organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N′-Bis(pyridin-2-yl)benzene-1,4-di­amine–naphthalene (2/1)

aFaculty of Chemistry, Adam Mickiewicz University, 60-780 Poznań, Poland
*Correspondence e-mail: magdan@amu.edu.pl

(Received 4 November 2011; accepted 9 November 2011; online 12 November 2011)

The asymmetric unit of the title compound, C10H8·2C16H14N4, consists of one mol­ecule of N,N′-bis­(pyridin-2-yl)benzene-1,4-diamine (PDAB) and one half of the centrosymmetric naphthalene mol­ecule. The PDAB mol­ecule adopts a non-planar conformation with an E configuration at the two partially double exo C N bonds of the 2-pyridyl­amine units. In the crystal, N—H⋯N hydrogen bonds between the PDAB mol­ecules generate a cyclic R22(8) motif, leading to the formation of PDAB tapes extending along [100]. The tapes are arranged into (010) layers and the naphthalene mol­ecules are enclosed in cavities formed between the PDAB layers.

Related literature

For the structures of polymorphic forms of N,N′-di(pyridin-2-yl)benzene-1,4-diamine, see: Bensemann et al. (2002[Bensemann, I., Gdaniec, M. & Połoński, T. (2002). New J. Chem. 26, 448-456.]); Wicher & Gdaniec (2011a[Wicher, B. & Gdaniec, M. (2011a). Acta Cryst. E67, o3095.]). For the structures of N,N′-di(pyridin-2-yl)benzene-1,4-diamine co-crystals with phenazine and quin­oxaline, see: Gdaniec et al. (2005[Gdaniec, M., Bensemann, I. & Połoński, T. (2005). CrystEngComm, 7, 433-438.]); Wicher & Gdaniec (2011b[Wicher, B. & Gdaniec, M. (2011b). Acta Cryst. E67, o3254.]).

[Scheme 1]

Experimental

Crystal data
  • C10H8·2C16H14N4

  • Mr = 652.78

  • Monoclinic, P 21 /c

  • a = 9.2224 (1) Å

  • b = 22.8371 (2) Å

  • c = 8.8760 (1) Å

  • β = 117.936 (2)°

  • V = 1651.56 (3) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.63 mm−1

  • T = 130 K

  • 0.20 × 0.15 × 0.05 mm

Data collection
  • Oxford Diffraction SuperNova diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.931, Tmax = 1.000

  • 9878 measured reflections

  • 3020 independent reflections

  • 2671 reflections with I > 2/s(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.091

  • S = 1.05

  • 3020 reflections

  • 226 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N7—H7N⋯N16i 0.90 2.11 3.0027 (13) 175
N14—H14N⋯N2ii 0.90 2.13 3.0305 (13) 174
Symmetry codes: (i) x+1, y, z; (ii) x-1, y, z.

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

N,N'-Di(pyridin-2-yl)benzene-1,4-diamine (PDAB) is a very versatile supramolecular reagent (Bensemann et al., 2002; Gdaniec et al., 2005). Recently we have shown that this compound can form 2:1 cocrystals with an aromatic heterobase quinoxaline (Wicher & Gdaniec, 2011b). In these cocrystals PDAB molecules were organized into hydrogen-bonded tapes with N—H···N hydrogen bonds occurring between self-complementary 2-pyridylamine groups. The quinoxaline molecule enclosed in a centrosymmetric cage, due to disorder, simulated very well the naphthalene molecule. We have concluded that PDAB when cocrystalized with naphthalene should form isostructural crystals. Indeed, cocrystals of PDAB with naphthalene with the 2:1 component ratio were obtained, however, to our surprise, they were not isostructural with their quinoxaline analogue.

The title complex is shown in Fig. 1. The PDAB molecule is nonplanar and adopts an E,E form that promotes the formation of a cyclic R22(8) motif via N—H···N hydrogen bond between the self-complementary 2-pyridylamine units (Table 1). These cyclic motifs assemble PDAB molecules into tapes extending along [1 0 0]. The structure of the tape is very similar to that formed in the cocrystal with quinoxaline, however the arrangement of the tapes is different. In the cocrystal with quinoxaline the tapes were arranged into pairs via aromatic π···π stacking interactions, whereas in the title cocrystal they are arranged into (0 1 0) layers with a short C–H···C contact [H12···C9i 2.79 Å, <C12–H12···C9i 171°; symmetry code (i): x, 0.5 - y, 1/2 + z] occurring between the PDAB molecules. The naphthalene molecules are enclosed in cages formed between adjacent (0 1 0) layers where they also form short C—H···C contacts with PDAB (H17···C21i 2.78 Å, <C17–H17···C21i137°; H23···C10 2.81 Å, <C23–H23···C10 147°; symmetry code (i): x - 1, 0.5 - y, z - 1/2).

Looking for the reason for this structural alteration we have noticed that in the cocrystal with quinoxaline the guest molecule enclosed in a cavity forms with PDAB one short H···H contact of 2.09 Å. In the case of naphthalene there would be two such contacts, most probably repulsive in their nature, and therefore sufficiently destabilizing the crystal structure for it being rebuild.

Related literature top

For the structures of polymorphic forms of N,N'-di(pyridin-2-yl)benzene-1,4-diamine, see: Bensemann et al. (2002); Wicher & Gdaniec (2011a). For the structures of N,N'-di(pyridin-2-yl)benzene-1,4-diamine co-crystals with phenazine and quinoxaline, see: Gdaniec et al. (2005); Wicher & Gdaniec (2011b).

Experimental top

N,N'-Di(pyridin-2-yl)benzene-1,4-diamine (0.03 g, 0.11 mmol) and naphthalene (0.014 g, 0.11 mmol) were dissolved in 0.75 ml of butanone and placed in a closed plastic vial. After a few days, when butanone solution almost completely evaporated, colourless, plate-shaped crystals were obtained.

Refinement top

H atoms of the N—H groups were located in difference electron density maps. N—H bond lengths were standardized to 0.90 Å and Uiso(H) values were constrained to 1.2Ueq(N). All other H atoms were initially identified in difference electron density maps but were placed at calculated positions, with C—H = 0.95 Å, and were refined as riding on their carrier atoms, with Uiso(H) = 1.2Ueq(C).

Structure description top

N,N'-Di(pyridin-2-yl)benzene-1,4-diamine (PDAB) is a very versatile supramolecular reagent (Bensemann et al., 2002; Gdaniec et al., 2005). Recently we have shown that this compound can form 2:1 cocrystals with an aromatic heterobase quinoxaline (Wicher & Gdaniec, 2011b). In these cocrystals PDAB molecules were organized into hydrogen-bonded tapes with N—H···N hydrogen bonds occurring between self-complementary 2-pyridylamine groups. The quinoxaline molecule enclosed in a centrosymmetric cage, due to disorder, simulated very well the naphthalene molecule. We have concluded that PDAB when cocrystalized with naphthalene should form isostructural crystals. Indeed, cocrystals of PDAB with naphthalene with the 2:1 component ratio were obtained, however, to our surprise, they were not isostructural with their quinoxaline analogue.

The title complex is shown in Fig. 1. The PDAB molecule is nonplanar and adopts an E,E form that promotes the formation of a cyclic R22(8) motif via N—H···N hydrogen bond between the self-complementary 2-pyridylamine units (Table 1). These cyclic motifs assemble PDAB molecules into tapes extending along [1 0 0]. The structure of the tape is very similar to that formed in the cocrystal with quinoxaline, however the arrangement of the tapes is different. In the cocrystal with quinoxaline the tapes were arranged into pairs via aromatic π···π stacking interactions, whereas in the title cocrystal they are arranged into (0 1 0) layers with a short C–H···C contact [H12···C9i 2.79 Å, <C12–H12···C9i 171°; symmetry code (i): x, 0.5 - y, 1/2 + z] occurring between the PDAB molecules. The naphthalene molecules are enclosed in cages formed between adjacent (0 1 0) layers where they also form short C—H···C contacts with PDAB (H17···C21i 2.78 Å, <C17–H17···C21i137°; H23···C10 2.81 Å, <C23–H23···C10 147°; symmetry code (i): x - 1, 0.5 - y, z - 1/2).

Looking for the reason for this structural alteration we have noticed that in the cocrystal with quinoxaline the guest molecule enclosed in a cavity forms with PDAB one short H···H contact of 2.09 Å. In the case of naphthalene there would be two such contacts, most probably repulsive in their nature, and therefore sufficiently destabilizing the crystal structure for it being rebuild.

For the structures of polymorphic forms of N,N'-di(pyridin-2-yl)benzene-1,4-diamine, see: Bensemann et al. (2002); Wicher & Gdaniec (2011a). For the structures of N,N'-di(pyridin-2-yl)benzene-1,4-diamine co-crystals with phenazine and quinoxaline, see: Gdaniec et al. (2005); Wicher & Gdaniec (2011b).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. : Asymmetric unit of the title compound with displacement ellipsoids shown at the 50% probability level. The unlabelled atoms are related to the labelled ones by the symmetry operation 1 - x, -y, 1 - z.
[Figure 2] Fig. 2. : Crystal packing in the title compound viewed along the a axis and the view of the (0 1 0) layer formed by the hydrogen-bonded PDAB tapes.
N,N'-Bis(pyridin-2-yl)benzene-1,4-diamine–naphthalene (2/1) top
Crystal data top
C10H8·2C16H14N4F(000) = 688
Mr = 652.78Dx = 1.313 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ybcCell parameters from 7079 reflections
a = 9.2224 (1) Åθ = 3.9–75.7°
b = 22.8371 (2) ŵ = 0.63 mm1
c = 8.8760 (1) ÅT = 130 K
β = 117.936 (2)°Plate, colourless
V = 1651.56 (3) Å30.20 × 0.15 × 0.05 mm
Z = 2
Data collection top
Oxford Diffraction SuperNova
diffractometer
3020 independent reflections
Radiation source: Nova Cu X-ray Source2671 reflections with I > 2/s(I)
Mirror monochromatorRint = 0.019
ω scansθmax = 68.2°, θmin = 6.7°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
h = 118
Tmin = 0.931, Tmax = 1.000k = 2720
9878 measured reflectionsl = 910
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0529P)2 + 0.2963P]
where P = (Fo2 + 2Fc2)/3
3020 reflections(Δ/σ)max < 0.001
226 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C10H8·2C16H14N4V = 1651.56 (3) Å3
Mr = 652.78Z = 2
Monoclinic, P21/cCu Kα radiation
a = 9.2224 (1) ŵ = 0.63 mm1
b = 22.8371 (2) ÅT = 130 K
c = 8.8760 (1) Å0.20 × 0.15 × 0.05 mm
β = 117.936 (2)°
Data collection top
Oxford Diffraction SuperNova
diffractometer
3020 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
2671 reflections with I > 2/s(I)
Tmin = 0.931, Tmax = 1.000Rint = 0.019
9878 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.091H-atom parameters constrained
S = 1.05Δρmax = 0.17 e Å3
3020 reflectionsΔρmin = 0.19 e Å3
226 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N20.87262 (11)0.11061 (4)0.09736 (12)0.0241 (2)
N70.66539 (11)0.16648 (4)0.09585 (12)0.0245 (2)
H7N0.73170.19690.10690.029*
N140.06413 (11)0.21713 (4)0.08789 (13)0.0261 (2)
H14N0.00150.18620.08290.031*
N160.13109 (11)0.27154 (4)0.11442 (12)0.0244 (2)
C10.73812 (12)0.11242 (5)0.11994 (13)0.0210 (2)
C30.95160 (13)0.05927 (5)0.12410 (15)0.0280 (3)
H31.04600.05780.10730.034*
C40.90549 (14)0.00852 (5)0.17415 (16)0.0298 (3)
H40.96590.02670.19160.036*
C50.76666 (14)0.01096 (5)0.19811 (14)0.0266 (2)
H50.73140.02290.23410.032*
C60.68089 (13)0.06259 (5)0.16949 (14)0.0234 (2)
H60.58470.06460.18290.028*
C80.51516 (13)0.17821 (4)0.09628 (13)0.0207 (2)
C90.37373 (13)0.14622 (4)0.00512 (13)0.0213 (2)
H90.37910.11460.07190.026*
C100.22525 (13)0.16003 (4)0.00954 (13)0.0209 (2)
H100.13010.13780.07950.025*
C110.21415 (13)0.20611 (4)0.08742 (13)0.0212 (2)
C120.35601 (13)0.23827 (5)0.18907 (14)0.0237 (2)
H120.35070.26980.25610.028*
C130.50413 (13)0.22456 (5)0.19288 (13)0.0225 (2)
H130.59920.24700.26200.027*
C150.00317 (13)0.27123 (5)0.08107 (13)0.0218 (2)
C170.20195 (13)0.32340 (5)0.10952 (15)0.0273 (3)
H170.29230.32380.13330.033*
C180.15272 (14)0.37602 (5)0.07244 (15)0.0271 (2)
H180.20510.41170.07360.032*
C190.02310 (14)0.37485 (5)0.03317 (14)0.0260 (2)
H190.01300.41000.00410.031*
C200.05239 (13)0.32251 (5)0.03668 (14)0.0247 (2)
H200.14050.32100.00960.030*
C210.49781 (18)0.09257 (6)0.65351 (19)0.0418 (3)
H210.51130.12190.73480.050*
C220.41095 (17)0.10534 (6)0.4784 (2)0.0407 (3)
H220.36590.14330.44180.049*
C230.39118 (14)0.06342 (6)0.36099 (16)0.0338 (3)
H230.33270.07260.24300.041*
C240.45620 (13)0.00641 (5)0.41152 (14)0.0260 (2)
C250.43734 (15)0.03839 (6)0.29296 (16)0.0347 (3)
H250.37840.03040.17420.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N20.0202 (4)0.0227 (5)0.0307 (5)0.0003 (3)0.0131 (4)0.0019 (4)
N70.0202 (4)0.0190 (4)0.0381 (5)0.0005 (3)0.0169 (4)0.0010 (4)
N140.0216 (5)0.0195 (4)0.0415 (6)0.0003 (3)0.0184 (4)0.0002 (4)
N160.0201 (4)0.0214 (5)0.0329 (5)0.0005 (3)0.0135 (4)0.0004 (4)
C10.0183 (5)0.0210 (5)0.0223 (5)0.0006 (4)0.0084 (4)0.0027 (4)
C30.0220 (5)0.0275 (6)0.0365 (6)0.0019 (4)0.0154 (5)0.0039 (5)
C40.0278 (6)0.0227 (6)0.0369 (6)0.0056 (4)0.0135 (5)0.0008 (5)
C50.0275 (6)0.0209 (5)0.0287 (6)0.0019 (4)0.0110 (5)0.0001 (4)
C60.0208 (5)0.0238 (5)0.0266 (5)0.0013 (4)0.0118 (4)0.0010 (4)
C80.0188 (5)0.0189 (5)0.0249 (5)0.0023 (4)0.0108 (4)0.0042 (4)
C90.0236 (5)0.0183 (5)0.0236 (5)0.0005 (4)0.0123 (4)0.0003 (4)
C100.0191 (5)0.0193 (5)0.0227 (5)0.0016 (4)0.0085 (4)0.0015 (4)
C110.0197 (5)0.0192 (5)0.0258 (5)0.0024 (4)0.0115 (4)0.0034 (4)
C120.0239 (5)0.0211 (5)0.0269 (5)0.0013 (4)0.0124 (4)0.0028 (4)
C130.0192 (5)0.0209 (5)0.0247 (5)0.0020 (4)0.0081 (4)0.0011 (4)
C150.0177 (5)0.0221 (5)0.0236 (5)0.0003 (4)0.0078 (4)0.0012 (4)
C170.0216 (5)0.0258 (6)0.0364 (6)0.0022 (4)0.0151 (5)0.0016 (5)
C180.0248 (5)0.0212 (5)0.0313 (6)0.0047 (4)0.0098 (5)0.0005 (4)
C190.0250 (5)0.0224 (5)0.0255 (5)0.0019 (4)0.0077 (4)0.0019 (4)
C200.0213 (5)0.0261 (5)0.0276 (5)0.0002 (4)0.0122 (4)0.0015 (4)
C210.0534 (8)0.0369 (7)0.0546 (8)0.0155 (6)0.0416 (7)0.0104 (6)
C220.0383 (7)0.0321 (6)0.0674 (9)0.0032 (5)0.0378 (7)0.0111 (6)
C230.0219 (5)0.0436 (7)0.0356 (6)0.0009 (5)0.0132 (5)0.0154 (5)
C240.0186 (5)0.0352 (6)0.0250 (6)0.0054 (4)0.0108 (4)0.0041 (4)
C250.0350 (6)0.0458 (7)0.0272 (6)0.0154 (5)0.0178 (5)0.0032 (5)
Geometric parameters (Å, º) top
N2—C31.3415 (14)C11—C121.3996 (15)
N2—C11.3466 (14)C12—C131.3864 (15)
N7—C11.3732 (13)C12—H120.9500
N7—C81.4129 (13)C13—H130.9500
N7—H7N0.9001C15—C201.4066 (15)
N14—C151.3711 (14)C20—C191.3763 (16)
N14—C111.4081 (13)C20—H200.9500
N14—H14N0.8999C19—C181.3934 (16)
N16—C171.3436 (14)C19—H190.9500
N16—C151.3441 (14)C18—C171.3778 (16)
C1—C61.4087 (15)C18—H180.9500
C3—C41.3778 (17)C17—H170.9500
C3—H30.9500C21—C25i1.359 (2)
C4—C51.3938 (16)C21—C221.405 (2)
C4—H40.9500C21—H210.9500
C5—C61.3756 (15)C22—C231.363 (2)
C5—H50.9500C22—H220.9500
C6—H60.9500C23—C241.4155 (18)
C8—C91.3947 (15)C23—H230.9500
C8—C131.3955 (15)C24—C251.4188 (18)
C9—C101.3877 (15)C24—C24i1.420 (2)
C9—H90.9500C25—C21i1.359 (2)
C10—C111.3934 (15)C25—H250.9500
C10—H100.9500
C3—N2—C1117.53 (9)C13—C12—H12119.7
C1—N7—C8125.32 (9)C11—C12—H12119.7
C1—N7—H7N114.8C12—C13—C8120.73 (10)
C8—N7—H7N118.1C12—C13—H13119.6
C15—N14—C11125.87 (9)C8—C13—H13119.6
C15—N14—H14N116.0N16—C15—N14114.89 (9)
C11—N14—H14N117.9N16—C15—C20121.99 (10)
C17—N16—C15117.47 (9)N14—C15—C20123.08 (10)
N2—C1—N7114.91 (9)C19—C20—C15118.86 (10)
N2—C1—C6121.85 (9)C19—C20—H20120.6
N7—C1—C6123.22 (9)C15—C20—H20120.6
N2—C3—C4124.62 (10)C20—C19—C18119.67 (10)
N2—C3—H3117.7C20—C19—H19120.2
C4—C3—H3117.7C18—C19—H19120.2
C3—C4—C5117.38 (10)C17—C18—C19117.42 (10)
C3—C4—H4121.3C17—C18—H18121.3
C5—C4—H4121.3C19—C18—H18121.3
C6—C5—C4119.73 (10)N16—C17—C18124.53 (10)
C6—C5—H5120.1N16—C17—H17117.7
C4—C5—H5120.1C18—C17—H17117.7
C5—C6—C1118.88 (10)C25i—C21—C22120.32 (13)
C5—C6—H6120.6C25i—C21—H21119.8
C1—C6—H6120.6C22—C21—H21119.8
C9—C8—C13118.59 (9)C23—C22—C21120.17 (12)
C9—C8—N7121.38 (9)C23—C22—H22119.9
C13—C8—N7119.95 (9)C21—C22—H22119.9
C10—C9—C8120.75 (10)C22—C23—C24121.24 (12)
C10—C9—H9119.6C22—C23—H23119.4
C8—C9—H9119.6C24—C23—H23119.4
C9—C10—C11120.75 (10)C23—C24—C25122.80 (11)
C9—C10—H10119.6C23—C24—C24i118.50 (14)
C11—C10—H10119.6C25—C24—C24i118.70 (14)
C10—C11—C12118.52 (9)C21i—C25—C24121.07 (12)
C10—C11—N14119.57 (9)C21i—C25—H25119.5
C12—C11—N14121.83 (10)C24—C25—H25119.5
C13—C12—C11120.67 (10)
C3—N2—C1—N7178.10 (10)N14—C11—C12—C13176.65 (10)
C3—N2—C1—C60.10 (15)C11—C12—C13—C80.39 (16)
C8—N7—C1—N2173.65 (10)C9—C8—C13—C120.44 (16)
C8—N7—C1—C68.18 (17)N7—C8—C13—C12177.21 (10)
C1—N2—C3—C40.51 (17)C17—N16—C15—N14179.99 (10)
N2—C3—C4—C50.15 (18)C17—N16—C15—C202.18 (16)
C3—C4—C5—C60.83 (17)C11—N14—C15—N16168.34 (10)
C4—C5—C6—C11.40 (16)C11—N14—C15—C2013.88 (17)
N2—C1—C6—C51.05 (16)N16—C15—C20—C192.30 (16)
N7—C1—C6—C5176.99 (10)N14—C15—C20—C19179.93 (10)
C1—N7—C8—C951.81 (15)C15—C20—C19—C180.34 (16)
C1—N7—C8—C13131.51 (11)C20—C19—C18—C171.53 (16)
C13—C8—C9—C100.20 (15)C15—N16—C17—C180.14 (17)
N7—C8—C9—C10176.92 (9)C19—C18—C17—N161.71 (18)
C8—C9—C10—C110.10 (16)C25i—C21—C22—C230.01 (19)
C9—C10—C11—C120.16 (15)C21—C22—C23—C240.29 (18)
C9—C10—C11—N14176.49 (9)C22—C23—C24—C25179.68 (11)
C15—N14—C11—C10138.39 (11)C22—C23—C24—C24i0.23 (19)
C15—N14—C11—C1245.08 (16)C23—C24—C25—C21i179.73 (11)
C10—C11—C12—C130.08 (16)C24i—C24—C25—C21i0.36 (19)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N7—H7N···N16ii0.902.113.0027 (13)175
N14—H14N···N2iii0.902.133.0305 (13)174
Symmetry codes: (ii) x+1, y, z; (iii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC10H8·2C16H14N4
Mr652.78
Crystal system, space groupMonoclinic, P21/c
Temperature (K)130
a, b, c (Å)9.2224 (1), 22.8371 (2), 8.8760 (1)
β (°) 117.936 (2)
V3)1651.56 (3)
Z2
Radiation typeCu Kα
µ (mm1)0.63
Crystal size (mm)0.20 × 0.15 × 0.05
Data collection
DiffractometerOxford Diffraction SuperNova
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.931, 1.000
No. of measured, independent and
observed [I > 2/s(I)] reflections
9878, 3020, 2671
Rint0.019
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.091, 1.05
No. of reflections3020
No. of parameters226
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.19

Computer programs: CrysAlis PRO (Agilent, 2010), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N7—H7N···N16i0.902.113.0027 (13)175
N14—H14N···N2ii0.902.133.0305 (13)174
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z.
 

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBensemann, I., Gdaniec, M. & Połoński, T. (2002). New J. Chem. 26, 448–456.  Web of Science CSD CrossRef CAS Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGdaniec, M., Bensemann, I. & Połoński, T. (2005). CrystEngComm, 7, 433–438.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWicher, B. & Gdaniec, M. (2011a). Acta Cryst. E67, o3095.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWicher, B. & Gdaniec, M. (2011b). Acta Cryst. E67, o3254.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds