organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-[2-(4-Meth­­oxy­phen­yl)eth­yl]-3-(thio­phen-2-ylmeth­yl)-1H-1,2,4-triazol-5(4H)-one monohydrate

aDepartment of Physics, Saveetha School of Engineering, Saveetha University, Chennai 600 077, India, bDepartment of Physics, Kunthavai Naachiar Government Arts College (w) (Autonomous), Thanjavur 613 007, India, cCrystal Growth and Thin Film Laboratory, School of Physics, Bharathidasan University, Tiruchirappalli 620 024, India, and dDepartment of Chemistry, Faculty of Arts and Sciences, Karadeniz Teknik University, Trabzon 61080, Turkey
*Correspondence e-mail: vasuki.arasi@yahoo.com

(Received 27 September 2011; accepted 29 October 2011; online 5 November 2011)

In the title compound, C16H17N3O2S·H2O, the triazole ring makes a dihedral angle of 34.63 (6)° with the benzene ring. The thio­phene ring is disordered over two orientations [occupancy ratio = 0.634 (4):0.366 (4)] which make dihedral angles of 54.61 (16) and 54.57 (31)° with the triazole ring. Inter­molecular N—H⋯O and O—H⋯O hydrogen bonds stabilize the crystal structure.

Related literature

For the biological activity of triazoles, see: Ünver et al. (2006[Ünver, Y., Ustabaş, R., Çoruh, U., Sancak, K. & Vázquez-López, E. M. (2006). Acta Cryst. E62, o3938-o3939.]); Ustabaş et al. (2007[Ustabaş, R., Çoruh, U., Sancak, K., Demirkan, E. & Vázquez-López, E. M. (2007). Acta Cryst. E63, o2774-o2775.]). For related structures, see: Ünver et al. (2006[Ünver, Y., Ustabaş, R., Çoruh, U., Sancak, K. & Vázquez-López, E. M. (2006). Acta Cryst. E62, o3938-o3939.], 2010[Ünver, Y., Köysal, Y., Tanak, H., Ünlüer, D. & Işık, Ş. (2010). Acta Cryst. E66, o1294.]); Yılmaz et al. (2006[Yılmaz, I., Arslan, N. B., Kazak, C., Sancak, K. & Unver, Y. (2006). Acta Cryst. E62, o3067-o3068.]). For the synthesis, see: Ünver et al. (2011[Ünver, Y., Meydanal, S., Sancak, K., Ünlüer, D., Ustabaş, R., Esra Düğdü. (2011). Turk. J. Chem. 35, 265-277.]).

[Scheme 1]

Experimental

Crystal data
  • C16H17N3O2S·H2O

  • Mr = 333.40

  • Monoclinic, P 21 /n

  • a = 6.7945 (1) Å

  • b = 30.8791 (7) Å

  • c = 7.8564 (2) Å

  • β = 102.057 (1)°

  • V = 1611.97 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 292 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Bruker APEXII KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.901, Tmax = 0.962

  • 30445 measured reflections

  • 3176 independent reflections

  • 2877 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.090

  • S = 1.08

  • 3176 reflections

  • 240 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O3i 0.867 (19) 1.975 (19) 2.8334 (16) 170.3 (16)
O3—H3A⋯O1ii 0.85 (2) 1.95 (2) 2.7679 (15) 163.6 (19)
O3—H3B⋯O1iii 0.86 (2) 1.97 (2) 2.8231 (15) 175 (2)
Symmetry codes: (i) x, y, z-1; (ii) -x+1, -y, -z; (iii) x-1, y, z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

1,2,4-triazole derivatives have a broad-spectrum of biological effects, such as insecticidal, herbicidal, antitumor and plant growth regulatory activities. Di- or tri-substituted 1,2,4-triazole derivatives have also been reported to show antituberculotic and antimicrobial activities (Ustabaş et al., 2007). Various 1,2,4-triazole derivatives have been reported as showing fungicidal and antimicrobial activitry as well as having applications as anticonvulsants and antidepressants (Ünver et al., 2006). In view of the importance of triazole compounds, and in order to examine the structure activity of 1,2,4-triazole with a thiophene and a methylphenyl substituent, we prepared the title compound and report herein on its crystal structure.

The title compound crystallizes as a monohydrate, Fig. 1. The bond lengths and angles are within normal ranges (Yılmaz et al., 2006; Ünver et al., 2010). It contains three planar rings namely, a triazole ring [A = (N1,N2,C7,N3,C6)], a benzene ring [B = (C10—C15)] and a thiophene ring [C = (C1—C4,S1]. The dihedral angles between the mean planes of the rings A/B, A/C and B/C are 34.63 (6)°, 54.61 (16)° and 54.64 (13)°, respectively. Atom N3 has a trigonal configuration, the sum of three bond angles around it being 360 °.

The thiophene ring is disordered over two orientations [occupancy ratio = 0.634 (4)/0.366 (4)] with respect to the C4—C5 bond; the dihedral angles between the triazole and the two orientations of the and the thiophene ring are 54.61 (16)Å and 54.57 (31) Å, respectively. The N3—C8—C9—C10 torsion angle of 64.61 (14)° indicates that the triazole ring and the benzene ring are substituted equatorially across bond C8—C9. The widening of exocyclic angle C5—C4—C3 [124.1 (6)°] from the normal value of 120°, may be due to the steric repulsion between atoms H3A and H5A (H3A···H5A = 2.5354 (0) Å).

In the crystal, the water molecule is involved in intermolecular O—H···N and O—H···O hydrogen bonding (Fig. 2 and Table 1), which are effective in stabilizing the crystal structure.

Related literature top

For the biological activity of triazoles, see: Ünver et al. (2006); Ustabaş et al. (2007). For related structures, see: Ünver et al. (2006, 2010); Yılmaz et al. (2006). For the synthesis, see: Ünver et al. (2011).

Experimental top

The compound was synthesized according to the published procedure (Ünver et al., 2011).

Refinement top

NH atom and water H atoms were located in a difference Fourier map and were freely refined. The C-bound H atoms were positioned geometrically and treated as riding atoms: C—H = 0.93, 0.96 and 0.97 Å for CH, CH3 and CH2 H atoms, respectively, with Uiso(H) = k × Ueq(C), where k = 1.5 for CH3 H atoms, and k = 2 for all other H atoms.

Structure description top

1,2,4-triazole derivatives have a broad-spectrum of biological effects, such as insecticidal, herbicidal, antitumor and plant growth regulatory activities. Di- or tri-substituted 1,2,4-triazole derivatives have also been reported to show antituberculotic and antimicrobial activities (Ustabaş et al., 2007). Various 1,2,4-triazole derivatives have been reported as showing fungicidal and antimicrobial activitry as well as having applications as anticonvulsants and antidepressants (Ünver et al., 2006). In view of the importance of triazole compounds, and in order to examine the structure activity of 1,2,4-triazole with a thiophene and a methylphenyl substituent, we prepared the title compound and report herein on its crystal structure.

The title compound crystallizes as a monohydrate, Fig. 1. The bond lengths and angles are within normal ranges (Yılmaz et al., 2006; Ünver et al., 2010). It contains three planar rings namely, a triazole ring [A = (N1,N2,C7,N3,C6)], a benzene ring [B = (C10—C15)] and a thiophene ring [C = (C1—C4,S1]. The dihedral angles between the mean planes of the rings A/B, A/C and B/C are 34.63 (6)°, 54.61 (16)° and 54.64 (13)°, respectively. Atom N3 has a trigonal configuration, the sum of three bond angles around it being 360 °.

The thiophene ring is disordered over two orientations [occupancy ratio = 0.634 (4)/0.366 (4)] with respect to the C4—C5 bond; the dihedral angles between the triazole and the two orientations of the and the thiophene ring are 54.61 (16)Å and 54.57 (31) Å, respectively. The N3—C8—C9—C10 torsion angle of 64.61 (14)° indicates that the triazole ring and the benzene ring are substituted equatorially across bond C8—C9. The widening of exocyclic angle C5—C4—C3 [124.1 (6)°] from the normal value of 120°, may be due to the steric repulsion between atoms H3A and H5A (H3A···H5A = 2.5354 (0) Å).

In the crystal, the water molecule is involved in intermolecular O—H···N and O—H···O hydrogen bonding (Fig. 2 and Table 1), which are effective in stabilizing the crystal structure.

For the biological activity of triazoles, see: Ünver et al. (2006); Ustabaş et al. (2007). For related structures, see: Ünver et al. (2006, 2010); Yılmaz et al. (2006). For the synthesis, see: Ünver et al. (2011).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the crystallographic numbering scheme and displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. A partial view of the crystal packing of the title compound with the intermolecular N—H···O and O—H···O hydrogen bonds shown as dashed lines (see Table 1 for details).
4-[2-(4-methoxyphenyl)ethyl]-3-(thiophen-2-ylmethyl)-1H-1,2,4-triazol- 5(4H)-one monohydrate top
Crystal data top
C16H17N3O2S·H2OF(000) = 704
Mr = 333.40Dx = 1.374 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 7004 reflections
a = 6.7945 (1) Åθ = 2.6–32.1°
b = 30.8791 (7) ŵ = 0.22 mm1
c = 7.8564 (2) ÅT = 292 K
β = 102.057 (1)°Block, colourless
V = 1611.97 (6) Å30.30 × 0.25 × 0.20 mm
Z = 4
Data collection top
Bruker APEXII KappaCCD
diffractometer
3176 independent reflections
Radiation source: fine-focus sealed tube2877 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ω and φ scanθmax = 26.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 88
Tmin = 0.901, Tmax = 0.962k = 3838
30445 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0386P)2 + 0.4907P]
where P = (Fo2 + 2Fc2)/3
3176 reflections(Δ/σ)max < 0.001
240 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C16H17N3O2S·H2OV = 1611.97 (6) Å3
Mr = 333.40Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.7945 (1) ŵ = 0.22 mm1
b = 30.8791 (7) ÅT = 292 K
c = 7.8564 (2) Å0.30 × 0.25 × 0.20 mm
β = 102.057 (1)°
Data collection top
Bruker APEXII KappaCCD
diffractometer
3176 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2877 reflections with I > 2σ(I)
Tmin = 0.901, Tmax = 0.962Rint = 0.024
30445 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.090H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.16 e Å3
3176 reflectionsΔρmin = 0.23 e Å3
240 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.5309 (3)0.08013 (7)0.3984 (2)0.0486 (3)0.634 (4)
C30.7012 (18)0.1520 (3)0.3706 (15)0.083 (5)0.634 (4)
H30.78650.17370.34700.099*0.634 (4)
S1'0.7024 (6)0.15919 (17)0.3771 (5)0.0490 (6)0.366 (4)
C3'0.562 (2)0.0828 (5)0.386 (2)0.083 (7)0.366 (4)
H3'0.53870.05310.37650.100*0.366 (4)
O10.86927 (14)0.01851 (4)0.29652 (13)0.0451 (3)
O20.83597 (18)0.25350 (4)0.13401 (18)0.0602 (3)
N10.61110 (16)0.05605 (4)0.01137 (15)0.0377 (3)
N20.62048 (17)0.03584 (4)0.14363 (15)0.0381 (3)
H2A0.510 (3)0.0281 (6)0.213 (2)0.052 (5)*
N30.92215 (15)0.05475 (3)0.03060 (13)0.0293 (2)
C10.4375 (3)0.12019 (8)0.4753 (2)0.0672 (6)
H10.32740.11760.52780.081*
C20.5251 (3)0.15777 (7)0.4608 (2)0.0710 (6)
H20.48500.18410.50010.085*
C40.7112 (2)0.10794 (5)0.32991 (17)0.0362 (3)
C50.8700 (2)0.08860 (5)0.24723 (18)0.0390 (3)
H5A0.96340.11130.23170.047*
H5B0.94460.06750.32670.047*
C60.79510 (18)0.06713 (4)0.07565 (16)0.0311 (3)
C70.80746 (18)0.03455 (4)0.17298 (16)0.0319 (3)
C81.13309 (17)0.06594 (4)0.02062 (17)0.0328 (3)
H8A1.20250.04140.05770.039*
H8B1.19630.07250.09910.039*
C91.1530 (2)0.10497 (5)0.13524 (19)0.0384 (3)
H9A1.29420.10960.13510.046*
H9B1.08460.09870.25390.046*
C101.0665 (2)0.14568 (4)0.07543 (17)0.0352 (3)
C111.1851 (2)0.17298 (5)0.0446 (2)0.0442 (3)
H111.32130.16690.08210.053*
C121.1050 (2)0.20875 (5)0.1088 (2)0.0493 (4)
H121.18760.22680.18780.059*
C130.9017 (2)0.21811 (4)0.0567 (2)0.0422 (3)
C140.7812 (2)0.19195 (5)0.0651 (2)0.0430 (3)
H140.64530.19830.10320.052*
C150.8653 (2)0.15618 (5)0.12984 (18)0.0397 (3)
H150.78390.13880.21230.048*
C160.6266 (3)0.26164 (7)0.1030 (3)0.0679 (5)
H16A0.60170.28650.16850.102*
H16B0.55900.23690.13820.102*
H16C0.57690.26690.01880.102*
O30.25229 (16)0.02104 (4)0.61748 (16)0.0549 (3)
H3A0.240 (3)0.0083 (7)0.520 (3)0.065 (6)*
H3B0.139 (3)0.0193 (7)0.649 (3)0.072 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0394 (4)0.0651 (8)0.0458 (5)0.0037 (4)0.0195 (4)0.0000 (5)
C30.091 (6)0.096 (10)0.068 (5)0.002 (4)0.033 (4)0.006 (4)
S1'0.0614 (13)0.0430 (8)0.0430 (12)0.0015 (7)0.0118 (9)0.0045 (7)
C3'0.085 (10)0.076 (9)0.094 (9)0.029 (7)0.028 (5)0.040 (7)
O10.0340 (5)0.0615 (7)0.0416 (6)0.0025 (4)0.0119 (4)0.0186 (5)
O20.0593 (7)0.0431 (6)0.0833 (9)0.0012 (5)0.0266 (6)0.0127 (6)
N10.0279 (5)0.0508 (7)0.0362 (6)0.0035 (5)0.0108 (5)0.0084 (5)
N20.0257 (5)0.0530 (7)0.0357 (6)0.0059 (5)0.0066 (5)0.0119 (5)
N30.0225 (5)0.0348 (5)0.0313 (5)0.0004 (4)0.0075 (4)0.0024 (4)
C10.0442 (9)0.1205 (19)0.0389 (9)0.0111 (10)0.0136 (7)0.0021 (10)
C20.0837 (14)0.0734 (13)0.0498 (10)0.0374 (11)0.0000 (10)0.0188 (9)
C40.0367 (7)0.0444 (8)0.0279 (6)0.0004 (6)0.0079 (5)0.0030 (6)
C50.0308 (6)0.0527 (8)0.0343 (7)0.0037 (6)0.0087 (5)0.0071 (6)
C60.0260 (6)0.0363 (7)0.0324 (6)0.0003 (5)0.0093 (5)0.0006 (5)
C70.0274 (6)0.0362 (7)0.0328 (6)0.0010 (5)0.0078 (5)0.0039 (5)
C80.0211 (6)0.0394 (7)0.0383 (7)0.0006 (5)0.0072 (5)0.0027 (5)
C90.0320 (6)0.0437 (8)0.0426 (7)0.0035 (6)0.0149 (6)0.0003 (6)
C100.0348 (6)0.0358 (7)0.0363 (7)0.0040 (5)0.0106 (5)0.0049 (5)
C110.0315 (7)0.0500 (8)0.0504 (8)0.0054 (6)0.0072 (6)0.0027 (7)
C120.0440 (8)0.0482 (9)0.0559 (9)0.0123 (7)0.0105 (7)0.0120 (7)
C130.0481 (8)0.0329 (7)0.0496 (8)0.0030 (6)0.0191 (7)0.0030 (6)
C140.0354 (7)0.0418 (8)0.0500 (8)0.0038 (6)0.0047 (6)0.0083 (6)
C150.0377 (7)0.0396 (7)0.0390 (7)0.0022 (6)0.0013 (6)0.0024 (6)
C160.0661 (11)0.0635 (11)0.0783 (13)0.0186 (9)0.0249 (10)0.0066 (10)
O30.0328 (5)0.0859 (9)0.0473 (6)0.0090 (5)0.0111 (5)0.0282 (6)
Geometric parameters (Å, º) top
S1—C11.568 (3)C5—C61.4930 (18)
S1—C41.674 (2)C5—H5A0.9700
C3—C41.402 (10)C5—H5B0.9700
C3—C21.523 (13)C8—C91.5273 (19)
C3—H30.9300C8—H8A0.9700
S1'—C21.488 (6)C8—H8B0.9700
S1'—C41.630 (5)C9—C101.5037 (19)
C3'—C41.422 (14)C9—H9A0.9700
C3'—C11.666 (14)C9—H9B0.9700
C3'—H3'0.9300C10—C151.3833 (19)
O1—C71.2386 (15)C10—C111.390 (2)
O2—C131.3695 (18)C11—C121.373 (2)
O2—C161.415 (2)C11—H110.9300
N1—C61.2928 (16)C12—C131.387 (2)
N1—N21.3817 (16)C12—H120.9300
N2—C71.3383 (16)C13—C141.382 (2)
N2—H2A0.867 (19)C14—C151.388 (2)
N3—C71.3724 (16)C14—H140.9300
N3—C61.3745 (16)C15—H150.9300
N3—C81.4604 (15)C16—H16A0.9600
C1—C21.320 (3)C16—H16B0.9600
C1—H10.9300C16—H16C0.9600
C2—H20.9300O3—H3A0.85 (2)
C4—C51.4955 (18)O3—H3B0.86 (2)
C1—S1—C495.81 (15)N1—C6—N3111.59 (11)
C4—C3—C2107.5 (8)N1—C6—C5126.14 (11)
C4—C3—H3126.3N3—C6—C5122.20 (11)
C2—C3—H3126.3O1—C7—N2129.52 (12)
C2—S1'—C498.2 (3)O1—C7—N3126.36 (11)
C4—C3'—C1102.1 (9)N2—C7—N3104.12 (11)
C4—C3'—H3'128.9N3—C8—C9111.22 (10)
C1—C3'—H3'128.9N3—C8—H8A109.4
C13—O2—C16118.32 (14)C9—C8—H8A109.4
C6—N1—N2104.18 (10)N3—C8—H8B109.4
C7—N2—N1112.67 (11)C9—C8—H8B109.4
C7—N2—H2A127.8 (11)H8A—C8—H8B108.0
N1—N2—H2A119.2 (11)C10—C9—C8112.76 (11)
C7—N3—C6107.44 (10)C10—C9—H9A109.0
C7—N3—C8122.35 (10)C8—C9—H9A109.0
C6—N3—C8129.45 (11)C10—C9—H9B109.0
C2—C1—S1115.75 (16)C8—C9—H9B109.0
C2—C1—C3'107.2 (5)H9A—C9—H9B107.8
S1—C1—C3'8.5 (5)C15—C10—C11117.57 (13)
C2—C1—H1122.1C15—C10—C9121.67 (12)
S1—C1—H1122.1C11—C10—C9120.67 (12)
C3'—C1—H1130.6C12—C11—C10121.30 (13)
C1—C2—S1'119.0 (2)C12—C11—H11119.4
C1—C2—C3110.4 (4)C10—C11—H11119.4
S1'—C2—C38.6 (6)C11—C12—C13120.37 (14)
C1—C2—H2124.8C11—C12—H12119.8
S1'—C2—H2116.2C13—C12—H12119.8
C3—C2—H2124.8O2—C13—C14124.94 (14)
C3—C4—C3'112.7 (8)O2—C13—C12115.59 (14)
C3—C4—C5124.1 (6)C14—C13—C12119.47 (14)
C3'—C4—C5123.1 (6)C13—C14—C15119.30 (13)
C3—C4—S1'0.7 (7)C13—C14—H14120.3
C3'—C4—S1'113.3 (6)C15—C14—H14120.3
C5—C4—S1'123.4 (2)C10—C15—C14121.95 (13)
C3—C4—S1110.5 (6)C10—C15—H15119.0
C3'—C4—S12.2 (7)C14—C15—H15119.0
C5—C4—S1125.30 (14)O2—C16—H16A109.5
S1'—C4—S1111.2 (2)O2—C16—H16B109.5
C6—C5—C4115.37 (11)H16A—C16—H16B109.5
C6—C5—H5A108.4O2—C16—H16C109.5
C4—C5—H5A108.4H16A—C16—H16C109.5
C6—C5—H5B108.4H16B—C16—H16C109.5
C4—C5—H5B108.4H3A—O3—H3B107.9 (19)
H5A—C5—H5B107.5
C6—N1—N2—C70.15 (16)S1—C4—C5—C664.33 (18)
C4—S1—C1—C20.15 (19)N2—N1—C6—N30.32 (15)
C4—S1—C1—C3'2 (4)N2—N1—C6—C5177.25 (13)
C4—C3'—C1—C20.6 (9)C7—N3—C6—N10.38 (15)
C4—C3'—C1—S1178 (5)C8—N3—C6—N1170.39 (12)
S1—C1—C2—S1'0.8 (3)C7—N3—C6—C5177.45 (12)
C3'—C1—C2—S1'0.5 (6)C8—N3—C6—C512.5 (2)
S1—C1—C2—C30.3 (5)C4—C5—C6—N115.2 (2)
C3'—C1—C2—C30.1 (7)C4—C5—C6—N3168.18 (12)
C4—S1'—C2—C11.2 (3)N1—N2—C7—O1178.89 (14)
C4—S1'—C2—C31 (4)N1—N2—C7—N30.07 (15)
C4—C3—C2—C10.7 (8)C6—N3—C7—O1179.12 (13)
C4—C3—C2—S1'178 (4)C8—N3—C7—O110.0 (2)
C2—C3—C4—C3'1.2 (10)C6—N3—C7—N20.25 (14)
C2—C3—C4—C5177.1 (3)C8—N3—C7—N2171.14 (11)
C2—C3—C4—S1'157.00 (5)C7—N3—C8—C974.50 (15)
C2—C3—C4—S10.8 (7)C6—N3—C8—C994.21 (15)
C1—C3'—C4—C31.1 (11)N3—C8—C9—C1064.61 (14)
C1—C3'—C4—C5177.1 (3)C8—C9—C10—C1587.12 (16)
C1—C3'—C4—S1'1.4 (10)C8—C9—C10—C1189.39 (15)
C1—C3'—C4—S18 (17)C15—C10—C11—C120.9 (2)
C2—S1'—C4—C323.00 (3)C9—C10—C11—C12175.74 (14)
C2—S1'—C4—C3'1.6 (7)C10—C11—C12—C130.9 (2)
C2—S1'—C4—C5177.30 (15)C16—O2—C13—C147.3 (2)
C2—S1'—C4—S11.2 (2)C16—O2—C13—C12172.27 (16)
C1—S1—C4—C30.6 (5)C11—C12—C13—O2177.43 (14)
C1—S1—C4—C3'172 (18)C11—C12—C13—C142.2 (2)
C1—S1—C4—C5176.87 (13)O2—C13—C14—C15178.05 (14)
C1—S1—C4—S1'0.9 (2)C12—C13—C14—C151.5 (2)
C3—C4—C5—C6119.9 (6)C11—C10—C15—C141.6 (2)
C3'—C4—C5—C664.6 (8)C9—C10—C15—C14175.04 (13)
S1'—C4—C5—C6120.2 (2)C13—C14—C15—C100.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O3i0.867 (19)1.975 (19)2.8334 (16)170.3 (16)
O3—H3A···O1ii0.85 (2)1.95 (2)2.7679 (15)163.6 (19)
O3—H3B···O1iii0.86 (2)1.97 (2)2.8231 (15)175 (2)
Symmetry codes: (i) x, y, z1; (ii) x+1, y, z; (iii) x1, y, z+1.

Experimental details

Crystal data
Chemical formulaC16H17N3O2S·H2O
Mr333.40
Crystal system, space groupMonoclinic, P21/n
Temperature (K)292
a, b, c (Å)6.7945 (1), 30.8791 (7), 7.8564 (2)
β (°) 102.057 (1)
V3)1611.97 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerBruker APEXII KappaCCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.901, 0.962
No. of measured, independent and
observed [I > 2σ(I)] reflections
30445, 3176, 2877
Rint0.024
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.090, 1.08
No. of reflections3176
No. of parameters240
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.16, 0.23

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2004), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O3i0.867 (19)1.975 (19)2.8334 (16)170.3 (16)
O3—H3A···O1ii0.85 (2)1.95 (2)2.7679 (15)163.6 (19)
O3—H3B···O1iii0.86 (2)1.97 (2)2.8231 (15)175 (2)
Symmetry codes: (i) x, y, z1; (ii) x+1, y, z; (iii) x1, y, z+1.
 

Acknowledgements

VG thanks the UGC, India, for financial assistance under the Minor Research Project (2010–2012) and also thanks the Sophisticated Analytical Instrument Facility, IIT-Madras, Chennai, for the data collection. DÜ and FÇ thank the Research Fund of Karadeniz Technical University for its support of this work.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationÜnver, Y., Köysal, Y., Tanak, H., Ünlüer, D. & Işık, Ş. (2010). Acta Cryst. E66, o1294.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationÜnver, Y., Meydanal, S., Sancak, K., Ünlüer, D., Ustabaş, R., Esra Düğdü. (2011). Turk. J. Chem. 35, 265–277.  Google Scholar
First citationÜnver, Y., Ustabaş, R., Çoruh, U., Sancak, K. & Vázquez-López, E. M. (2006). Acta Cryst. E62, o3938–o3939.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationUstabaş, R., Çoruh, U., Sancak, K., Demirkan, E. & Vázquez-López, E. M. (2007). Acta Cryst. E63, o2774–o2775.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYılmaz, I., Arslan, N. B., Kazak, C., Sancak, K. & Unver, Y. (2006). Acta Cryst. E62, o3067–o3068.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds