organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{5-Chloro-2-[(2-hy­dr­oxy­benzyl­­idene)amino]­phen­yl}(phen­yl)methanone

aPharmaceutical Research Centre, PCSIR Laboratories Complex, Karachi, Pakistan, bDepartment of Chemistry, University of Karachi, Karachi, Pakistan, and cH.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
*Correspondence e-mail: maslamchemist@hotmail.com, dr.sammer.yousuf@gmail.com

(Received 5 November 2011; accepted 16 November 2011; online 25 November 2011)

The title Schiff base compound, C20H14ClNO2, adopts an E configuration about the azomethine bond. The phenol and chloro­benzene rings form dihedral angles of 84.71 (9) and 80.70 (8)°, respectively, with the phenyl ring and are twisted by 15.32 (8)° with respect to one another. The mol­ecular conformation is stabilized by an intra­molecular O—H⋯N hydrogen bond, which forms an S(6) ring motif. In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds, forming columns parallel to the a axis.

Related literature

For the biological activity of Schiff bases, see: Khan et al. (2009[Khan, K. M., Khan, M., Ali, M., Taha, M., Rasheed, S., Perveen, S. & Choudhary, M. I. (2009). Bioorg. Med. Chem. 17, 7795-7801.]); Gerdemann et al. (2002[Gerdemann, C., Eicken, C. & Krebs, B. (2002). Acc. Chem. Res. 35, 183-191.]); Samadhiya & Halve (2001[Samadhiya, S. & Halve, A. (2001). Orient. J. Chem. 17, 119-122.]); Mallikarjun & Sangamesh (1997[Mallikarjun, S. Y. & Sangamesh, A. P. (1997). Transition Met. Chem. 22, 220-224.]); Fioravanti et al. (1995[Fioravanti, R., Biaval, M., Porrettal, G. C., Landolfil, C., Simonetti, N., Villa, A., Conte, E. & Puglia, A. P. (1995). Eur. J. Med. Chem. 30, 123-132.]); Solomon & Lowery (1993[Solomon, E. I. & Lowery, M. D. (1993). Science, 259, 1575-1581.]). For related structures, see: Aslam et al. (2011[Aslam, M., Anis, I., Afza, N., Nelofar, A. & Yousuf, S. (2011). Acta Cryst. E67, o3215.]); Zeb & Yousuf (2011[Zeb, A. & Yousuf, S. (2011). Acta Cryst. E67, o2801.]); Cox et al. (2008[Cox, P. J., Kechagias, D. & Kelly, O. (2008). Acta Cryst. B64, 206-216.]); Vasco-Mendez et al. (1996[Vasco-Mendez, N. L., Panneerselvam, K., Rudino-Pinera, E. & Soriano-Garcia, M. (1996). Anal. Sci. 12, 677-678.]).

[Scheme 1]

Experimental

Crystal data
  • C20H14ClNO2

  • Mr = 335.77

  • Triclinic, [P \overline 1]

  • a = 7.3904 (9) Å

  • b = 10.7933 (14) Å

  • c = 10.8999 (14) Å

  • α = 73.120 (2)°

  • β = 87.919 (3)°

  • γ = 82.953 (3)°

  • V = 825.71 (18) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 273 K

  • 0.43 × 0.19 × 0.16 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.903, Tmax = 0.962

  • 9338 measured reflections

  • 3066 independent reflections

  • 2481 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.109

  • S = 1.03

  • 3066 reflections

  • 221 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯N1 0.89 (2) 1.80 (2) 2.6188 (19) 152 (2)
C7—H7A⋯O1i 0.93 2.57 3.353 (2) 142
C17—H17A⋯O1ii 0.93 2.48 3.340 (2) 155
Symmetry codes: (i) -x+1, -y, -z+2; (ii) x-1, y, z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Schiff bases are well known ligands in coordination chemistry with a wide range of biological activities (Khan et al., 2009; Gerdemann et al., 2002; Samadhiya & Halve, 2001; Mallikarjun & Sangamesh, 1997; Fioravanti et al., 1995; Solomon & Lowery, 1993). The title compound was prepared as a part of our ongoing research on bioactive compounds.

The structure of title compound (Fig. 1) is similar to that of the recently reported compound {5-chloro-2-[(4-nitrobenzylidene)amino]phenyl}(phenyl)methanone (Aslam et al., 2011) with the difference that the nitrobenzene moiety is replaced by a phenol group. The phenol (C1-C6) and clorobenzene (C8-C13) rings are twisted by 15.32 (8)° and form dihedral angles of 84.71 (9)° and 80.70 (8)°, respectively, with the phenyl ring (C15-C20). The azomethine CN double bond adopts an E configuration, with the C8/N1/C6-C7 torsion angle of 178.60 (13)°. The molecular conformation is stabilized by an O2—H2A···N1 intramolecular hydrogen bond (Table 1) to form a S6 ring motif (Fig. 1). Bond lengths and angles are similar to those observed in other structurally related compounds (Aslam et al., 2011; Cox et al., 2008; Vasco-Mendez et al., 1996; Zeb & Yousuf, 2011). In the crystal structure, the molecules are linked to form columns parallel to the a axis (Fig. 2) via C7—H7A···O1 and C17—H17A···O1 intermolecular hydrogen bonds (Table 1).

Related literature top

For the biological activity of Schiff bases, see: Khan et al. (2009); Gerdemann et al. (2002); Samadhiya & Halve (2001); Mallikarjun & Sangamesh (1997); Fioravanti et al. (1995); Solomon & Lowery (1993). For related structures, see: Aslam et al. (2011); Zeb & Yousuf (2011); Cox et al. (2008); Vasco-Mendez et al. (1996).

Experimental top

The synthesis of title compound was carried out by refluxing a mixture of salicylaldehyde (1 mol) and 2-amino-5-chlorobenzophenone (1 mol) in ethanol (50 ml) along with 3 drops of conc. H2SO4 for 5 h at 343 K. After cooling the mixture was concentrated to one third under reduced pressure followed by addition of ethyl acetate (10 ml) and chloroforom (10 ml). The mixture was kept at room temperature and yellow crystals were obtained after seven days. The crystalline product was collected, washed with methanol and dried to afford the title compound in 85% yield. Slow evaporation of a methanol solution afforded yellow crystals found suitable for single-crystal X-ray diffraction studies. All chemicals were purchased from Sigma-Aldrich.

Refinement top

All C-bound H atoms were positioned geometrically with C—H = 0.93 Å, and constrained to ride on their parent atoms with Uiso(H)= 1.2Ueq(C). The hydroxy H atom atom was located in a difference Fourier map and refined isotropically. During the refinement, the C1···H2A separation was constrained to be 1.80 (2) Å.

Structure description top

Schiff bases are well known ligands in coordination chemistry with a wide range of biological activities (Khan et al., 2009; Gerdemann et al., 2002; Samadhiya & Halve, 2001; Mallikarjun & Sangamesh, 1997; Fioravanti et al., 1995; Solomon & Lowery, 1993). The title compound was prepared as a part of our ongoing research on bioactive compounds.

The structure of title compound (Fig. 1) is similar to that of the recently reported compound {5-chloro-2-[(4-nitrobenzylidene)amino]phenyl}(phenyl)methanone (Aslam et al., 2011) with the difference that the nitrobenzene moiety is replaced by a phenol group. The phenol (C1-C6) and clorobenzene (C8-C13) rings are twisted by 15.32 (8)° and form dihedral angles of 84.71 (9)° and 80.70 (8)°, respectively, with the phenyl ring (C15-C20). The azomethine CN double bond adopts an E configuration, with the C8/N1/C6-C7 torsion angle of 178.60 (13)°. The molecular conformation is stabilized by an O2—H2A···N1 intramolecular hydrogen bond (Table 1) to form a S6 ring motif (Fig. 1). Bond lengths and angles are similar to those observed in other structurally related compounds (Aslam et al., 2011; Cox et al., 2008; Vasco-Mendez et al., 1996; Zeb & Yousuf, 2011). In the crystal structure, the molecules are linked to form columns parallel to the a axis (Fig. 2) via C7—H7A···O1 and C17—H17A···O1 intermolecular hydrogen bonds (Table 1).

For the biological activity of Schiff bases, see: Khan et al. (2009); Gerdemann et al. (2002); Samadhiya & Halve (2001); Mallikarjun & Sangamesh (1997); Fioravanti et al. (1995); Solomon & Lowery (1993). For related structures, see: Aslam et al. (2011); Zeb & Yousuf (2011); Cox et al. (2008); Vasco-Mendez et al. (1996).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the b axis. Hydrogen atoms not involved in hydrogen bonding (dashed lines) are omitted.
{5-Chloro-2-[(2-hydroxybenzylidene)amino]phenyl}(phenyl)methanone top
Crystal data top
C20H14ClNO2Z = 2
Mr = 335.77F(000) = 348
Triclinic, P1Dx = 1.351 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.3904 (9) ÅCell parameters from 3265 reflections
b = 10.7933 (14) Åθ = 2.0–25.5°
c = 10.8999 (14) ŵ = 0.24 mm1
α = 73.120 (2)°T = 273 K
β = 87.919 (3)°Block, yellow
γ = 82.953 (3)°0.43 × 0.19 × 0.16 mm
V = 825.71 (18) Å3
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3066 independent reflections
Radiation source: fine-focus sealed tube2481 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
ω scanθmax = 25.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 88
Tmin = 0.903, Tmax = 0.962k = 1313
9338 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0541P)2 + 0.1538P]
where P = (Fo2 + 2Fc2)/3
3066 reflections(Δ/σ)max < 0.001
221 parametersΔρmax = 0.17 e Å3
1 restraintΔρmin = 0.20 e Å3
Crystal data top
C20H14ClNO2γ = 82.953 (3)°
Mr = 335.77V = 825.71 (18) Å3
Triclinic, P1Z = 2
a = 7.3904 (9) ÅMo Kα radiation
b = 10.7933 (14) ŵ = 0.24 mm1
c = 10.8999 (14) ÅT = 273 K
α = 73.120 (2)°0.43 × 0.19 × 0.16 mm
β = 87.919 (3)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3066 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2481 reflections with I > 2σ(I)
Tmin = 0.903, Tmax = 0.962Rint = 0.016
9338 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0381 restraint
wR(F2) = 0.109H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.17 e Å3
3066 reflectionsΔρmin = 0.20 e Å3
221 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.31204 (8)0.24660 (5)0.46997 (5)0.0854 (2)
O10.59969 (16)0.21801 (12)0.84282 (15)0.0757 (4)
O20.2754 (2)0.32066 (12)1.15776 (14)0.0788 (4)
H2A0.279 (3)0.254 (2)1.0879 (11)0.103 (8)*
N10.26996 (17)0.08203 (12)1.00695 (12)0.0487 (3)
C10.2475 (2)0.26589 (17)1.25483 (17)0.0612 (4)
C20.2341 (3)0.3472 (2)1.3787 (2)0.0828 (6)
H2B0.24960.43721.39380.099*
C30.1979 (3)0.2949 (3)1.4788 (2)0.0882 (7)
H3A0.18780.35021.56130.106*
C40.1761 (3)0.1621 (3)1.45934 (19)0.0817 (6)
H4A0.14950.12781.52790.098*
C50.1939 (2)0.0807 (2)1.33794 (17)0.0657 (5)
H5A0.18190.00891.32490.079*
C60.2299 (2)0.13059 (16)1.23310 (15)0.0519 (4)
C70.2450 (2)0.04203 (15)1.10631 (15)0.0490 (4)
H7A0.23630.04701.09670.059*
C80.28094 (19)0.00455 (14)0.88212 (14)0.0454 (3)
C90.2189 (2)0.13726 (15)0.84612 (16)0.0541 (4)
H9A0.16920.17590.90760.065*
C100.2302 (2)0.21192 (15)0.72062 (17)0.0580 (4)
H10A0.18940.30060.69760.070*
C110.3023 (2)0.15451 (16)0.62954 (16)0.0557 (4)
C120.3654 (2)0.02359 (16)0.66243 (16)0.0550 (4)
H12A0.41440.01420.60010.066*
C130.3554 (2)0.05126 (14)0.78849 (15)0.0463 (4)
C140.4369 (2)0.19231 (15)0.82362 (15)0.0487 (4)
C150.3180 (2)0.29461 (14)0.83004 (14)0.0449 (3)
C160.1298 (2)0.26661 (16)0.81996 (15)0.0529 (4)
H16A0.07600.18130.80750.063*
C170.0220 (2)0.36421 (18)0.82830 (17)0.0626 (5)
H17A0.10410.34500.82200.075*
C180.1019 (3)0.49073 (17)0.84612 (18)0.0657 (5)
H18A0.02940.55680.85200.079*
C190.2881 (3)0.51924 (16)0.85517 (19)0.0672 (5)
H19A0.34120.60450.86670.081*
C200.3961 (2)0.42217 (15)0.84726 (16)0.0558 (4)
H20A0.52210.44210.85350.067*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1056 (4)0.0725 (3)0.0594 (3)0.0004 (3)0.0066 (3)0.0054 (2)
O10.0506 (7)0.0541 (7)0.1234 (12)0.0019 (5)0.0083 (7)0.0295 (7)
O20.1159 (12)0.0473 (7)0.0672 (9)0.0021 (7)0.0064 (8)0.0111 (7)
N10.0531 (7)0.0435 (7)0.0492 (8)0.0035 (6)0.0016 (6)0.0137 (6)
C10.0636 (11)0.0598 (10)0.0556 (10)0.0029 (8)0.0010 (8)0.0113 (8)
C20.0990 (16)0.0672 (12)0.0684 (13)0.0047 (11)0.0030 (11)0.0004 (10)
C30.0985 (16)0.1036 (18)0.0499 (11)0.0121 (13)0.0008 (10)0.0024 (11)
C40.0866 (14)0.1068 (18)0.0524 (11)0.0116 (12)0.0000 (10)0.0237 (11)
C50.0666 (11)0.0776 (12)0.0561 (11)0.0078 (9)0.0022 (8)0.0241 (9)
C60.0455 (8)0.0593 (10)0.0506 (9)0.0053 (7)0.0025 (7)0.0152 (7)
C70.0470 (8)0.0467 (8)0.0546 (9)0.0046 (6)0.0012 (7)0.0171 (7)
C80.0447 (8)0.0415 (8)0.0506 (9)0.0056 (6)0.0003 (6)0.0139 (7)
C90.0634 (10)0.0412 (8)0.0596 (10)0.0012 (7)0.0017 (8)0.0196 (7)
C100.0666 (10)0.0385 (8)0.0650 (11)0.0022 (7)0.0036 (8)0.0103 (8)
C110.0580 (10)0.0499 (9)0.0536 (9)0.0073 (7)0.0001 (7)0.0058 (7)
C120.0596 (10)0.0524 (9)0.0520 (9)0.0025 (7)0.0058 (7)0.0160 (7)
C130.0451 (8)0.0407 (8)0.0533 (9)0.0054 (6)0.0017 (6)0.0143 (7)
C140.0503 (9)0.0450 (8)0.0507 (9)0.0005 (7)0.0033 (7)0.0159 (7)
C150.0519 (8)0.0416 (8)0.0401 (8)0.0008 (6)0.0008 (6)0.0122 (6)
C160.0542 (9)0.0477 (9)0.0551 (9)0.0013 (7)0.0013 (7)0.0153 (7)
C170.0517 (9)0.0691 (11)0.0684 (11)0.0096 (8)0.0044 (8)0.0217 (9)
C180.0742 (12)0.0551 (10)0.0701 (12)0.0202 (9)0.0031 (9)0.0167 (9)
C190.0777 (13)0.0423 (9)0.0805 (13)0.0027 (8)0.0081 (10)0.0169 (8)
C200.0565 (9)0.0457 (9)0.0640 (10)0.0024 (7)0.0046 (8)0.0167 (8)
Geometric parameters (Å, º) top
Cl1—C111.7386 (17)C9—C101.377 (2)
O1—C141.2125 (18)C9—H9A0.9300
O2—C11.352 (2)C10—C111.375 (2)
O2—H2A0.882 (19)C10—H10A0.9300
N1—C71.277 (2)C11—C121.378 (2)
N1—C81.4154 (19)C12—C131.382 (2)
C1—C21.388 (3)C12—H12A0.9300
C1—C61.400 (2)C13—C141.510 (2)
C2—C31.371 (3)C14—C151.479 (2)
C2—H2B0.9300C15—C161.388 (2)
C3—C41.377 (3)C15—C201.388 (2)
C3—H3A0.9300C16—C171.377 (2)
C4—C51.371 (3)C16—H16A0.9300
C4—H4A0.9300C17—C181.381 (3)
C5—C61.402 (2)C17—H17A0.9300
C5—H5A0.9300C18—C191.373 (3)
C6—C71.444 (2)C18—H18A0.9300
C7—H7A0.9300C19—C201.375 (2)
C8—C91.393 (2)C19—H19A0.9300
C8—C131.393 (2)C20—H20A0.9300
C1—O2—H2A105.0 (12)C9—C10—H10A120.2
C7—N1—C8122.32 (13)C10—C11—C12120.90 (15)
O2—C1—C2118.41 (17)C10—C11—Cl1120.10 (13)
O2—C1—C6121.81 (15)C12—C11—Cl1119.00 (14)
C2—C1—C6119.78 (18)C11—C12—C13119.61 (15)
C3—C2—C1120.0 (2)C11—C12—H12A120.2
C3—C2—H2B120.0C13—C12—H12A120.2
C1—C2—H2B120.0C12—C13—C8120.47 (14)
C2—C3—C4121.19 (19)C12—C13—C14118.56 (14)
C2—C3—H3A119.4C8—C13—C14120.87 (13)
C4—C3—H3A119.4O1—C14—C15121.85 (14)
C5—C4—C3119.4 (2)O1—C14—C13118.73 (14)
C5—C4—H4A120.3C15—C14—C13119.39 (13)
C3—C4—H4A120.3C16—C15—C20119.02 (14)
C4—C5—C6121.1 (2)C16—C15—C14121.71 (13)
C4—C5—H5A119.5C20—C15—C14119.26 (14)
C6—C5—H5A119.5C17—C16—C15120.48 (15)
C1—C6—C5118.54 (16)C17—C16—H16A119.8
C1—C6—C7121.87 (15)C15—C16—H16A119.8
C5—C6—C7119.59 (16)C16—C17—C18119.74 (16)
N1—C7—C6122.09 (15)C16—C17—H17A120.1
N1—C7—H7A119.0C18—C17—H17A120.1
C6—C7—H7A119.0C19—C18—C17120.21 (16)
C9—C8—C13118.64 (14)C19—C18—H18A119.9
C9—C8—N1125.53 (14)C17—C18—H18A119.9
C13—C8—N1115.80 (13)C18—C19—C20120.23 (16)
C10—C9—C8120.82 (15)C18—C19—H19A119.9
C10—C9—H9A119.6C20—C19—H19A119.9
C8—C9—H9A119.6C19—C20—C15120.31 (16)
C11—C10—C9119.56 (15)C19—C20—H20A119.8
C11—C10—H10A120.2C15—C20—H20A119.8
O2—C1—C2—C3177.1 (2)C11—C12—C13—C80.4 (2)
C6—C1—C2—C32.1 (3)C11—C12—C13—C14175.92 (15)
C1—C2—C3—C40.7 (4)C9—C8—C13—C120.7 (2)
C2—C3—C4—C51.1 (4)N1—C8—C13—C12177.30 (13)
C3—C4—C5—C61.4 (3)C9—C8—C13—C14175.60 (14)
O2—C1—C6—C5177.45 (16)N1—C8—C13—C146.4 (2)
C2—C1—C6—C51.7 (3)C12—C13—C14—O182.0 (2)
O2—C1—C6—C71.6 (3)C8—C13—C14—O194.33 (19)
C2—C1—C6—C7179.24 (16)C12—C13—C14—C1596.24 (17)
C4—C5—C6—C10.0 (3)C8—C13—C14—C1587.42 (18)
C4—C5—C6—C7179.05 (16)O1—C14—C15—C16173.85 (16)
C8—N1—C7—C6178.60 (13)C13—C14—C15—C168.0 (2)
C1—C6—C7—N12.1 (2)O1—C14—C15—C205.8 (2)
C5—C6—C7—N1176.98 (15)C13—C14—C15—C20172.40 (14)
C7—N1—C8—C918.6 (2)C20—C15—C16—C170.7 (2)
C7—N1—C8—C13163.59 (14)C14—C15—C16—C17178.96 (15)
C13—C8—C9—C100.2 (2)C15—C16—C17—C180.4 (3)
N1—C8—C9—C10177.59 (15)C16—C17—C18—C190.2 (3)
C8—C9—C10—C110.6 (3)C17—C18—C19—C200.4 (3)
C9—C10—C11—C120.8 (3)C18—C19—C20—C150.0 (3)
C9—C10—C11—Cl1178.32 (13)C16—C15—C20—C190.5 (2)
C10—C11—C12—C130.3 (3)C14—C15—C20—C19179.16 (16)
Cl1—C11—C12—C13178.83 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···N10.89 (2)1.80 (2)2.6188 (19)152 (2)
C7—H7A···O1i0.932.573.353 (2)142
C17—H17A···O1ii0.932.483.340 (2)155
Symmetry codes: (i) x+1, y, z+2; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC20H14ClNO2
Mr335.77
Crystal system, space groupTriclinic, P1
Temperature (K)273
a, b, c (Å)7.3904 (9), 10.7933 (14), 10.8999 (14)
α, β, γ (°)73.120 (2), 87.919 (3), 82.953 (3)
V3)825.71 (18)
Z2
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.43 × 0.19 × 0.16
Data collection
DiffractometerBruker SMART APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.903, 0.962
No. of measured, independent and
observed [I > 2σ(I)] reflections
9338, 3066, 2481
Rint0.016
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.109, 1.03
No. of reflections3066
No. of parameters221
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.17, 0.20

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···N10.885 (16)1.80 (2)2.6188 (19)152.2 (17)
C7—H7A···O1i0.93002.57003.353 (2)142.00
C17—H17A···O1ii0.93002.48003.340 (2)155.00
Symmetry codes: (i) x+1, y, z+2; (ii) x1, y, z.
 

Acknowledgements

MA express his gratitude to the Pakistan Council of Scientific and Industrial Research Laboratories Complex, Karachi, the Department of Chemistry, University of Karachi, and the H·E.J. Research Institute of Chemistry, Inter­national Center for Chemical and Biological Sciences, University of Karachi, for providing financial support, research facilities and X-ray diffraction facilities, respectively.

References

First citationAslam, M., Anis, I., Afza, N., Nelofar, A. & Yousuf, S. (2011). Acta Cryst. E67, o3215.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCox, P. J., Kechagias, D. & Kelly, O. (2008). Acta Cryst. B64, 206–216.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFioravanti, R., Biaval, M., Porrettal, G. C., Landolfil, C., Simonetti, N., Villa, A., Conte, E. & Puglia, A. P. (1995). Eur. J. Med. Chem. 30, 123–132.  CrossRef CAS Web of Science Google Scholar
First citationGerdemann, C., Eicken, C. & Krebs, B. (2002). Acc. Chem. Res. 35, 183–191.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKhan, K. M., Khan, M., Ali, M., Taha, M., Rasheed, S., Perveen, S. & Choudhary, M. I. (2009). Bioorg. Med. Chem. 17, 7795–7801.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMallikarjun, S. Y. & Sangamesh, A. P. (1997). Transition Met. Chem. 22, 220–224.  Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationSamadhiya, S. & Halve, A. (2001). Orient. J. Chem. 17, 119–122.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSolomon, E. I. & Lowery, M. D. (1993). Science, 259, 1575–1581.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVasco-Mendez, N. L., Panneerselvam, K., Rudino-Pinera, E. & Soriano-Garcia, M. (1996). Anal. Sci. 12, 677–678.  CAS Google Scholar
First citationZeb, A. & Yousuf, S. (2011). Acta Cryst. E67, o2801.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds