organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-[(2-Hy­dr­oxy­naphthalen-1-yl)(morpholin-4-yl)meth­yl]benzo­nitrile

aOrdered Matter Science Research Center, Department of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: chenxinyuanseu@yahoo.com.cn

(Received 8 November 2011; accepted 22 November 2011; online 30 November 2011)

The title compound, C22H20N2O2, was synthesized via a multicomponent reaction using naphthalen-2-ol, morpholine and 4-formyl­benzonitrile. The dihedral angle between the naphthalene ring system and the benzene ring is 81.25 (10)°. The morpholine ring adopts a chair conformation. The mol­ecular conformation is stabilized by intra­molecular O—H⋯N and C—H⋯O hydrogen bonds. In the crystal, inter­molecular C—H⋯N hydrogen bonds link mol­ecules into helical chains running parallel to the c axis.

Related literature

For background to multi-component reactions, see: Devi & Bhuyan (2004[Devi, I. & Bhuyan, P. J. (2004). Tetrahedron Lett. 45, 8625-8627.]); Domling & Ugi (2000[Domling, A. & Ugi, I. (2000). Angew. Chem. Int. Ed. 39, 3168-3210.]). Hulme & Gore (2003[Hulme, C. & Gore, V. (2003). Curr. Med. Chem. 10, 51-80.]); Ugi (1962[Ugi, I. (1962). Angew. Chem. Int. Ed. Engl. 1, 8-21.]). For ring puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C22H20N2O2

  • Mr = 344.40

  • Trigonal, [R \overline 3]

  • a = 18.294 (3) Å

  • c = 28.738 (6) Å

  • V = 8329 (4) Å3

  • Z = 18

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 K

  • 0.20 × 0.15 × 0.10 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.910, Tmax = 1.000

  • 24077 measured reflections

  • 3326 independent reflections

  • 1786 reflections with I > 2σ(I)

  • Rint = 0.138

Refinement
  • R[F2 > 2σ(F2)] = 0.081

  • wR(F2) = 0.210

  • S = 1.03

  • 3326 reflections

  • 235 parameters

  • 7 restraints

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.85 1.82 2.601 (4) 151
C21—H21A⋯O1 0.93 2.54 3.300 (4) 139
C7—H7A⋯N2i 0.93 2.44 3.327 (9) 160
Symmetry code: (i) [-y+{\script{7\over 3}}, x-y+{\script{5\over 3}}, z-{\script{1\over 3}}].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Multi-component reactions (MCRs) (Hulme & Gore, 2003; Ugi, 1962) involving at least three starting materials in a one-pot reaction have attracted considerable attention in terms of saving both energy and raw materials (Devi & Bhuyan, 2004). Compared to conventional multi-step organic syntheses, MCRs have advantages that include the simplicity of a one-pot procedure and the buildup of complex molecules (Domling & Ugi, 2000). We report here the synthesis and crystal structure of the title compound, 4-4-[(2-hydroxynaphthalen-1-yl)(morpholino)methyl]benzonitrile.

In the title compound (Fig. 1) bond lengths and angles have normal values. The dihedral angle between the naphthalene ring system and the benzene ring is 81.25 (10)°. The morpholine ring (N1/C12/C13/O2/C14/C15) assumes a boat conformation, with puckering parameters <i<Q, θ and φ (Cremer & Pople, 1975) of 0.559 (4) Å, 179.3 (4)° and -159 (4)°, respectively. The molecular conformation is stabilized by intramolecular O—H···N and C—H···O hydrogen bonds (Table 1). In the crystal structure, molecules are linked into helical chains parallel to the c axis by intermolecular C—H···N hydrogen bonds.

Related literature top

For background to multi-component reactions, see: Devi & Bhuyan (2004); Domling & Ugi (2000). Hulme & Gore (2003); Ugi (1962). For ring puckering parameters, see: Cremer & Pople (1975).

Experimental top

A dry 100 ml flask was charged with 4-formylbenzonitrile (15 mmol), naphthalen-2-ol (15 mmol) and morpholine (15 mmol). The mixture was stirred at 373 K for 12 h, then ethanol (15 ml) was added. After heating under reflux for 1 h, the precipitate was filtrated out and washed with ethanol (10 ml × 3) to give the title compound. Colourless crystals were obtained by slow evaporation of a dichloromethane solution.

Refinement top

All the H atoms attached to C atoms were situated into the idealized positions and treated as riding, with C–H = 0.93 Å (aromatic), 0.97 Å (methylene) and 0.98 Å (methine), and with Uiso(H) = 1.2Ueq(C). The hydroxyl H atom was located in a difference Fourier map and refined as riding, with O—H = 0.82 Å and with Uiso(H) = 1.5Ueq(O). Restraints (SIMU and DELU) were used for stabilizing the refinement of atoms C5 and C6. The quality of the crystal available was not optimal and it was weakly diffracting, with no significant data obtained beyond θ = 20°. Although recrystallization was attempted repeatedly, no better crystals could be obtained. This could account for the rather high Rint value (0.138) and for the poor precision of the analysis.

Structure description top

Multi-component reactions (MCRs) (Hulme & Gore, 2003; Ugi, 1962) involving at least three starting materials in a one-pot reaction have attracted considerable attention in terms of saving both energy and raw materials (Devi & Bhuyan, 2004). Compared to conventional multi-step organic syntheses, MCRs have advantages that include the simplicity of a one-pot procedure and the buildup of complex molecules (Domling & Ugi, 2000). We report here the synthesis and crystal structure of the title compound, 4-4-[(2-hydroxynaphthalen-1-yl)(morpholino)methyl]benzonitrile.

In the title compound (Fig. 1) bond lengths and angles have normal values. The dihedral angle between the naphthalene ring system and the benzene ring is 81.25 (10)°. The morpholine ring (N1/C12/C13/O2/C14/C15) assumes a boat conformation, with puckering parameters <i<Q, θ and φ (Cremer & Pople, 1975) of 0.559 (4) Å, 179.3 (4)° and -159 (4)°, respectively. The molecular conformation is stabilized by intramolecular O—H···N and C—H···O hydrogen bonds (Table 1). In the crystal structure, molecules are linked into helical chains parallel to the c axis by intermolecular C—H···N hydrogen bonds.

For background to multi-component reactions, see: Devi & Bhuyan (2004); Domling & Ugi (2000). Hulme & Gore (2003); Ugi (1962). For ring puckering parameters, see: Cremer & Pople (1975).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing displacement ellipsoids drawn at the 30% probability level.
4-[(2-Hydroxynaphthalen-1-yl)(morpholin-4-yl)methyl]benzonitrile top
Crystal data top
C22H20N2O2Dx = 1.236 Mg m3
Mr = 344.40Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3Cell parameters from 3326 reflections
Hall symbol: -R 3θ = 3.1–25.2°
a = 18.294 (3) ŵ = 0.08 mm1
c = 28.738 (6) ÅT = 298 K
V = 8329 (4) Å3Block, colourless
Z = 180.20 × 0.15 × 0.10 mm
F(000) = 3276
Data collection top
Rigaku Mercury2
diffractometer
3326 independent reflections
Radiation source: fine-focus sealed tube1786 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.138
Detector resolution: 13.6612 pixels mm-1θmax = 25.2°, θmin = 3.1°
CCD profile fitting scansh = 2121
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 2121
Tmin = 0.910, Tmax = 1.000l = 3434
24077 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.081Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.210H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0825P)2 + 7.1283P]
where P = (Fo2 + 2Fc2)/3
3326 reflections(Δ/σ)max < 0.001
235 parametersΔρmax = 0.22 e Å3
7 restraintsΔρmin = 0.27 e Å3
Crystal data top
C22H20N2O2Z = 18
Mr = 344.40Mo Kα radiation
Trigonal, R3µ = 0.08 mm1
a = 18.294 (3) ÅT = 298 K
c = 28.738 (6) Å0.20 × 0.15 × 0.10 mm
V = 8329 (4) Å3
Data collection top
Rigaku Mercury2
diffractometer
3326 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1786 reflections with I > 2σ(I)
Tmin = 0.910, Tmax = 1.000Rint = 0.138
24077 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0817 restraints
wR(F2) = 0.210H-atom parameters constrained
S = 1.03Δρmax = 0.22 e Å3
3326 reflectionsΔρmin = 0.27 e Å3
235 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6590 (2)0.9543 (2)0.01901 (11)0.0550 (9)
N10.58212 (15)0.86806 (15)0.04966 (8)0.0455 (7)
O10.51037 (19)0.90933 (18)0.01526 (10)0.0841 (9)
H10.51810.89200.01080.126*
C20.5846 (3)0.9432 (2)0.03881 (13)0.0713 (12)
N20.7870 (3)1.3181 (3)0.14213 (18)0.146 (2)
O20.48604 (18)0.71036 (17)0.09733 (11)0.0913 (10)
C30.5833 (5)0.9667 (3)0.08470 (18)0.110 (2)
H3A0.53340.95980.09720.132*
C40.6527 (7)0.9991 (4)0.11117 (19)0.140 (3)
H4A0.65041.01570.14140.168*
C50.7294 (5)1.0085 (3)0.09428 (18)0.119 (2)
C60.8038 (6)1.0382 (4)0.1215 (2)0.145 (3)
H6A0.80201.05270.15240.174*
C70.8752 (5)1.0465 (4)0.1058 (3)0.160 (4)
H7A0.92231.06720.12500.192*
C80.8794 (4)1.0236 (3)0.0596 (2)0.131 (2)
H8A0.92891.02750.04840.158*
C90.8103 (3)0.9956 (2)0.03107 (17)0.0894 (15)
H9A0.81460.98260.00030.107*
C100.7325 (3)0.9858 (2)0.04718 (13)0.0728 (12)
C110.66336 (19)0.93938 (19)0.03258 (10)0.0459 (8)
H11A0.70760.92490.03740.055*
C120.5716 (2)0.7879 (2)0.03122 (13)0.0606 (10)
H12A0.61840.78110.04130.073*
H12B0.57190.78940.00250.073*
C130.4897 (3)0.7141 (2)0.04806 (16)0.0834 (13)
H13A0.44280.71920.03630.100*
H13B0.48420.66210.03600.100*
C140.4948 (3)0.7858 (2)0.11521 (14)0.0771 (12)
H14A0.49250.78280.14890.092*
H14B0.44800.79220.10450.092*
C150.5765 (2)0.8617 (2)0.10044 (12)0.0584 (9)
H15A0.57980.91240.11320.070*
H15B0.62350.85720.11260.070*
C160.6885 (2)1.0214 (2)0.05850 (10)0.0478 (8)
C170.7626 (2)1.0606 (2)0.08376 (12)0.0621 (10)
H17A0.79541.03500.08630.075*
C180.7886 (2)1.1370 (3)0.10521 (13)0.0733 (12)
H18A0.83951.16330.12140.088*
C190.7396 (3)1.1747 (2)0.10287 (12)0.0651 (11)
C200.6641 (2)1.1355 (2)0.07818 (12)0.0626 (10)
H20A0.63021.16000.07670.075*
C210.6400 (2)1.0603 (2)0.05593 (11)0.0554 (9)
H21A0.59021.03490.03880.067*
C220.7657 (3)1.2544 (3)0.12509 (16)0.0976 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.086 (3)0.047 (2)0.036 (2)0.036 (2)0.0023 (19)0.0008 (15)
N10.0493 (16)0.0456 (16)0.0418 (16)0.0238 (13)0.0012 (12)0.0033 (12)
O10.090 (2)0.090 (2)0.084 (2)0.0538 (18)0.0321 (17)0.0075 (16)
C20.118 (4)0.054 (2)0.045 (2)0.045 (3)0.022 (2)0.0062 (18)
N20.126 (4)0.096 (3)0.153 (4)0.008 (3)0.030 (3)0.067 (3)
O20.106 (2)0.0635 (19)0.092 (2)0.0338 (17)0.0362 (18)0.0195 (16)
C30.189 (6)0.092 (4)0.060 (3)0.077 (4)0.045 (4)0.004 (3)
C40.280 (10)0.078 (4)0.047 (4)0.078 (5)0.024 (5)0.001 (3)
C50.231 (6)0.043 (2)0.049 (3)0.043 (3)0.054 (3)0.005 (2)
C60.250 (6)0.058 (3)0.066 (3)0.031 (4)0.070 (4)0.002 (2)
C70.193 (7)0.068 (4)0.144 (7)0.008 (5)0.123 (6)0.008 (4)
C80.129 (5)0.080 (3)0.154 (6)0.028 (3)0.087 (4)0.007 (3)
C90.099 (4)0.064 (3)0.095 (3)0.034 (3)0.051 (3)0.004 (2)
C100.112 (4)0.041 (2)0.055 (3)0.031 (2)0.028 (2)0.0009 (18)
C110.0470 (19)0.049 (2)0.044 (2)0.0261 (17)0.0012 (15)0.0000 (15)
C120.068 (2)0.052 (2)0.063 (2)0.0313 (19)0.0085 (19)0.0001 (17)
C130.086 (3)0.048 (2)0.098 (4)0.021 (2)0.013 (3)0.004 (2)
C140.083 (3)0.068 (3)0.077 (3)0.036 (2)0.026 (2)0.010 (2)
C150.063 (2)0.063 (2)0.049 (2)0.032 (2)0.0085 (17)0.0072 (17)
C160.048 (2)0.053 (2)0.0362 (19)0.0210 (17)0.0011 (15)0.0025 (15)
C170.051 (2)0.073 (3)0.055 (2)0.025 (2)0.0007 (17)0.0086 (19)
C180.051 (2)0.083 (3)0.059 (3)0.014 (2)0.0010 (18)0.020 (2)
C190.068 (3)0.053 (2)0.045 (2)0.009 (2)0.0174 (19)0.0085 (17)
C200.074 (3)0.054 (2)0.059 (2)0.032 (2)0.002 (2)0.0073 (18)
C210.065 (2)0.049 (2)0.052 (2)0.0287 (19)0.0093 (17)0.0094 (17)
C220.081 (3)0.073 (3)0.088 (3)0.000 (2)0.024 (2)0.033 (3)
Geometric parameters (Å, º) top
C1—C21.392 (5)C9—H9A0.9300
C1—C101.422 (5)C11—C161.526 (4)
C1—C111.517 (4)C11—H11A0.9800
N1—C151.464 (4)C12—C131.511 (5)
N1—C121.478 (4)C12—H12A0.9700
N1—C111.488 (4)C12—H12B0.9700
O1—C21.359 (5)C13—H13A0.9700
O1—H10.8517C13—H13B0.9700
C2—C31.391 (6)C14—C151.505 (5)
N2—C221.137 (5)C14—H14A0.9700
O2—C141.405 (4)C14—H14B0.9700
O2—C131.418 (5)C15—H15A0.9700
C3—C41.337 (9)C15—H15B0.9700
C3—H3A0.9300C16—C171.381 (4)
C4—C51.410 (9)C16—C211.389 (4)
C4—H4A0.9300C17—C181.377 (5)
C5—C61.423 (10)C17—H17A0.9300
C5—C101.425 (7)C18—C191.379 (5)
C6—C71.317 (10)C18—H18A0.9300
C6—H6A0.9300C19—C201.391 (5)
C7—C81.403 (10)C19—C221.437 (6)
C7—H7A0.9300C20—C211.374 (4)
C8—C91.373 (6)C20—H20A0.9300
C8—H8A0.9300C21—H21A0.9300
C9—C101.420 (6)
C2—C1—C10118.9 (4)N1—C12—H12A109.5
C2—C1—C11120.6 (3)C13—C12—H12A109.5
C10—C1—C11120.3 (3)N1—C12—H12B109.5
C15—N1—C12108.1 (3)C13—C12—H12B109.5
C15—N1—C11113.5 (2)H12A—C12—H12B108.1
C12—N1—C11109.2 (2)O2—C13—C12111.4 (3)
C2—O1—H1107.0O2—C13—H13A109.4
O1—C2—C3116.4 (5)C12—C13—H13A109.4
O1—C2—C1123.0 (3)O2—C13—H13B109.4
C3—C2—C1120.6 (5)C12—C13—H13B109.4
C14—O2—C13109.8 (3)H13A—C13—H13B108.0
C4—C3—C2121.1 (6)O2—C14—C15112.1 (3)
C4—C3—H3A119.4O2—C14—H14A109.2
C2—C3—H3A119.4C15—C14—H14A109.2
C3—C4—C5121.6 (5)O2—C14—H14B109.2
C3—C4—H4A119.2C15—C14—H14B109.2
C5—C4—H4A119.2H14A—C14—H14B107.9
C4—C5—C6124.1 (7)N1—C15—C14110.6 (3)
C4—C5—C10118.2 (6)N1—C15—H15A109.5
C6—C5—C10117.6 (8)C14—C15—H15A109.5
C7—C6—C5124.0 (8)N1—C15—H15B109.5
C7—C6—H6A118.0C14—C15—H15B109.5
C5—C6—H6A118.0H15A—C15—H15B108.1
C6—C7—C8119.3 (6)C17—C16—C21118.4 (3)
C6—C7—H7A120.3C17—C16—C11120.1 (3)
C8—C7—H7A120.3C21—C16—C11121.5 (3)
C9—C8—C7119.9 (7)C18—C17—C16120.9 (4)
C9—C8—H8A120.0C18—C17—H17A119.6
C7—C8—H8A120.0C16—C17—H17A119.6
C8—C9—C10121.9 (5)C17—C18—C19120.3 (3)
C8—C9—H9A119.0C17—C18—H18A119.8
C10—C9—H9A119.0C19—C18—H18A119.8
C9—C10—C1123.4 (4)C18—C19—C20119.5 (3)
C9—C10—C5117.2 (5)C18—C19—C22121.1 (4)
C1—C10—C5119.4 (5)C20—C19—C22119.4 (4)
N1—C11—C1111.2 (3)C21—C20—C19119.5 (4)
N1—C11—C16112.3 (2)C21—C20—H20A120.2
C1—C11—C16108.5 (2)C19—C20—H20A120.2
N1—C11—H11A108.3C20—C21—C16121.4 (3)
C1—C11—H11A108.3C20—C21—H21A119.3
C16—C11—H11A108.3C16—C21—H21A119.3
N1—C12—C13110.6 (3)N2—C22—C19179.0 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.851.822.601 (4)151
C21—H21A···O10.932.543.300 (4)139
C7—H7A···N2i0.932.443.327 (9)160
Symmetry code: (i) y+7/3, xy+5/3, z1/3.

Experimental details

Crystal data
Chemical formulaC22H20N2O2
Mr344.40
Crystal system, space groupTrigonal, R3
Temperature (K)298
a, c (Å)18.294 (3), 28.738 (6)
V3)8329 (4)
Z18
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.20 × 0.15 × 0.10
Data collection
DiffractometerRigaku Mercury2
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.910, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
24077, 3326, 1786
Rint0.138
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.081, 0.210, 1.03
No. of reflections3326
No. of parameters235
No. of restraints7
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.27

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.851.822.601 (4)151.0
C21—H21A···O10.932.543.300 (4)139
C7—H7A···N2i0.932.443.327 (9)160
Symmetry code: (i) y+7/3, xy+5/3, z1/3.
 

Acknowledgements

This work was supported by a start-up grant from Anyang Institute of Technology, China.

References

First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDevi, I. & Bhuyan, P. J. (2004). Tetrahedron Lett. 45, 8625–8627.  Web of Science CrossRef CAS Google Scholar
First citationDomling, A. & Ugi, I. (2000). Angew. Chem. Int. Ed. 39, 3168–3210.  CrossRef CAS Google Scholar
First citationHulme, C. & Gore, V. (2003). Curr. Med. Chem. 10, 51–80.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUgi, I. (1962). Angew. Chem. Int. Ed. Engl. 1, 8–21.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds