metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra-μ-acetato-κ8O:O′-bis­­{[2,2-dimeth­yl-N-(pyridin-2-yl)propanamide-κN1]copper(II)}(CuCu)

aDepartment of Chemistry, University of Louisville, Louisville, KY 40292, USA
*Correspondence e-mail: msmashuta.xray@louisville.edu

(Received 8 November 2011; accepted 22 November 2011; online 30 November 2011)

The crystal structure of the title compound, [Cu2(C2H3O2)4(C10H14N2O)2], reveals a dinuclear CuII complex located about a center of inversion. The coordination environment of each CuII cation is distorted octa­hedral, composed of four bridging acetate ligands, an apical pyridine donor and is completed by a Cu—Cu bond. The amide H atom forms intra­molecular hydrogen bonds to two carboxyl O atoms. In the crystal, weak inter­molecular pyridine–amide C—H⋯O inter­actions are also present.

Related literature

For related paddlewheel structures, see: Aakeröy et al. (2003[Aakeröy, C. B., Beatty, A. M., Desper, J., O'Shea, M. & Valdés-Martínez, J. (2003). Dalton Trans. pp. 3956-3962.]); Barquín et al. (2004[Barquín, M., González Garmendia, M. J., Pachecco, S., Pinilla, E., Quintela, S., Seco, J. M. & Torres, M. R. (2004). Inorg. Chim. Acta, 357, 3230-3236.], 2006[Barquín, M., González Garmendia, M. J., Larrínaga, L., Pinilla, E. & Torres, M. R. (2006). Inorg. Chim. Acta, 359, 2424-2430.]); Fairuz et al. (2010[Fairuz, Z. A., Aiyub, Z., Abdullah, Z., Ng, S. W. & Tiekink, E. R. T. (2010). Acta Cryst. E66, m1049-m1050.]); Seco et al. (2004[Seco, J. M., González Garmendia, M. J., Pinilla, E. & Torres, M. R. (2004). Polyhedron, 21, 457-464.]); Sieroń (2004[Sieroń, L. (2004). Acta Cryst. E60, m577-m578.]); Shi et al. (2008[Shi, C.-Y., Ge, C.-H., Gao, E.-J., Yin, H.-X. & Lui, Q.-T. (2008). Inorg. Chem. Commun. 11, 703-706.]). For Cu⋯Cu separations in related compounds, see: Seco et al. (2004[Seco, J. M., González Garmendia, M. J., Pinilla, E. & Torres, M. R. (2004). Polyhedron, 21, 457-464.]). For hydrogen bonding, see: Desiraju (1995[Desiraju, G. R. (1995). Angew. Chem. Int. Ed. 34, 2311-2327.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C2H3O2)4(C10H14N2O)2]

  • Mr = 719.74

  • Monoclinic, P 21 /c

  • a = 13.8508 (8) Å

  • b = 11.0612 (5) Å

  • c = 11.0301 (6) Å

  • β = 104.508 (6)°

  • V = 1635.98 (15) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.36 mm−1

  • T = 100 K

  • 0.41 × 0.38 × 0.38 mm

Data collection
  • Oxford Diffraction Xcalibur Ruby Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.581, Tmax = 0.602

  • 7567 measured reflections

  • 3515 independent reflections

  • 3070 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.094

  • S = 1.01

  • 3515 reflections

  • 208 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.73 e Å−3

  • Δρmin = −0.58 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—O3 1.9670 (17)
Cu1—O2 1.9734 (17)
Cu1—O4 1.9739 (16)
Cu1—O1 1.9762 (16)
Cu1—N1 2.1990 (19)
Cu1—Cu1i 2.6168 (6)
Symmetry code: (i) -x+1, -y+1, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯O4 0.80 2.38 3.118 (3) 154.1
N2—H2N⋯O2 0.80 2.71 3.226 (3) 124.0
C7—H7⋯O5ii 0.95 2.69 3.298 (3) 122
C8—H8⋯O5ii 0.95 2.63 3.262 (3) 124
C6—H6⋯O1iii 0.95 2.58 3.460 (3) 154
Symmetry codes: (ii) -x+2, -y+1, -z+2; (iii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Amide functionalized pyridine ligands have the potential to be used in the synthesis of supramolecular materials; particularly transition metal coordination polymers. The title complex, (I), is structurally similar to paddlewheel structures of other Cu2(OAc)4L2 complexes. (Aakeröy et al., 2003; Barquín et al., 2004, 2006; Fairuz et al., 2010; Seco et al.; 2004; Sieroń, 2004; Shi, et al., 2008). The dinuclear molecule lies about an inversion center. Attached to this Cu2(OAc)4 core unit are two apical pyridine ligands functionalized in the 2-position of the ring with a pendant amide. The average Cu-O (1.9726 (17) Å) and Cu-N (2.1990 (19) Å) distances and corresponding bond angles are consistent with structurally similar CuII complexes (Table 1). While the Cu—Cu separation of 2.6168 (6) Å) is towards the lower limit, it is within the range of values reported for CuII paddlewheel structures. (Sieroń, 2004). The amide hydrogen forms intramolecular hydrogen bonds to two acetate oxygen atoms N2-H2- - -O4 and N2-H2- - -O2 (Table 2), (Desiraju, 1995). There are also three weak intermolecular Cpy-H- - -O amide interactions between adjacent metal complexes, C7-H7- - -O5, C8-H8- - -O5 and C6-H6- - -O1 (Table 2). These interactions result in the formation of infinite linear chains along the crystallographic AC diagonal and project through the BC face. The amide group and pyridine ring display a twist angle (C9-NH2-C10-O5) of 3.3 (4)°.

Related literature top

For related paddlewheel structures, see: Aakeröy et al. (2003); Barquín et al. (2004, 2006); Fairuz et al. (2010); Seco et al. (2004); Sieroń (2004); Shi et al. (2008). For Cu···Cu separations in related compounds, see: Seco et al. (2004). For hydrogen bonding, see: Desiraju (1995).

Experimental top

A stirred solution of (2-pivaloylamino)pyridine (0.4150 g, 2.328 mmol) in acetone (10 ml) was combined with a solution of Cu(CH3COO)2H2O (0.2324 g, 1.1642 mmol) in methanol (20 ml). The reaction was refluxed for an hour and stirring was continued for 24 h at room temperature. The reaction mixture was filtered and the solvent was removed via rotary evaporation. The resulting solid was dissolved in diethyl ether from which blue-green crystals deposited over several days.

Refinement top

The amide hydrogen atom was located from difference maps and refined isotropically. Aromatic H atom positions were calculated, and included as fixed contributions with Uiso(H) = 1.2 x Ueq(C). Methyl H atoms were placed in calculated positions and allowed to ride (the torsion angle which defines its orientation was allowed to refine) on the attached C atom, and these atoms were assigned Uiso(H) = 1.5 x Ueq(C). The highest peak, 0.73 e/Å3, and deepest trough, -0.58 e/Å3, are located 1.10 Å and 0.82 Å from Cu1 respectively.

Structure description top

Amide functionalized pyridine ligands have the potential to be used in the synthesis of supramolecular materials; particularly transition metal coordination polymers. The title complex, (I), is structurally similar to paddlewheel structures of other Cu2(OAc)4L2 complexes. (Aakeröy et al., 2003; Barquín et al., 2004, 2006; Fairuz et al., 2010; Seco et al.; 2004; Sieroń, 2004; Shi, et al., 2008). The dinuclear molecule lies about an inversion center. Attached to this Cu2(OAc)4 core unit are two apical pyridine ligands functionalized in the 2-position of the ring with a pendant amide. The average Cu-O (1.9726 (17) Å) and Cu-N (2.1990 (19) Å) distances and corresponding bond angles are consistent with structurally similar CuII complexes (Table 1). While the Cu—Cu separation of 2.6168 (6) Å) is towards the lower limit, it is within the range of values reported for CuII paddlewheel structures. (Sieroń, 2004). The amide hydrogen forms intramolecular hydrogen bonds to two acetate oxygen atoms N2-H2- - -O4 and N2-H2- - -O2 (Table 2), (Desiraju, 1995). There are also three weak intermolecular Cpy-H- - -O amide interactions between adjacent metal complexes, C7-H7- - -O5, C8-H8- - -O5 and C6-H6- - -O1 (Table 2). These interactions result in the formation of infinite linear chains along the crystallographic AC diagonal and project through the BC face. The amide group and pyridine ring display a twist angle (C9-NH2-C10-O5) of 3.3 (4)°.

For related paddlewheel structures, see: Aakeröy et al. (2003); Barquín et al. (2004, 2006); Fairuz et al. (2010); Seco et al. (2004); Sieroń (2004); Shi et al. (2008). For Cu···Cu separations in related compounds, see: Seco et al. (2004). For hydrogen bonding, see: Desiraju (1995).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. ORTEP-3 (Farrugia, 1997) view of (I) showing 50% displacement ellipsoids. H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Packing diagram displaying hydrogen-bonding interactions. [Symmetry codes: (i) -x + 1, -y + 1, -z + 1 (ii) -x+2, 1 - y, -z] (iii) x, -y + 3/2, z + 1/2.
Tetra-µ-acetato-κ8O:O'-bis{[2,2-dimethyl-N- (pyridin-2-yl)propanamide-κN1]copper(II)}(CuCu) top
Crystal data top
[Cu2(C2H3O2)4(C10H14N2O)2]F(000) = 748
Mr = 719.74Dx = 1.461 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4128 reflections
a = 13.8508 (8) Åθ = 3.6–28.8°
b = 11.0612 (5) ŵ = 1.36 mm1
c = 11.0301 (6) ÅT = 100 K
β = 104.508 (6)°Block, blue-green
V = 1635.98 (15) Å30.41 × 0.38 × 0.38 mm
Z = 2
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
3515 independent reflections
Radiation source: Enhance (Mo) X-ray Source3070 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
Detector resolution: 10.2836 pixels mm-1θmax = 27.1°, θmin = 3.6°
ω scansh = 1710
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 1113
Tmin = 0.581, Tmax = 0.602l = 1314
7567 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0434P)2 + 1.875P]
where P = (Fo2 + 2Fc2)/3
3515 reflections(Δ/σ)max = 0.001
208 parametersΔρmax = 0.73 e Å3
0 restraintsΔρmin = 0.58 e Å3
Crystal data top
[Cu2(C2H3O2)4(C10H14N2O)2]V = 1635.98 (15) Å3
Mr = 719.74Z = 2
Monoclinic, P21/cMo Kα radiation
a = 13.8508 (8) ŵ = 1.36 mm1
b = 11.0612 (5) ÅT = 100 K
c = 11.0301 (6) Å0.41 × 0.38 × 0.38 mm
β = 104.508 (6)°
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
3515 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
3070 reflections with I > 2σ(I)
Tmin = 0.581, Tmax = 0.602Rint = 0.032
7567 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.094H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.73 e Å3
3515 reflectionsΔρmin = 0.58 e Å3
208 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.57135 (2)0.51365 (2)0.60219 (2)0.01145 (10)
O10.52507 (13)0.68323 (15)0.58335 (15)0.0168 (4)
O20.59958 (13)0.33989 (15)0.58943 (15)0.0193 (4)
O30.46567 (13)0.47616 (16)0.68677 (15)0.0186 (4)
O40.65766 (12)0.54422 (16)0.48765 (15)0.0163 (4)
O50.96072 (13)0.38557 (17)0.84694 (16)0.0238 (4)
N10.68384 (14)0.55679 (18)0.77605 (17)0.0136 (4)
N20.81361 (16)0.4539 (2)0.7259 (2)0.0182 (4)
H2N0.778 (2)0.455 (3)0.657 (3)0.017 (7)*
C10.54803 (18)0.2779 (2)0.4997 (2)0.0148 (5)
C20.5762 (2)0.1471 (2)0.4927 (2)0.0233 (6)
H2A0.55550.10200.55620.035*
H2B0.64720.14060.50560.035*
H2C0.54380.11530.41170.035*
C30.62383 (18)0.5437 (2)0.3700 (2)0.0144 (5)
C40.6955 (2)0.5688 (3)0.2908 (2)0.0229 (6)
H4A0.71170.49450.25550.034*
H4B0.75520.60440.34170.034*
H4C0.66530.62360.22470.034*
C50.64649 (18)0.6255 (2)0.8544 (2)0.0158 (5)
H50.58000.64910.82890.019*
C60.70168 (19)0.6627 (2)0.9702 (2)0.0167 (5)
H60.67300.70871.02250.020*
C70.80085 (19)0.6297 (2)1.0061 (2)0.0181 (5)
H70.84040.65461.08320.022*
C80.84148 (18)0.5597 (2)0.9276 (2)0.0175 (5)
H80.90820.53690.95080.021*
C90.78030 (18)0.5243 (2)0.8134 (2)0.0143 (5)
C100.89929 (18)0.3871 (2)0.7467 (2)0.0155 (5)
C110.91516 (19)0.3108 (2)0.6368 (2)0.0190 (5)
C120.9151 (3)0.1789 (3)0.6784 (3)0.0431 (9)
H12A0.85080.15870.69040.065*
H12B0.96490.16780.75560.065*
H12C0.92970.12740.61520.065*
C130.8377 (2)0.3303 (3)0.5133 (3)0.0352 (7)
H13A0.77310.30730.52250.053*
H13B0.85440.28180.44930.053*
H13C0.83680.41400.49020.053*
C141.0181 (2)0.3433 (3)0.6186 (3)0.0328 (7)
H14A1.03000.29810.54950.049*
H14B1.06830.32390.69330.049*
H14C1.02050.42820.60160.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01005 (16)0.01279 (16)0.01139 (16)0.00018 (11)0.00250 (11)0.00009 (10)
O10.0154 (9)0.0141 (8)0.0198 (8)0.0014 (7)0.0025 (7)0.0011 (7)
O20.0190 (9)0.0137 (8)0.0222 (9)0.0005 (7)0.0001 (7)0.0003 (7)
O30.0151 (9)0.0253 (9)0.0157 (8)0.0057 (7)0.0046 (7)0.0015 (7)
O40.0120 (8)0.0230 (9)0.0143 (8)0.0022 (7)0.0040 (6)0.0002 (7)
O50.0192 (9)0.0297 (10)0.0197 (9)0.0091 (8)0.0006 (7)0.0054 (8)
N10.0120 (10)0.0161 (10)0.0133 (9)0.0000 (8)0.0042 (8)0.0010 (8)
N20.0124 (10)0.0269 (12)0.0137 (10)0.0030 (9)0.0003 (8)0.0074 (9)
C10.0143 (12)0.0145 (11)0.0170 (11)0.0002 (9)0.0067 (9)0.0016 (9)
C20.0224 (14)0.0155 (12)0.0295 (14)0.0029 (11)0.0019 (11)0.0008 (10)
C30.0161 (12)0.0112 (11)0.0173 (11)0.0011 (9)0.0066 (9)0.0006 (9)
C40.0197 (13)0.0325 (15)0.0190 (12)0.0029 (11)0.0097 (10)0.0022 (11)
C50.0142 (12)0.0165 (12)0.0169 (11)0.0029 (9)0.0045 (9)0.0000 (9)
C60.0215 (13)0.0159 (11)0.0140 (11)0.0031 (10)0.0070 (10)0.0014 (9)
C70.0196 (13)0.0189 (12)0.0135 (11)0.0011 (10)0.0002 (9)0.0034 (9)
C80.0132 (12)0.0214 (12)0.0166 (11)0.0017 (10)0.0016 (9)0.0021 (10)
C90.0147 (12)0.0153 (11)0.0133 (11)0.0005 (9)0.0040 (9)0.0007 (9)
C100.0131 (12)0.0163 (12)0.0177 (11)0.0012 (9)0.0048 (9)0.0010 (9)
C110.0151 (12)0.0231 (13)0.0194 (12)0.0038 (10)0.0055 (10)0.0049 (10)
C120.073 (3)0.0217 (15)0.0434 (18)0.0007 (16)0.0299 (18)0.0092 (14)
C130.0234 (15)0.057 (2)0.0236 (13)0.0121 (14)0.0026 (12)0.0191 (14)
C140.0220 (15)0.0509 (19)0.0284 (14)0.0001 (14)0.0116 (12)0.0073 (14)
Geometric parameters (Å, º) top
Cu1—O31.9670 (17)C4—H4C0.9600
Cu1—O21.9734 (17)C5—C61.377 (3)
Cu1—O41.9739 (16)C5—H50.9300
Cu1—O11.9762 (16)C6—C71.380 (3)
Cu1—N12.1990 (19)C6—H60.9300
Cu1—Cu1i2.6168 (6)C7—C81.382 (3)
O1—C1i1.259 (3)C7—H70.9300
O2—C11.267 (3)C8—C91.387 (3)
O3—C3i1.260 (3)C8—H80.9300
O4—C31.264 (3)C10—C111.537 (3)
O5—C101.215 (3)C11—C131.524 (4)
N1—C91.345 (3)C11—C121.529 (4)
N1—C51.348 (3)C11—C141.532 (4)
N2—C101.368 (3)C12—H12A0.9600
N2—C91.405 (3)C12—H12B0.9600
N2—H2N0.79 (3)C12—H12C0.9600
C1—C21.506 (3)C13—H13A0.9600
C2—H2A0.9600C13—H13B0.9600
C2—H2B0.9600C13—H13C0.9600
C2—H2C0.9600C14—H14A0.9600
C3—C41.503 (3)C14—H14B0.9600
C4—H4A0.9600C14—H14C0.9600
C4—H4B0.9600
O3—Cu1—O290.73 (8)N1—C5—C6123.4 (2)
O3—Cu1—O4169.00 (7)N1—C5—H5118.3
O2—Cu1—O487.63 (8)C6—C5—H5118.3
O3—Cu1—O189.41 (7)C5—C6—C7118.0 (2)
O2—Cu1—O1169.03 (7)C5—C6—H6121.0
O4—Cu1—O190.15 (7)C7—C6—H6121.0
O3—Cu1—N194.65 (7)C6—C7—C8120.0 (2)
O2—Cu1—N199.43 (7)C6—C7—H7120.0
O4—Cu1—N196.35 (7)C8—C7—H7120.0
O1—Cu1—N191.49 (7)C7—C8—C9118.4 (2)
O3—Cu1—Cu1i83.86 (5)C7—C8—H8120.8
O2—Cu1—Cu1i86.93 (5)C9—C8—H8120.8
O4—Cu1—Cu1i85.19 (5)N1—C9—C8122.5 (2)
O1—Cu1—Cu1i82.18 (5)N1—C9—N2114.2 (2)
N1—Cu1—Cu1i173.50 (6)C8—C9—N2123.3 (2)
C1i—O1—Cu1125.55 (15)O5—C10—N2122.7 (2)
C1—O2—Cu1119.99 (15)O5—C10—C11120.3 (2)
C3i—O3—Cu1123.85 (15)N2—C10—C11117.0 (2)
C3—O4—Cu1121.86 (15)C13—C11—C12110.5 (3)
C9—N1—C5117.8 (2)C13—C11—C14108.6 (2)
C9—N1—Cu1129.93 (15)C12—C11—C14109.5 (3)
C5—N1—Cu1112.31 (15)C13—C11—C10114.8 (2)
C10—N2—C9127.2 (2)C12—C11—C10106.1 (2)
C10—N2—H2N118 (2)C14—C11—C10107.2 (2)
C9—N2—H2N115 (2)C11—C12—H12A109.5
O1i—C1—O2125.2 (2)C11—C12—H12B109.5
O1i—C1—C2117.5 (2)H12A—C12—H12B109.5
O2—C1—C2117.2 (2)C11—C12—H12C109.5
C1—C2—H2A109.5H12A—C12—H12C109.5
C1—C2—H2B109.5H12B—C12—H12C109.5
H2A—C2—H2B109.5C11—C13—H13A109.5
C1—C2—H2C109.5C11—C13—H13B109.5
H2A—C2—H2C109.5H13A—C13—H13B109.5
H2B—C2—H2C109.5C11—C13—H13C109.5
O3i—C3—O4125.2 (2)H13A—C13—H13C109.5
O3i—C3—C4117.0 (2)H13B—C13—H13C109.5
O4—C3—C4117.8 (2)C11—C14—H14A109.5
C3—C4—H4A109.5C11—C14—H14B109.5
C3—C4—H4B109.5H14A—C14—H14B109.5
H4A—C4—H4B109.5C11—C14—H14C109.5
C3—C4—H4C109.5H14A—C14—H14C109.5
H4A—C4—H4C109.5H14B—C14—H14C109.5
H4B—C4—H4C109.5
O3—Cu1—O1—C1i80.42 (19)O1—Cu1—N1—C545.82 (17)
O2—Cu1—O1—C1i10.4 (5)Cu1—O2—C1—O1i2.9 (3)
O4—Cu1—O1—C1i88.59 (19)Cu1—O2—C1—C2177.59 (16)
N1—Cu1—O1—C1i175.05 (19)Cu1—O4—C3—O3i0.3 (3)
Cu1i—Cu1—O1—C1i3.46 (18)Cu1—O4—C3—C4179.58 (17)
O3—Cu1—O2—C184.00 (18)C9—N1—C5—C60.6 (4)
O4—Cu1—O2—C185.12 (18)Cu1—N1—C5—C6178.83 (19)
O1—Cu1—O2—C16.7 (5)N1—C5—C6—C71.4 (4)
N1—Cu1—O2—C1178.83 (17)C5—C6—C7—C81.0 (4)
Cu1i—Cu1—O2—C10.19 (17)C6—C7—C8—C90.0 (4)
O2—Cu1—O3—C3i88.33 (19)C5—N1—C9—C80.6 (3)
O4—Cu1—O3—C3i7.0 (5)Cu1—N1—C9—C8179.89 (18)
O1—Cu1—O3—C3i80.70 (19)C5—N1—C9—N2179.3 (2)
N1—Cu1—O3—C3i172.15 (19)Cu1—N1—C9—N21.3 (3)
Cu1i—Cu1—O3—C3i1.49 (18)C7—C8—C9—N10.9 (4)
O3—Cu1—O4—C36.6 (5)C7—C8—C9—N2179.6 (2)
O2—Cu1—O4—C388.17 (18)C10—N2—C9—N1165.0 (2)
O1—Cu1—O4—C381.08 (18)C10—N2—C9—C816.2 (4)
N1—Cu1—O4—C3172.60 (18)C9—N2—C10—O53.3 (4)
Cu1i—Cu1—O4—C31.05 (17)C9—N2—C10—C11175.9 (2)
O3—Cu1—N1—C9135.7 (2)O5—C10—C11—C13174.4 (3)
O2—Cu1—N1—C944.1 (2)N2—C10—C11—C136.4 (3)
O4—Cu1—N1—C944.5 (2)O5—C10—C11—C1263.3 (3)
O1—Cu1—N1—C9134.8 (2)N2—C10—C11—C12115.9 (3)
O3—Cu1—N1—C543.71 (17)O5—C10—C11—C1453.6 (3)
O2—Cu1—N1—C5135.22 (16)N2—C10—C11—C14127.2 (2)
O4—Cu1—N1—C5136.14 (16)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O40.802.383.118 (3)154.1
N2—H2N···O20.802.713.226 (3)124.0
C7—H7···O5ii0.952.693.298 (3)122
C8—H8···O5ii0.952.633.262 (3)124
C6—H6···O1iii0.952.583.460 (3)154
Symmetry codes: (ii) x+2, y+1, z+2; (iii) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Cu2(C2H3O2)4(C10H14N2O)2]
Mr719.74
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)13.8508 (8), 11.0612 (5), 11.0301 (6)
β (°) 104.508 (6)
V3)1635.98 (15)
Z2
Radiation typeMo Kα
µ (mm1)1.36
Crystal size (mm)0.41 × 0.38 × 0.38
Data collection
DiffractometerOxford Diffraction Xcalibur Ruby Gemini
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.581, 0.602
No. of measured, independent and
observed [I > 2σ(I)] reflections
7567, 3515, 3070
Rint0.032
(sin θ/λ)max1)0.640
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.094, 1.01
No. of reflections3515
No. of parameters208
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.73, 0.58

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Cu1—O31.9670 (17)Cu1—O11.9762 (16)
Cu1—O21.9734 (17)Cu1—N12.1990 (19)
Cu1—O41.9739 (16)Cu1—Cu1i2.6168 (6)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O40.802.383.118 (3)154.1
N2—H2N···O20.802.713.226 (3)124.0
C7—H7···O5ii0.952.693.298 (3)122.0
C8—H8···O5ii0.952.633.262 (3)124.3
C6—H6···O1iii0.952.583.460 (3)154
Symmetry codes: (ii) x+2, y+1, z+2; (iii) x, y+3/2, z+1/2.
 

Acknowledgements

MSM thanks the Department of Energy, grant DEFG02–08CH11538, and the Kentucky Research Challenge Trust Fund for the upgrade of our X-ray facilities. SA thanks the University of Louisville for graduate student minority fellowship support. RMB thanks the Kentucky Science and Engineering Foundation (grant KSEF-275-RDE-003) for financial support of this research.

References

First citationAakeröy, C. B., Beatty, A. M., Desper, J., O'Shea, M. & Valdés-Martínez, J. (2003). Dalton Trans. pp. 3956–3962.  Google Scholar
First citationBarquín, M., González Garmendia, M. J., Larrínaga, L., Pinilla, E. & Torres, M. R. (2006). Inorg. Chim. Acta, 359, 2424-2430.  Google Scholar
First citationBarquín, M., González Garmendia, M. J., Pachecco, S., Pinilla, E., Quintela, S., Seco, J. M. & Torres, M. R. (2004). Inorg. Chim. Acta, 357, 3230–3236.  Google Scholar
First citationDesiraju, G. R. (1995). Angew. Chem. Int. Ed. 34, 2311–2327.  CrossRef CAS Web of Science Google Scholar
First citationFairuz, Z. A., Aiyub, Z., Abdullah, Z., Ng, S. W. & Tiekink, E. R. T. (2010). Acta Cryst. E66, m1049–m1050.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSeco, J. M., González Garmendia, M. J., Pinilla, E. & Torres, M. R. (2004). Polyhedron, 21, 457–464.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, C.-Y., Ge, C.-H., Gao, E.-J., Yin, H.-X. & Lui, Q.-T. (2008). Inorg. Chem. Commun. 11, 703–706.  Web of Science CSD CrossRef CAS Google Scholar
First citationSieroń, L. (2004). Acta Cryst. E60, m577–m578.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds