metal-organic compounds
Tetra-μ-acetato-κ8O:O′-bis{[2,2-dimethyl-N-(pyridin-2-yl)propanamide-κN1]copper(II)}(Cu—Cu)
aDepartment of Chemistry, University of Louisville, Louisville, KY 40292, USA
*Correspondence e-mail: msmashuta.xray@louisville.edu
The 2(C2H3O2)4(C10H14N2O)2], reveals a dinuclear CuII complex located about a center of inversion. The coordination environment of each CuII cation is distorted octahedral, composed of four bridging acetate ligands, an apical pyridine donor and is completed by a Cu—Cu bond. The amide H atom forms intramolecular hydrogen bonds to two carboxyl O atoms. In the crystal, weak intermolecular pyridine–amide C—H⋯O interactions are also present.
of the title compound, [CuRelated literature
For related paddlewheel structures, see: Aakeröy et al. (2003); Barquín et al. (2004, 2006); Fairuz et al. (2010); Seco et al. (2004); Sieroń (2004); Shi et al. (2008). For Cu⋯Cu separations in related compounds, see: Seco et al. (2004). For hydrogen bonding, see: Desiraju (1995).
Experimental
Crystal data
|
Refinement
|
|
Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).
Supporting information
https://doi.org/10.1107/S1600536811050124/sj5186sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536811050124/sj5186Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S1600536811050124/sj5186Isup3.mol
A stirred solution of (2-pivaloylamino)pyridine (0.4150 g, 2.328 mmol) in acetone (10 ml) was combined with a solution of Cu(CH3COO)2H2O (0.2324 g, 1.1642 mmol) in methanol (20 ml). The reaction was refluxed for an hour and stirring was continued for 24 h at room temperature. The reaction mixture was filtered and the solvent was removed via rotary evaporation. The resulting solid was dissolved in diethyl ether from which blue-green crystals deposited over several days.
The amide hydrogen atom was located from difference maps and refined isotropically. Aromatic H atom positions were calculated, and included as fixed contributions with Uiso(H) = 1.2 x Ueq(C). Methyl H atoms were placed in calculated positions and allowed to ride (the torsion angle which defines its orientation was allowed to refine) on the attached C atom, and these atoms were assigned Uiso(H) = 1.5 x Ueq(C). The highest peak, 0.73 e/Å3, and deepest trough, -0.58 e/Å3, are located 1.10 Å and 0.82 Å from Cu1 respectively.
Amide functionalized pyridine ligands have the potential to be used in the synthesis of supramolecular materials; particularly transition metal coordination polymers. The title complex, (I), is structurally similar to paddlewheel structures of other Cu2(OAc)4L2 complexes. (Aakeröy et al., 2003; Barquín et al., 2004, 2006; Fairuz et al., 2010; Seco et al.; 2004; Sieroń, 2004; Shi, et al., 2008). The dinuclear molecule lies about an inversion center. Attached to this Cu2(OAc)4 core unit are two apical pyridine ligands functionalized in the 2-position of the ring with a pendant amide. The average Cu-O (1.9726 (17) Å) and Cu-N (2.1990 (19) Å) distances and corresponding bond angles are consistent with structurally similar CuII complexes (Table 1). While the Cu—Cu separation of 2.6168 (6) Å) is towards the lower limit, it is within the range of values reported for CuII paddlewheel structures. (Sieroń, 2004). The amide hydrogen forms intramolecular hydrogen bonds to two acetate oxygen atoms N2-H2- - -O4 and N2-H2- - -O2 (Table 2), (Desiraju, 1995). There are also three weak intermolecular Cpy-H- - -O amide interactions between adjacent metal complexes, C7-H7- - -O5, C8-H8- - -O5 and C6-H6- - -O1 (Table 2). These interactions result in the formation of infinite linear chains along the crystallographic AC diagonal and project through the BC face. The amide group and pyridine ring display a twist angle (C9-NH2-C10-O5) of 3.3 (4)°.
For related paddlewheel structures, see: Aakeröy et al. (2003); Barquín et al. (2004, 2006); Fairuz et al. (2010); Seco et al. (2004); Sieroń (2004); Shi et al. (2008). For Cu···Cu separations in related compounds, see: Seco et al. (2004). For hydrogen bonding, see: Desiraju (1995).
Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell
CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).[Cu2(C2H3O2)4(C10H14N2O)2] | F(000) = 748 |
Mr = 719.74 | Dx = 1.461 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 4128 reflections |
a = 13.8508 (8) Å | θ = 3.6–28.8° |
b = 11.0612 (5) Å | µ = 1.36 mm−1 |
c = 11.0301 (6) Å | T = 100 K |
β = 104.508 (6)° | Block, blue-green |
V = 1635.98 (15) Å3 | 0.41 × 0.38 × 0.38 mm |
Z = 2 |
Oxford Diffraction Xcalibur Ruby Gemini diffractometer | 3515 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 3070 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.032 |
Detector resolution: 10.2836 pixels mm-1 | θmax = 27.1°, θmin = 3.6° |
ω scans | h = −17→10 |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) | k = −11→13 |
Tmin = 0.581, Tmax = 0.602 | l = −13→14 |
7567 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.035 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.094 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.01 | w = 1/[σ2(Fo2) + (0.0434P)2 + 1.875P] where P = (Fo2 + 2Fc2)/3 |
3515 reflections | (Δ/σ)max = 0.001 |
208 parameters | Δρmax = 0.73 e Å−3 |
0 restraints | Δρmin = −0.58 e Å−3 |
[Cu2(C2H3O2)4(C10H14N2O)2] | V = 1635.98 (15) Å3 |
Mr = 719.74 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 13.8508 (8) Å | µ = 1.36 mm−1 |
b = 11.0612 (5) Å | T = 100 K |
c = 11.0301 (6) Å | 0.41 × 0.38 × 0.38 mm |
β = 104.508 (6)° |
Oxford Diffraction Xcalibur Ruby Gemini diffractometer | 3515 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) | 3070 reflections with I > 2σ(I) |
Tmin = 0.581, Tmax = 0.602 | Rint = 0.032 |
7567 measured reflections |
R[F2 > 2σ(F2)] = 0.035 | 0 restraints |
wR(F2) = 0.094 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.01 | Δρmax = 0.73 e Å−3 |
3515 reflections | Δρmin = −0.58 e Å−3 |
208 parameters |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.57135 (2) | 0.51365 (2) | 0.60219 (2) | 0.01145 (10) | |
O1 | 0.52507 (13) | 0.68323 (15) | 0.58335 (15) | 0.0168 (4) | |
O2 | 0.59958 (13) | 0.33989 (15) | 0.58943 (15) | 0.0193 (4) | |
O3 | 0.46567 (13) | 0.47616 (16) | 0.68677 (15) | 0.0186 (4) | |
O4 | 0.65766 (12) | 0.54422 (16) | 0.48765 (15) | 0.0163 (4) | |
O5 | 0.96072 (13) | 0.38557 (17) | 0.84694 (16) | 0.0238 (4) | |
N1 | 0.68384 (14) | 0.55679 (18) | 0.77605 (17) | 0.0136 (4) | |
N2 | 0.81361 (16) | 0.4539 (2) | 0.7259 (2) | 0.0182 (4) | |
H2N | 0.778 (2) | 0.455 (3) | 0.657 (3) | 0.017 (7)* | |
C1 | 0.54803 (18) | 0.2779 (2) | 0.4997 (2) | 0.0148 (5) | |
C2 | 0.5762 (2) | 0.1471 (2) | 0.4927 (2) | 0.0233 (6) | |
H2A | 0.5555 | 0.1020 | 0.5562 | 0.035* | |
H2B | 0.6472 | 0.1406 | 0.5056 | 0.035* | |
H2C | 0.5438 | 0.1153 | 0.4117 | 0.035* | |
C3 | 0.62383 (18) | 0.5437 (2) | 0.3700 (2) | 0.0144 (5) | |
C4 | 0.6955 (2) | 0.5688 (3) | 0.2908 (2) | 0.0229 (6) | |
H4A | 0.7117 | 0.4945 | 0.2555 | 0.034* | |
H4B | 0.7552 | 0.6044 | 0.3417 | 0.034* | |
H4C | 0.6653 | 0.6236 | 0.2247 | 0.034* | |
C5 | 0.64649 (18) | 0.6255 (2) | 0.8544 (2) | 0.0158 (5) | |
H5 | 0.5800 | 0.6491 | 0.8289 | 0.019* | |
C6 | 0.70168 (19) | 0.6627 (2) | 0.9702 (2) | 0.0167 (5) | |
H6 | 0.6730 | 0.7087 | 1.0225 | 0.020* | |
C7 | 0.80085 (19) | 0.6297 (2) | 1.0061 (2) | 0.0181 (5) | |
H7 | 0.8404 | 0.6546 | 1.0832 | 0.022* | |
C8 | 0.84148 (18) | 0.5597 (2) | 0.9276 (2) | 0.0175 (5) | |
H8 | 0.9082 | 0.5369 | 0.9508 | 0.021* | |
C9 | 0.78030 (18) | 0.5243 (2) | 0.8134 (2) | 0.0143 (5) | |
C10 | 0.89929 (18) | 0.3871 (2) | 0.7467 (2) | 0.0155 (5) | |
C11 | 0.91516 (19) | 0.3108 (2) | 0.6368 (2) | 0.0190 (5) | |
C12 | 0.9151 (3) | 0.1789 (3) | 0.6784 (3) | 0.0431 (9) | |
H12A | 0.8508 | 0.1587 | 0.6904 | 0.065* | |
H12B | 0.9649 | 0.1678 | 0.7556 | 0.065* | |
H12C | 0.9297 | 0.1274 | 0.6152 | 0.065* | |
C13 | 0.8377 (2) | 0.3303 (3) | 0.5133 (3) | 0.0352 (7) | |
H13A | 0.7731 | 0.3073 | 0.5225 | 0.053* | |
H13B | 0.8544 | 0.2818 | 0.4493 | 0.053* | |
H13C | 0.8368 | 0.4140 | 0.4902 | 0.053* | |
C14 | 1.0181 (2) | 0.3433 (3) | 0.6186 (3) | 0.0328 (7) | |
H14A | 1.0300 | 0.2981 | 0.5495 | 0.049* | |
H14B | 1.0683 | 0.3239 | 0.6933 | 0.049* | |
H14C | 1.0205 | 0.4282 | 0.6016 | 0.049* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.01005 (16) | 0.01279 (16) | 0.01139 (16) | −0.00018 (11) | 0.00250 (11) | −0.00009 (10) |
O1 | 0.0154 (9) | 0.0141 (8) | 0.0198 (8) | 0.0014 (7) | 0.0025 (7) | −0.0011 (7) |
O2 | 0.0190 (9) | 0.0137 (8) | 0.0222 (9) | 0.0005 (7) | −0.0001 (7) | −0.0003 (7) |
O3 | 0.0151 (9) | 0.0253 (9) | 0.0157 (8) | −0.0057 (7) | 0.0046 (7) | 0.0015 (7) |
O4 | 0.0120 (8) | 0.0230 (9) | 0.0143 (8) | −0.0022 (7) | 0.0040 (6) | 0.0002 (7) |
O5 | 0.0192 (9) | 0.0297 (10) | 0.0197 (9) | 0.0091 (8) | −0.0006 (7) | −0.0054 (8) |
N1 | 0.0120 (10) | 0.0161 (10) | 0.0133 (9) | 0.0000 (8) | 0.0042 (8) | −0.0010 (8) |
N2 | 0.0124 (10) | 0.0269 (12) | 0.0137 (10) | 0.0030 (9) | 0.0003 (8) | −0.0074 (9) |
C1 | 0.0143 (12) | 0.0145 (11) | 0.0170 (11) | 0.0002 (9) | 0.0067 (9) | 0.0016 (9) |
C2 | 0.0224 (14) | 0.0155 (12) | 0.0295 (14) | 0.0029 (11) | 0.0019 (11) | −0.0008 (10) |
C3 | 0.0161 (12) | 0.0112 (11) | 0.0173 (11) | 0.0011 (9) | 0.0066 (9) | 0.0006 (9) |
C4 | 0.0197 (13) | 0.0325 (15) | 0.0190 (12) | −0.0029 (11) | 0.0097 (10) | 0.0022 (11) |
C5 | 0.0142 (12) | 0.0165 (12) | 0.0169 (11) | 0.0029 (9) | 0.0045 (9) | 0.0000 (9) |
C6 | 0.0215 (13) | 0.0159 (11) | 0.0140 (11) | 0.0031 (10) | 0.0070 (10) | −0.0014 (9) |
C7 | 0.0196 (13) | 0.0189 (12) | 0.0135 (11) | 0.0011 (10) | −0.0002 (9) | −0.0034 (9) |
C8 | 0.0132 (12) | 0.0214 (12) | 0.0166 (11) | 0.0017 (10) | 0.0016 (9) | −0.0021 (10) |
C9 | 0.0147 (12) | 0.0153 (11) | 0.0133 (11) | 0.0005 (9) | 0.0040 (9) | −0.0007 (9) |
C10 | 0.0131 (12) | 0.0163 (12) | 0.0177 (11) | −0.0012 (9) | 0.0048 (9) | −0.0010 (9) |
C11 | 0.0151 (12) | 0.0231 (13) | 0.0194 (12) | 0.0038 (10) | 0.0055 (10) | −0.0049 (10) |
C12 | 0.073 (3) | 0.0217 (15) | 0.0434 (18) | −0.0007 (16) | 0.0299 (18) | −0.0092 (14) |
C13 | 0.0234 (15) | 0.057 (2) | 0.0236 (13) | 0.0121 (14) | 0.0026 (12) | −0.0191 (14) |
C14 | 0.0220 (15) | 0.0509 (19) | 0.0284 (14) | 0.0001 (14) | 0.0116 (12) | −0.0073 (14) |
Cu1—O3 | 1.9670 (17) | C4—H4C | 0.9600 |
Cu1—O2 | 1.9734 (17) | C5—C6 | 1.377 (3) |
Cu1—O4 | 1.9739 (16) | C5—H5 | 0.9300 |
Cu1—O1 | 1.9762 (16) | C6—C7 | 1.380 (3) |
Cu1—N1 | 2.1990 (19) | C6—H6 | 0.9300 |
Cu1—Cu1i | 2.6168 (6) | C7—C8 | 1.382 (3) |
O1—C1i | 1.259 (3) | C7—H7 | 0.9300 |
O2—C1 | 1.267 (3) | C8—C9 | 1.387 (3) |
O3—C3i | 1.260 (3) | C8—H8 | 0.9300 |
O4—C3 | 1.264 (3) | C10—C11 | 1.537 (3) |
O5—C10 | 1.215 (3) | C11—C13 | 1.524 (4) |
N1—C9 | 1.345 (3) | C11—C12 | 1.529 (4) |
N1—C5 | 1.348 (3) | C11—C14 | 1.532 (4) |
N2—C10 | 1.368 (3) | C12—H12A | 0.9600 |
N2—C9 | 1.405 (3) | C12—H12B | 0.9600 |
N2—H2N | 0.79 (3) | C12—H12C | 0.9600 |
C1—C2 | 1.506 (3) | C13—H13A | 0.9600 |
C2—H2A | 0.9600 | C13—H13B | 0.9600 |
C2—H2B | 0.9600 | C13—H13C | 0.9600 |
C2—H2C | 0.9600 | C14—H14A | 0.9600 |
C3—C4 | 1.503 (3) | C14—H14B | 0.9600 |
C4—H4A | 0.9600 | C14—H14C | 0.9600 |
C4—H4B | 0.9600 | ||
O3—Cu1—O2 | 90.73 (8) | N1—C5—C6 | 123.4 (2) |
O3—Cu1—O4 | 169.00 (7) | N1—C5—H5 | 118.3 |
O2—Cu1—O4 | 87.63 (8) | C6—C5—H5 | 118.3 |
O3—Cu1—O1 | 89.41 (7) | C5—C6—C7 | 118.0 (2) |
O2—Cu1—O1 | 169.03 (7) | C5—C6—H6 | 121.0 |
O4—Cu1—O1 | 90.15 (7) | C7—C6—H6 | 121.0 |
O3—Cu1—N1 | 94.65 (7) | C6—C7—C8 | 120.0 (2) |
O2—Cu1—N1 | 99.43 (7) | C6—C7—H7 | 120.0 |
O4—Cu1—N1 | 96.35 (7) | C8—C7—H7 | 120.0 |
O1—Cu1—N1 | 91.49 (7) | C7—C8—C9 | 118.4 (2) |
O3—Cu1—Cu1i | 83.86 (5) | C7—C8—H8 | 120.8 |
O2—Cu1—Cu1i | 86.93 (5) | C9—C8—H8 | 120.8 |
O4—Cu1—Cu1i | 85.19 (5) | N1—C9—C8 | 122.5 (2) |
O1—Cu1—Cu1i | 82.18 (5) | N1—C9—N2 | 114.2 (2) |
N1—Cu1—Cu1i | 173.50 (6) | C8—C9—N2 | 123.3 (2) |
C1i—O1—Cu1 | 125.55 (15) | O5—C10—N2 | 122.7 (2) |
C1—O2—Cu1 | 119.99 (15) | O5—C10—C11 | 120.3 (2) |
C3i—O3—Cu1 | 123.85 (15) | N2—C10—C11 | 117.0 (2) |
C3—O4—Cu1 | 121.86 (15) | C13—C11—C12 | 110.5 (3) |
C9—N1—C5 | 117.8 (2) | C13—C11—C14 | 108.6 (2) |
C9—N1—Cu1 | 129.93 (15) | C12—C11—C14 | 109.5 (3) |
C5—N1—Cu1 | 112.31 (15) | C13—C11—C10 | 114.8 (2) |
C10—N2—C9 | 127.2 (2) | C12—C11—C10 | 106.1 (2) |
C10—N2—H2N | 118 (2) | C14—C11—C10 | 107.2 (2) |
C9—N2—H2N | 115 (2) | C11—C12—H12A | 109.5 |
O1i—C1—O2 | 125.2 (2) | C11—C12—H12B | 109.5 |
O1i—C1—C2 | 117.5 (2) | H12A—C12—H12B | 109.5 |
O2—C1—C2 | 117.2 (2) | C11—C12—H12C | 109.5 |
C1—C2—H2A | 109.5 | H12A—C12—H12C | 109.5 |
C1—C2—H2B | 109.5 | H12B—C12—H12C | 109.5 |
H2A—C2—H2B | 109.5 | C11—C13—H13A | 109.5 |
C1—C2—H2C | 109.5 | C11—C13—H13B | 109.5 |
H2A—C2—H2C | 109.5 | H13A—C13—H13B | 109.5 |
H2B—C2—H2C | 109.5 | C11—C13—H13C | 109.5 |
O3i—C3—O4 | 125.2 (2) | H13A—C13—H13C | 109.5 |
O3i—C3—C4 | 117.0 (2) | H13B—C13—H13C | 109.5 |
O4—C3—C4 | 117.8 (2) | C11—C14—H14A | 109.5 |
C3—C4—H4A | 109.5 | C11—C14—H14B | 109.5 |
C3—C4—H4B | 109.5 | H14A—C14—H14B | 109.5 |
H4A—C4—H4B | 109.5 | C11—C14—H14C | 109.5 |
C3—C4—H4C | 109.5 | H14A—C14—H14C | 109.5 |
H4A—C4—H4C | 109.5 | H14B—C14—H14C | 109.5 |
H4B—C4—H4C | 109.5 | ||
O3—Cu1—O1—C1i | −80.42 (19) | O1—Cu1—N1—C5 | 45.82 (17) |
O2—Cu1—O1—C1i | 10.4 (5) | Cu1—O2—C1—O1i | −2.9 (3) |
O4—Cu1—O1—C1i | 88.59 (19) | Cu1—O2—C1—C2 | 177.59 (16) |
N1—Cu1—O1—C1i | −175.05 (19) | Cu1—O4—C3—O3i | −0.3 (3) |
Cu1i—Cu1—O1—C1i | 3.46 (18) | Cu1—O4—C3—C4 | 179.58 (17) |
O3—Cu1—O2—C1 | 84.00 (18) | C9—N1—C5—C6 | −0.6 (4) |
O4—Cu1—O2—C1 | −85.12 (18) | Cu1—N1—C5—C6 | 178.83 (19) |
O1—Cu1—O2—C1 | −6.7 (5) | N1—C5—C6—C7 | 1.4 (4) |
N1—Cu1—O2—C1 | 178.83 (17) | C5—C6—C7—C8 | −1.0 (4) |
Cu1i—Cu1—O2—C1 | 0.19 (17) | C6—C7—C8—C9 | 0.0 (4) |
O2—Cu1—O3—C3i | −88.33 (19) | C5—N1—C9—C8 | −0.6 (3) |
O4—Cu1—O3—C3i | −7.0 (5) | Cu1—N1—C9—C8 | −179.89 (18) |
O1—Cu1—O3—C3i | 80.70 (19) | C5—N1—C9—N2 | −179.3 (2) |
N1—Cu1—O3—C3i | 172.15 (19) | Cu1—N1—C9—N2 | 1.3 (3) |
Cu1i—Cu1—O3—C3i | −1.49 (18) | C7—C8—C9—N1 | 0.9 (4) |
O3—Cu1—O4—C3 | 6.6 (5) | C7—C8—C9—N2 | 179.6 (2) |
O2—Cu1—O4—C3 | 88.17 (18) | C10—N2—C9—N1 | −165.0 (2) |
O1—Cu1—O4—C3 | −81.08 (18) | C10—N2—C9—C8 | 16.2 (4) |
N1—Cu1—O4—C3 | −172.60 (18) | C9—N2—C10—O5 | −3.3 (4) |
Cu1i—Cu1—O4—C3 | 1.05 (17) | C9—N2—C10—C11 | 175.9 (2) |
O3—Cu1—N1—C9 | 135.7 (2) | O5—C10—C11—C13 | −174.4 (3) |
O2—Cu1—N1—C9 | 44.1 (2) | N2—C10—C11—C13 | 6.4 (3) |
O4—Cu1—N1—C9 | −44.5 (2) | O5—C10—C11—C12 | 63.3 (3) |
O1—Cu1—N1—C9 | −134.8 (2) | N2—C10—C11—C12 | −115.9 (3) |
O3—Cu1—N1—C5 | −43.71 (17) | O5—C10—C11—C14 | −53.6 (3) |
O2—Cu1—N1—C5 | −135.22 (16) | N2—C10—C11—C14 | 127.2 (2) |
O4—Cu1—N1—C5 | 136.14 (16) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2N···O4 | 0.80 | 2.38 | 3.118 (3) | 154.1 |
N2—H2N···O2 | 0.80 | 2.71 | 3.226 (3) | 124.0 |
C7—H7···O5ii | 0.95 | 2.69 | 3.298 (3) | 122 |
C8—H8···O5ii | 0.95 | 2.63 | 3.262 (3) | 124 |
C6—H6···O1iii | 0.95 | 2.58 | 3.460 (3) | 154 |
Symmetry codes: (ii) −x+2, −y+1, −z+2; (iii) x, −y+3/2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [Cu2(C2H3O2)4(C10H14N2O)2] |
Mr | 719.74 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 100 |
a, b, c (Å) | 13.8508 (8), 11.0612 (5), 11.0301 (6) |
β (°) | 104.508 (6) |
V (Å3) | 1635.98 (15) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.36 |
Crystal size (mm) | 0.41 × 0.38 × 0.38 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur Ruby Gemini |
Absorption correction | Multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) |
Tmin, Tmax | 0.581, 0.602 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7567, 3515, 3070 |
Rint | 0.032 |
(sin θ/λ)max (Å−1) | 0.640 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.035, 0.094, 1.01 |
No. of reflections | 3515 |
No. of parameters | 208 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.73, −0.58 |
Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).
Cu1—O3 | 1.9670 (17) | Cu1—O1 | 1.9762 (16) |
Cu1—O2 | 1.9734 (17) | Cu1—N1 | 2.1990 (19) |
Cu1—O4 | 1.9739 (16) | Cu1—Cu1i | 2.6168 (6) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2N···O4 | 0.80 | 2.38 | 3.118 (3) | 154.1 |
N2—H2N···O2 | 0.80 | 2.71 | 3.226 (3) | 124.0 |
C7—H7···O5ii | 0.95 | 2.69 | 3.298 (3) | 122.0 |
C8—H8···O5ii | 0.95 | 2.63 | 3.262 (3) | 124.3 |
C6—H6···O1iii | 0.95 | 2.58 | 3.460 (3) | 154 |
Symmetry codes: (ii) −x+2, −y+1, −z+2; (iii) x, −y+3/2, z+1/2. |
Acknowledgements
MSM thanks the Department of Energy, grant DEFG02–08CH11538, and the Kentucky Research Challenge Trust Fund for the upgrade of our X-ray facilities. SA thanks the University of Louisville for graduate student minority fellowship support. RMB thanks the Kentucky Science and Engineering Foundation (grant KSEF-275-RDE-003) for financial support of this research.
References
Aakeröy, C. B., Beatty, A. M., Desper, J., O'Shea, M. & Valdés-Martínez, J. (2003). Dalton Trans. pp. 3956–3962. Google Scholar
Barquín, M., González Garmendia, M. J., Larrínaga, L., Pinilla, E. & Torres, M. R. (2006). Inorg. Chim. Acta, 359, 2424-2430. Google Scholar
Barquín, M., González Garmendia, M. J., Pachecco, S., Pinilla, E., Quintela, S., Seco, J. M. & Torres, M. R. (2004). Inorg. Chim. Acta, 357, 3230–3236. Google Scholar
Desiraju, G. R. (1995). Angew. Chem. Int. Ed. 34, 2311–2327. CrossRef CAS Web of Science Google Scholar
Fairuz, Z. A., Aiyub, Z., Abdullah, Z., Ng, S. W. & Tiekink, E. R. T. (2010). Acta Cryst. E66, m1049–m1050. Web of Science CSD CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Seco, J. M., González Garmendia, M. J., Pinilla, E. & Torres, M. R. (2004). Polyhedron, 21, 457–464. Web of Science CSD CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shi, C.-Y., Ge, C.-H., Gao, E.-J., Yin, H.-X. & Lui, Q.-T. (2008). Inorg. Chem. Commun. 11, 703–706. Web of Science CSD CrossRef CAS Google Scholar
Sieroń, L. (2004). Acta Cryst. E60, m577–m578. Web of Science CSD CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Amide functionalized pyridine ligands have the potential to be used in the synthesis of supramolecular materials; particularly transition metal coordination polymers. The title complex, (I), is structurally similar to paddlewheel structures of other Cu2(OAc)4L2 complexes. (Aakeröy et al., 2003; Barquín et al., 2004, 2006; Fairuz et al., 2010; Seco et al.; 2004; Sieroń, 2004; Shi, et al., 2008). The dinuclear molecule lies about an inversion center. Attached to this Cu2(OAc)4 core unit are two apical pyridine ligands functionalized in the 2-position of the ring with a pendant amide. The average Cu-O (1.9726 (17) Å) and Cu-N (2.1990 (19) Å) distances and corresponding bond angles are consistent with structurally similar CuII complexes (Table 1). While the Cu—Cu separation of 2.6168 (6) Å) is towards the lower limit, it is within the range of values reported for CuII paddlewheel structures. (Sieroń, 2004). The amide hydrogen forms intramolecular hydrogen bonds to two acetate oxygen atoms N2-H2- - -O4 and N2-H2- - -O2 (Table 2), (Desiraju, 1995). There are also three weak intermolecular Cpy-H- - -O amide interactions between adjacent metal complexes, C7-H7- - -O5, C8-H8- - -O5 and C6-H6- - -O1 (Table 2). These interactions result in the formation of infinite linear chains along the crystallographic AC diagonal and project through the BC face. The amide group and pyridine ring display a twist angle (C9-NH2-C10-O5) of 3.3 (4)°.