organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Hy­dr­oxy-2-(4-meth­­oxy­benzene­sulfonamido)­butanoic acid

aSchool of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 2 November 2011; accepted 4 November 2011; online 12 November 2011)

The title compound, C11H15NO6S, features a distorted tetra­hedral geometry for the S atom. One of the sulfonamide O atoms is approximately coplanar with the benzene ring [C—C—S—O torsion angle = −160.81 (7)°], whereas the other lies well below the plane [C—C—S—O = −29.66 (8)°]. In the crystal, O—H⋯O and C—H⋯O hydrogen bonds link the mol­ecules into chains parallel to the b axis.

Related literature

For details and applications of sulfonamides, see: Supuran et al. (2003[Supuran, C. T., Casini, A. & Scozzafava, A. (2003). Med. Res. Rev. 5, 535-558.]); Scozzafava et al. (2003[Scozzafava, A., OWa, A., Mastrolorenzo, A. & Supuran, C. T. (2003). Curr. Med. Chem. 10, 925-953.]); Robinson et al. (2003[Robinson, L. A., Wilson, D. M., Delaet, N. G. J., Bradley, E. K., Dankwardt, S. A., Campbell, J. A., Martin, R. L., Van Wart, H. E., Walker, K. A. M. & Sullivan, R. W. (2003). Bioorg. Med. Chem. Lett. 14, 2381-2384.]); Delaet et al. (2003[Delaet, N. G. J., Robinson, L. A., Wilson, D. M., Sullivan, R. W., Bradley, E. K., Dankwardt, S. M., Martin, R. L., Van Wart, H. E. & Walker, K. A. M. (2003). Bioorg. Med. Chem. Lett. 13, 2101-2104.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C11H15NO6S

  • Mr = 289.30

  • Orthorhombic, P 21 21 21

  • a = 5.6505 (2) Å

  • b = 9.9204 (3) Å

  • c = 23.0561 (6) Å

  • V = 1292.41 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 100 K

  • 0.75 × 0.19 × 0.17 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.821, Tmax = 0.954

  • 35154 measured reflections

  • 5756 independent reflections

  • 5505 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.073

  • S = 1.07

  • 5756 reflections

  • 186 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.42 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2444 Friedel pairs

  • Flack parameter: 0.02 (4)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H1O5⋯O6i 0.844 (18) 1.816 (19) 2.6019 (10) 154.3 (17)
O6—H1O6⋯O3i 0.81 (2) 1.99 (2) 2.7990 (10) 174.2 (19)
C5—H5A⋯O4ii 0.93 2.52 3.3732 (11) 153
C8—H8A⋯O2iii 0.98 2.48 3.4000 (11) 156
Symmetry codes: (i) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x-1, y, z; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The chemistry of sulfonamides is of interest as they show distinct physical, chemical and biological properties. Sulfonamides are used as anticancer, anti-inflammatory and antiviral agents (Supuran et al., 2003; Scozzafava et al., 2003). Amino acid-derived sulfonamides are shown to be active against Procollagen C-terminal protease, which is a member of the metzincin enzyme family (Robinson et al., 2003; Delaet et al., 2003).

The asymmetric unit of the title compound is shown in Fig. 1. The S atom is tetrahedrally bonded within a CNO2 donor set with the greatest deviation manifested in the O2—S1—O3 angle of 120.08 (5)°. The sulfonamide O2 atom is approximately co-planar with the benzene ring [the O2-S1-C1-C6 torsion angle is -160.81 (7)°] whereas the O3 atom lies well below the plane [O3-S1-C1-C6 = -29.66 (8)°].

In the crystal structure (Fig. 2), intermolecular O—H···O and C—H···O hydrogen bonds (Table 1) link the molecules into chains parallel to the b axis.

Related literature top

For details and applications of sulfonamides, see: Supuran et al. (2003); Scozzafava et al. (2003); Robinson et al. (2003); Delaet et al. (2003). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

To a solution of L-threonine (3 mmol, 0.618 g) in distilled water (10 ml), 4-methoxybenzene sulphonyl chloride (3 mmol, 0.357 g) was suspended. The pH of the solution was maintained at 8 by continuously adding 1M sodium carbonate solution throughout the reaction at room temperature. After the completion of the reaction, the pH was adjusted to 2 using 1N HCl solution which resulted in the formation of the precipitate which was filtered, dried and recrystallized in methanol to yield the title compound.

Refinement top

Atoms H1N1, H1O5 and H1O6 were located from a difference Fourier map and refined freely [N–H = 0.887 (17) and O–H = 0.81 (2)–0.845 (19) Å]. The remaining H atoms were positioned geometrically [C–H = 0.93–0.98 Å] and were refined using a riding model, with Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating group model was applied to the methyl groups. 2444 Friedel pairs were used to determine the absolute configuration.

Structure description top

The chemistry of sulfonamides is of interest as they show distinct physical, chemical and biological properties. Sulfonamides are used as anticancer, anti-inflammatory and antiviral agents (Supuran et al., 2003; Scozzafava et al., 2003). Amino acid-derived sulfonamides are shown to be active against Procollagen C-terminal protease, which is a member of the metzincin enzyme family (Robinson et al., 2003; Delaet et al., 2003).

The asymmetric unit of the title compound is shown in Fig. 1. The S atom is tetrahedrally bonded within a CNO2 donor set with the greatest deviation manifested in the O2—S1—O3 angle of 120.08 (5)°. The sulfonamide O2 atom is approximately co-planar with the benzene ring [the O2-S1-C1-C6 torsion angle is -160.81 (7)°] whereas the O3 atom lies well below the plane [O3-S1-C1-C6 = -29.66 (8)°].

In the crystal structure (Fig. 2), intermolecular O—H···O and C—H···O hydrogen bonds (Table 1) link the molecules into chains parallel to the b axis.

For details and applications of sulfonamides, see: Supuran et al. (2003); Scozzafava et al. (2003); Robinson et al. (2003); Delaet et al. (2003). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the a axis. H atoms not involved in hydrogen bonding (dashed lines) are omitted.
3-Hydroxy-2-(4-methoxybenzenesulfonamido)butanoic acid top
Crystal data top
C11H15NO6SF(000) = 608
Mr = 289.30Dx = 1.487 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 9845 reflections
a = 5.6505 (2) Åθ = 3.4–35.2°
b = 9.9204 (3) ŵ = 0.27 mm1
c = 23.0561 (6) ÅT = 100 K
V = 1292.41 (7) Å3Block, colourless
Z = 40.75 × 0.19 × 0.17 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5756 independent reflections
Radiation source: fine-focus sealed tube5505 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
φ and ω scansθmax = 35.4°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 79
Tmin = 0.821, Tmax = 0.954k = 1616
35154 measured reflectionsl = 3737
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.073 w = 1/[σ2(Fo2) + (0.0407P)2 + 0.163P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
5756 reflectionsΔρmax = 0.34 e Å3
186 parametersΔρmin = 0.42 e Å3
0 restraintsAbsolute structure: Flack (1983), 2444 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (4)
Crystal data top
C11H15NO6SV = 1292.41 (7) Å3
Mr = 289.30Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.6505 (2) ŵ = 0.27 mm1
b = 9.9204 (3) ÅT = 100 K
c = 23.0561 (6) Å0.75 × 0.19 × 0.17 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5756 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
5505 reflections with I > 2σ(I)
Tmin = 0.821, Tmax = 0.954Rint = 0.027
35154 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.028H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.073Δρmax = 0.34 e Å3
S = 1.07Δρmin = 0.42 e Å3
5756 reflectionsAbsolute structure: Flack (1983), 2444 Friedel pairs
186 parametersAbsolute structure parameter: 0.02 (4)
0 restraints
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.72919 (4)0.22850 (2)0.138337 (9)0.01332 (4)
O10.78573 (15)0.61425 (7)0.05450 (3)0.02057 (13)
O20.48689 (13)0.21583 (8)0.15597 (3)0.01902 (13)
O30.86556 (14)0.10991 (7)0.12458 (3)0.01897 (13)
O41.15328 (13)0.52453 (7)0.17150 (3)0.02082 (14)
O50.85821 (13)0.66432 (7)0.19810 (4)0.01992 (14)
O60.96165 (12)0.40568 (7)0.30315 (3)0.01456 (11)
N10.87145 (14)0.30287 (7)0.19112 (3)0.01372 (12)
C10.93213 (15)0.33833 (9)0.04102 (4)0.01481 (14)
H1A1.05500.27710.04620.018*
C20.94041 (16)0.43159 (9)0.00357 (4)0.01560 (14)
H2A1.06880.43260.02880.019*
C30.75624 (17)0.52429 (8)0.01084 (3)0.01491 (14)
C40.56040 (16)0.52178 (10)0.02592 (4)0.01660 (15)
H4A0.43680.58240.02060.020*
C50.55119 (15)0.42778 (9)0.07069 (4)0.01495 (14)
H5A0.42140.42550.09550.018*
C60.73634 (15)0.33731 (8)0.07829 (3)0.01262 (12)
C70.78523 (15)0.43593 (8)0.20919 (4)0.01261 (13)
H7A0.63330.45220.18990.015*
C80.74478 (15)0.44309 (8)0.27510 (3)0.01324 (13)
H8A0.70470.53590.28580.016*
C90.54836 (17)0.35081 (11)0.29434 (4)0.02040 (17)
H9A0.52600.35950.33540.031*
H9B0.58910.25930.28520.031*
H9C0.40470.37480.27470.031*
C100.95658 (16)0.54537 (9)0.19018 (4)0.01371 (14)
C110.6019 (2)0.71196 (10)0.06293 (4)0.02317 (19)
H11A0.64670.77280.09340.035*
H11B0.57820.76160.02770.035*
H11C0.45780.66680.07340.035*
H1N11.025 (3)0.3010 (15)0.1834 (7)0.025 (4)*
H1O50.952 (3)0.7296 (19)0.1933 (8)0.039 (5)*
H1O61.008 (4)0.462 (2)0.3261 (9)0.059 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01979 (8)0.00881 (7)0.01137 (8)0.00184 (7)0.00180 (7)0.00073 (6)
O10.0300 (3)0.0169 (3)0.0149 (3)0.0028 (3)0.0028 (3)0.0051 (2)
O20.0214 (3)0.0182 (3)0.0175 (3)0.0080 (3)0.0000 (2)0.0032 (2)
O30.0322 (4)0.0089 (2)0.0157 (3)0.0027 (3)0.0047 (3)0.0007 (2)
O40.0202 (3)0.0154 (3)0.0269 (3)0.0005 (2)0.0100 (3)0.0002 (3)
O50.0183 (3)0.0094 (3)0.0321 (4)0.0004 (2)0.0039 (3)0.0003 (3)
O60.0156 (2)0.0127 (3)0.0154 (3)0.0003 (2)0.0030 (2)0.0036 (2)
N10.0178 (3)0.0104 (3)0.0130 (3)0.0009 (2)0.0027 (2)0.0016 (2)
C10.0166 (3)0.0127 (3)0.0151 (3)0.0023 (3)0.0001 (3)0.0012 (3)
C20.0184 (3)0.0147 (3)0.0137 (3)0.0010 (3)0.0032 (3)0.0002 (3)
C30.0209 (3)0.0123 (3)0.0115 (3)0.0005 (3)0.0006 (3)0.0010 (2)
C40.0181 (4)0.0163 (4)0.0153 (4)0.0037 (3)0.0000 (3)0.0035 (3)
C50.0151 (3)0.0158 (3)0.0139 (3)0.0013 (3)0.0007 (3)0.0014 (3)
C60.0159 (3)0.0107 (3)0.0113 (3)0.0000 (3)0.0006 (3)0.0007 (2)
C70.0147 (3)0.0097 (3)0.0135 (3)0.0002 (3)0.0003 (3)0.0006 (2)
C80.0129 (3)0.0135 (3)0.0133 (3)0.0009 (3)0.0010 (3)0.0013 (2)
C90.0155 (3)0.0252 (4)0.0206 (4)0.0034 (3)0.0036 (3)0.0027 (3)
C100.0163 (3)0.0113 (3)0.0136 (3)0.0005 (3)0.0007 (3)0.0002 (3)
C110.0355 (5)0.0165 (4)0.0175 (4)0.0033 (4)0.0036 (4)0.0037 (3)
Geometric parameters (Å, º) top
S1—O21.4337 (8)C2—H2A0.9300
S1—O31.4416 (7)C3—C41.3940 (13)
S1—N11.6345 (8)C4—C51.3922 (12)
S1—C61.7561 (8)C4—H4A0.9300
O1—C31.3555 (10)C5—C61.3895 (12)
O1—C111.4338 (13)C5—H5A0.9300
O4—C101.2097 (11)C7—C101.5193 (12)
O5—C101.3171 (11)C7—C81.5385 (11)
O5—H1O50.845 (19)C7—H7A0.9800
O6—C81.4344 (11)C8—C91.5055 (13)
O6—H1O60.81 (2)C8—H8A0.9800
N1—C71.4674 (11)C9—H9A0.9600
N1—H1N10.887 (17)C9—H9B0.9600
C1—C21.3839 (13)C9—H9C0.9600
C1—C61.4008 (12)C11—H11A0.9600
C1—H1A0.9300C11—H11B0.9600
C2—C31.3989 (13)C11—H11C0.9600
O2—S1—O3120.08 (5)C1—C6—S1120.41 (6)
O2—S1—N1107.35 (4)N1—C7—C10110.45 (7)
O3—S1—N1105.62 (4)N1—C7—C8111.80 (7)
O2—S1—C6107.42 (4)C10—C7—C8110.28 (7)
O3—S1—C6108.41 (4)N1—C7—H7A108.1
N1—S1—C6107.35 (4)C10—C7—H7A108.1
C3—O1—C11117.17 (8)C8—C7—H7A108.1
C10—O5—H1O5113.7 (13)O6—C8—C9109.86 (7)
C8—O6—H1O6113.2 (16)O6—C8—C7107.85 (7)
C7—N1—S1117.01 (6)C9—C8—C7111.87 (7)
C7—N1—H1N1113.6 (10)O6—C8—H8A109.1
S1—N1—H1N1108.9 (10)C9—C8—H8A109.1
C2—C1—C6119.16 (8)C7—C8—H8A109.1
C2—C1—H1A120.4C8—C9—H9A109.5
C6—C1—H1A120.4C8—C9—H9B109.5
C1—C2—C3120.23 (8)H9A—C9—H9B109.5
C1—C2—H2A119.9C8—C9—H9C109.5
C3—C2—H2A119.9H9A—C9—H9C109.5
O1—C3—C4124.11 (8)H9B—C9—H9C109.5
O1—C3—C2115.49 (8)O4—C10—O5126.17 (9)
C4—C3—C2120.39 (8)O4—C10—C7124.47 (8)
C5—C4—C3119.50 (8)O5—C10—C7109.35 (7)
C5—C4—H4A120.2O1—C11—H11A109.5
C3—C4—H4A120.2O1—C11—H11B109.5
C6—C5—C4119.87 (8)H11A—C11—H11B109.5
C6—C5—H5A120.1O1—C11—H11C109.5
C4—C5—H5A120.1H11A—C11—H11C109.5
C5—C6—C1120.84 (8)H11B—C11—H11C109.5
C5—C6—S1118.63 (6)
O2—S1—N1—C757.73 (7)O3—S1—C6—C5154.30 (7)
O3—S1—N1—C7173.03 (6)N1—S1—C6—C592.03 (7)
C6—S1—N1—C757.50 (7)O2—S1—C6—C1160.81 (7)
C6—C1—C2—C30.59 (13)O3—S1—C6—C129.66 (8)
C11—O1—C3—C40.22 (13)N1—S1—C6—C184.01 (8)
C11—O1—C3—C2179.31 (8)S1—N1—C7—C10108.33 (7)
C1—C2—C3—O1177.73 (8)S1—N1—C7—C8128.47 (6)
C1—C2—C3—C41.40 (14)N1—C7—C8—O655.38 (9)
O1—C3—C4—C5177.88 (9)C10—C7—C8—O667.91 (8)
C2—C3—C4—C51.17 (14)N1—C7—C8—C965.53 (9)
C3—C4—C5—C60.15 (14)C10—C7—C8—C9171.18 (7)
C4—C5—C6—C10.66 (13)N1—C7—C10—O411.26 (12)
C4—C5—C6—S1175.37 (7)C8—C7—C10—O4112.81 (10)
C2—C1—C6—C50.43 (13)N1—C7—C10—O5169.63 (7)
C2—C1—C6—S1175.52 (7)C8—C7—C10—O566.30 (9)
O2—S1—C6—C523.15 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H1O5···O6i0.844 (18)1.816 (19)2.6019 (10)154.3 (17)
O6—H1O6···O3i0.81 (2)1.99 (2)2.7990 (10)174.2 (19)
C5—H5A···O4ii0.932.523.3732 (11)153
C8—H8A···O2iii0.982.483.4000 (11)156
Symmetry codes: (i) x+2, y+1/2, z+1/2; (ii) x1, y, z; (iii) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC11H15NO6S
Mr289.30
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)5.6505 (2), 9.9204 (3), 23.0561 (6)
V3)1292.41 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.75 × 0.19 × 0.17
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.821, 0.954
No. of measured, independent and
observed [I > 2σ(I)] reflections
35154, 5756, 5505
Rint0.027
(sin θ/λ)max1)0.816
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.073, 1.07
No. of reflections5756
No. of parameters186
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.34, 0.42
Absolute structureFlack (1983), 2444 Friedel pairs
Absolute structure parameter0.02 (4)

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H1O5···O6i0.844 (18)1.816 (19)2.6019 (10)154.3 (17)
O6—H1O6···O3i0.81 (2)1.99 (2)2.7990 (10)174.2 (19)
C5—H5A···O4ii0.93002.52003.3732 (11)153.00
C8—H8A···O2iii0.98002.48003.4000 (11)156.00
Symmetry codes: (i) x+2, y+1/2, z+1/2; (ii) x1, y, z; (iii) x+1, y+1/2, z+1/2.
 

Footnotes

Additional correspondence e-mail: habibahw@usm.my.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

SS, HO and HAW gratefully acknowledge the Malaysian Ministry of Science, Technology and Innovation for the synthesis work funded by grant No. 09–05-lfn-meb-004. HKF and MH thank the Malaysian Government and Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDelaet, N. G. J., Robinson, L. A., Wilson, D. M., Sullivan, R. W., Bradley, E. K., Dankwardt, S. M., Martin, R. L., Van Wart, H. E. & Walker, K. A. M. (2003). Bioorg. Med. Chem. Lett. 13, 2101–2104.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRobinson, L. A., Wilson, D. M., Delaet, N. G. J., Bradley, E. K., Dankwardt, S. A., Campbell, J. A., Martin, R. L., Van Wart, H. E., Walker, K. A. M. & Sullivan, R. W. (2003). Bioorg. Med. Chem. Lett. 14, 2381–2384.  Web of Science CrossRef Google Scholar
First citationScozzafava, A., OWa, A., Mastrolorenzo, A. & Supuran, C. T. (2003). Curr. Med. Chem. 10, 925–953.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSupuran, C. T., Casini, A. & Scozzafava, A. (2003). Med. Res. Rev. 5, 535–558.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds