)C18—C191.364 (4)
C5—H5A0.9300C19—C201.377 (3)
C6—C71.485 (3)C19—H19A0.9300
C7—C81.498 (3)C20—H20A0.9300
C8—C91.388 (3)
C14—N1—C13122.8 (2)C11—C10—Cl1119.0 (2)
O3—N2—O2123.3 (2)C9—C10—Cl1119.8 (3)
O3—N2—C18118.0 (3)C12—C11—C10119.6 (3)
O2—N2—C18118.7 (2)C12—C11—H11A120.2
C6—C1—C2120.1 (3)C10—C11—H11A120.2
C6—C1—H1B119.9C11—C12—C13121.0 (3)
C2—C1—H1B119.9C11—C12—H12A119.5
C3—C2—C1119.6 (3)C13—C12—H12A119.5
C3—C2—H2A120.2C12—C13—C8118.7 (2)
C1—C2—H2A120.2C12—C13—N1125.8 (2)
C4—C3—C2120.5 (3)C8—C13—N1115.5 (2)
C4—C3—H3A119.8N1—C14—C15121.7 (2)
C2—C3—H3A119.8N1—C14—H14A119.2
C3—C4—C5120.0 (3)C15—C14—H14A119.2
C3—C4—H4A120.0C16—C15—C20119.2 (2)
C5—C4—H4A120.0C16—C15—C14121.4 (2)
C4—C5—C6120.7 (3)C20—C15—C14119.3 (2)
C4—C5—H5A119.6C17—C16—C15120.7 (3)
C6—C5—H5A119.6C17—C16—H16A119.6
C1—C6—C5119.1 (2)C15—C16—H16A119.6
C1—C6—C7121.3 (2)C18—C17—C16118.5 (2)
C5—C6—C7119.6 (2)C18—C17—H17A120.7
O1—C7—C6121.2 (2)C16—C17—H17A120.7
O1—C7—C8118.8 (2)C19—C18—C17122.1 (2)
C6—C7—C8120.0 (2)C19—C18—N2118.5 (2)
C9—C8—C13119.7 (2)C17—C18—N2119.4 (2)
C9—C8—C7119.6 (2)C18—C19—C20118.8 (3)
C13—C8—C7120.4 (2)C18—C19—H19A120.6
C10—C9—C8119.7 (3)C20—C19—H19A120.6
C10—C9—H9A120.2C19—C20—C15120.6 (2)
C8—C9—H9A120.2C19—C20—H20A119.7
C11—C10—C9121.2 (3)C15—C20—H20A119.7
C6—C1—C2—C30.5 (4)C11—C12—C13—N1179.9 (3)
C1—C2—C3—C40.8 (5)C9—C8—C13—C120.4 (4)
C2—C3—C4—C50.2 (5)C7—C8—C13—C12173.2 (2)
C3—C4—C5—C60.6 (4)C9—C8—C13—N1179.7 (2)
C2—C1—C6—C50.3 (4)C7—C8—C13—N17.0 (3)
C2—C1—C6—C7179.5 (2)C14—N1—C13—C1214.4 (4)
C4—C5—C6—C10.9 (4)C14—N1—C13—C8165.8 (3)
C4—C5—C6—C7179.9 (2)C13—N1—C14—C15177.1 (2)
C1—C6—C7—O1156.5 (3)N1—C14—C15—C161.8 (4)
C5—C6—C7—O122.7 (4)N1—C14—C15—C20176.0 (3)
C1—C6—C7—C824.0 (4)C20—C15—C16—C170.4 (4)
C5—C6—C7—C8156.8 (2)C14—C15—C16—C17177.4 (2)
O1—C7—C8—C957.3 (4)C15—C16—C17—C180.4 (4)
C6—C7—C8—C9123.1 (3)C16—C17—C18—C191.1 (4)
O1—C7—C8—C13115.5 (3)C16—C17—C18—N2179.4 (2)
C6—C7—C8—C1364.1 (3)O3—N2—C18—C19177.9 (3)
C13—C8—C9—C101.0 (4)O2—N2—C18—C192.2 (4)
C7—C8—C9—C10173.8 (2)O3—N2—C18—C172.6 (4)
C8—C9—C10—C111.3 (4)O2—N2—C18—C17177.2 (3)
C8—C9—C10—Cl1179.5 (2)C17—C18—C19—C201.1 (4)
C9—C10—C11—C121.0 (4)N2—C18—C19—C20179.4 (2)
Cl1—C10—C11—C12179.7 (2)C18—C19—C20—C150.4 (4)
C10—C11—C12—C130.4 (5)C16—C15—C20—C190.4 (4)
C11—C12—C13—C80.1 (4)C14—C15—C20—C19177.5 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C19—H19A···Cg1i0.932.683.538 (3)154
Symmetry code: (i) x+1/2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC20H13ClN2O3
Mr364.77
Crystal system, space groupMonoclinic, P21/n
Temperature (K)273
a, b, c (Å)7.231 (2), 20.235 (6), 11.942 (4)
β (°) 98.030 (6)
V3)1730.1 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.22 × 0.13 × 0.11
Data collection
DiffractometerBruker SMART APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.948, 0.974
No. of measured, independent and
observed [I > 2σ(I)] reflections
9867, 3117, 2059
Rint0.034
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.125, 1.06
No. of reflections3117
No. of parameters235
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.22

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C19—H19A···Cg1i0.932.683.538 (3)154
Symmetry code: (i) x+1/2, y1/2, z+3/2.
 

References

First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCox, P. J., Kechagias, D. & Kelly, O. (2008). Acta Cryst. B64, 206–216.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFioravanti, R., Biava, M., Porretta, G. C., Landolfi, C., Simonetti, N., Villa, A., Conte, E. & Porta-Puglia, A. (1995). Eur. J. Med. Chem. 30, 123–132.  CrossRef CAS Web of Science Google Scholar
First citationGerdemann, C., Eicken, C. & Krebs, B. (2002). Acc. Chem. Res. 35, 183–191.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKhan, K. M., Khan, M., Ali, M., Taha, M., Rasheed, S., Perveen, S. & Choudhary, M. I. (2009). Bioorg. Med. Chem. 17, 7795–7801.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMallikarjun, S. Y. & Sangamesh, A. P. (1997). Transition Met. Chem. 22, 220–224.  Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationSamadhiya, S. & Halve, A. (2001). Orient. J. Chem. 17, 119–122.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSolomon, E. I. & Lowery, M. D. (1993). Science, 259, 1575–1581.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVasco-Mendez, N. L., Panneerselvam, K., Rudino-Pinera, E. & Soriano-Garcia, M. (1996). Anal. Sci. 12, 677–678.  CAS Google Scholar
First citationZeb, A. & Yousuf, S. (2011). Acta Cryst. E67, o2801.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds