organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­ethyl­ammonium 2-[bis­­(4-hy­dr­oxy­phen­yl)meth­yl]benzoate

aCollege of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou 450008, People's Republic of China, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: arphylee@126.com

(Received 30 September 2011; accepted 27 October 2011; online 2 November 2011)

In the title compound, C8H20N+·C20H15O4, the benzoate anions are connected by multiple inter­molecular O—H⋯O hydrogen bonds, forming columns propagating along [1[\overline{1}]0]. The hydrogen bonding can be described by two rings with R22(22) and R42(28) motifs. In the crystal, the tetra­ethyl­ammonium cations are situated between these columns and are linked to them via C—H⋯O inter­actions.

Related literature

Mol­ecules possessing multiple donors or acceptors have long been used to construct different framework structures, which could inter­penetrate and/or include guest mol­ecules, see: Batten et al. (2000[Batten, S. R., Hoskins, B. F., Moubaraki, B., Murray, K. S. & Robson, R. (2000). Chem. Commun. pp. 1095-1096.]); Liu et al. (2001[Liu, R., Mok, K. F. & Valiyaveettil, S. (2001). New J. Chem. 25, 890-892.]).

[Scheme 1]

Experimental

Crystal data
  • C8H20N+·C20H15O4

  • Mr = 449.57

  • Triclinic, [P \overline 1]

  • a = 9.559 (2) Å

  • b = 10.406 (2) Å

  • c = 14.087 (3) Å

  • α = 83.390 (3)°

  • β = 78.711 (3)°

  • γ = 63.463 (3)°

  • V = 1228.7 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 K

  • 0.28 × 0.16 × 0.16 mm

Data collection
  • Bruker APEXII diffractometer

  • 5826 measured reflections

  • 3869 independent reflections

  • 2847 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.136

  • S = 1.04

  • 3869 reflections

  • 298 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O3i 0.82 1.87 2.689 (2) 177
O2—H2A⋯O3ii 0.82 1.87 2.686 (2) 176
C1—H1B⋯O4 0.98 2.23 3.005 (3) 135
C21—H21A⋯O2iii 0.97 2.56 3.467 (4) 156
C21—H21B⋯O4iv 0.97 2.39 3.350 (3) 171
C25—H25B⋯O4 0.97 2.42 3.382 (3) 172
C27—H27B⋯O1v 0.97 2.53 3.458 (4) 160
Symmetry codes: (i) -x, -y+1, -z; (ii) x+1, y-1, z; (iii) x-1, y+1, z; (iv) -x, -y+1, -z+1; (v) -x+1, -y+1, -z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Functional groups containing both hydrogen bond donors and acceptors (OH, CO2H) can be used to construct open framework structures, being connected via the various O—H···O hydrogen bonds (Batten et al., 2000; Liu et al., 2001).

In the title compound, the T–shaped 2-(bis(4-hydroxyphenyl)methyl)benzoate anions are connected by four intermolecular O-H···O hydrogen bonds, two hydroxyl groups act as donors, while the carboxyl groups act as acceptor, forming infinite columns propagating along [1 1 0], and two different rectangular grids with ring motifs A [R22(22)] and B [R42(28)], as shown in Fig. 2.

In the crystal the tetraethylammonium cations are situated between these columns, and are linked to the the carbonyl O atoms of the anions via C-H···O interactions (Table 1).

Related literature top

Molecules possessing multiple donors or acceptors have long been used to construct different framework structures, which could interpenetrate and/or include guest molecules, see: Batten et al. (2000); Liu et al. (2001).

Experimental top

2-(bis(4-hydroxyphenyl)methyl)benzoic acid (0.25 mmol, 80.0 mg) was dissolved in a water-ethanol (1 ml / 2 ml v/v) mixture. Tetraethylammonium hydroxide (0.3 mmol, 189.4 mg) was then added. The mixture was set aside for several weeks after which colourless crystals were isolated.

Refinement top

The C-bound H-atoms were included in calculated positions and treated as riding atoms: C-H = 0.93, 0.96, 0.97 and 0.98 Å for CH(aromatic), CH3, CH2 and CH(methine) H-atoms, respectively, with Uiso(H) = k × Ueq(parent C-atom), where k = 1.5 for CH3 H-atoms and k = 1.2 for all other H-atoms.

Structure description top

Functional groups containing both hydrogen bond donors and acceptors (OH, CO2H) can be used to construct open framework structures, being connected via the various O—H···O hydrogen bonds (Batten et al., 2000; Liu et al., 2001).

In the title compound, the T–shaped 2-(bis(4-hydroxyphenyl)methyl)benzoate anions are connected by four intermolecular O-H···O hydrogen bonds, two hydroxyl groups act as donors, while the carboxyl groups act as acceptor, forming infinite columns propagating along [1 1 0], and two different rectangular grids with ring motifs A [R22(22)] and B [R42(28)], as shown in Fig. 2.

In the crystal the tetraethylammonium cations are situated between these columns, and are linked to the the carbonyl O atoms of the anions via C-H···O interactions (Table 1).

Molecules possessing multiple donors or acceptors have long been used to construct different framework structures, which could interpenetrate and/or include guest molecules, see: Batten et al. (2000); Liu et al. (2001).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. A view of the molecular strcuture of the title compound, showng the numbering scheme and the displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. A view of the hydrogen bonded ladder-like column of 2-(bis(4-hydroxyphenyl)methyl)benzoate anions propagating along [110]. The O-H···O hydrogen bonds are shown as dashed lines; C-bound H atoms have been omitted for clarity.
[Figure 3] Fig. 3. A view of the crystal packing of the title compound. The O-H···O hydrogen bonds are shown as dashed lines; C-bound H atoms have been omitted for clarity.
Tetraethylammonium 2-[bis(4-hydroxyphenyl)methyl]benzoate top
Crystal data top
C8H20N+·C20H15O4Z = 2
Mr = 449.57F(000) = 484
Triclinic, P1Dx = 1.215 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.559 (2) ÅCell parameters from 5859 reflections
b = 10.406 (2) Åθ = 1.5–24.5°
c = 14.087 (3) ŵ = 0.08 mm1
α = 83.390 (3)°T = 298 K
β = 78.711 (3)°Block, colourless
γ = 63.463 (3)°0.28 × 0.16 × 0.16 mm
V = 1228.7 (4) Å3
Data collection top
Bruker APEXII
diffractometer
2847 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.027
Graphite monochromatorθmax = 24.5°, θmin = 1.5°
ω scansh = 1111
5826 measured reflectionsk = 1211
3869 independent reflectionsl = 1116
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0673P)2 + 0.0071P]
where P = (Fo2 + 2Fc2)/3
3869 reflections(Δ/σ)max < 0.001
298 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C8H20N+·C20H15O4γ = 63.463 (3)°
Mr = 449.57V = 1228.7 (4) Å3
Triclinic, P1Z = 2
a = 9.559 (2) ÅMo Kα radiation
b = 10.406 (2) ŵ = 0.08 mm1
c = 14.087 (3) ÅT = 298 K
α = 83.390 (3)°0.28 × 0.16 × 0.16 mm
β = 78.711 (3)°
Data collection top
Bruker APEXII
diffractometer
2847 reflections with I > 2σ(I)
5826 measured reflectionsRint = 0.027
3869 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.136H-atom parameters constrained
S = 1.04Δρmax = 0.22 e Å3
3869 reflectionsΔρmin = 0.22 e Å3
298 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.42741 (18)0.45947 (17)0.14441 (11)0.0574 (6)
O20.67184 (17)0.29161 (15)0.38711 (11)0.0530 (5)
O30.24103 (17)0.47994 (15)0.27934 (11)0.0505 (5)
O40.03207 (17)0.36798 (16)0.35336 (11)0.0489 (5)
C10.2330 (2)0.1947 (2)0.19965 (15)0.0363 (7)
C20.2886 (2)0.2563 (2)0.10391 (15)0.0385 (7)
C30.1892 (2)0.3242 (2)0.03587 (15)0.0414 (7)
C40.2324 (2)0.3936 (2)0.04585 (16)0.0432 (7)
C50.3781 (2)0.3957 (2)0.06298 (16)0.0435 (7)
C60.4786 (3)0.3305 (3)0.00415 (17)0.0511 (8)
C70.4327 (3)0.2632 (2)0.08658 (17)0.0490 (8)
C80.3606 (2)0.0671 (2)0.24511 (14)0.0361 (7)
C90.4846 (2)0.0451 (2)0.19308 (16)0.0434 (7)
C100.5900 (2)0.1630 (2)0.23912 (16)0.0436 (7)
C110.5743 (2)0.1733 (2)0.33854 (16)0.0390 (7)
C120.4550 (2)0.0610 (2)0.39170 (16)0.0404 (7)
C130.3495 (2)0.0567 (2)0.34502 (15)0.0391 (7)
C140.0965 (2)0.1597 (2)0.19114 (14)0.0377 (7)
C150.1287 (3)0.0446 (2)0.13518 (16)0.0484 (8)
C160.0113 (3)0.0096 (3)0.12106 (18)0.0572 (9)
C170.1424 (3)0.0908 (3)0.1623 (2)0.0630 (10)
C180.1783 (3)0.2060 (3)0.21589 (19)0.0537 (9)
C190.0616 (2)0.2432 (2)0.23203 (15)0.0387 (7)
C200.1123 (2)0.3721 (2)0.29301 (15)0.0381 (7)
N10.17485 (19)0.65104 (18)0.35963 (12)0.0416 (6)
C210.0102 (3)0.7361 (3)0.41381 (18)0.0624 (9)
C220.0585 (4)0.8960 (3)0.3953 (2)0.1051 (12)
C230.2909 (3)0.7004 (3)0.38232 (17)0.0513 (8)
C240.3070 (3)0.6899 (3)0.48754 (18)0.0679 (11)
C250.2216 (3)0.4949 (2)0.39128 (18)0.0556 (9)
C260.3855 (3)0.3920 (3)0.3464 (2)0.0769 (11)
C270.1787 (3)0.6721 (3)0.25098 (15)0.0500 (8)
C280.0662 (3)0.6351 (3)0.21141 (19)0.0690 (11)
H1A0.368700.476400.184200.0860*
H1B0.188800.272000.245900.0440*
H2A0.700700.363500.356000.0790*
H3A0.090700.322900.045500.0500*
H4A0.162500.439300.089700.0520*
H6A0.577100.331800.005900.0610*
H7A0.501000.221200.131700.0590*
H9A0.497100.040800.125800.0520*
H10A0.672500.236400.202500.0520*
H12A0.445400.064200.458800.0480*
H13A0.268700.130900.381900.0470*
H15A0.232600.010300.106500.0580*
H16A0.036200.068300.083900.0690*
H17A0.222200.067400.153700.0760*
H18A0.283300.261300.242400.0650*
H21A0.060300.701400.396800.0750*
H21B0.012500.716800.482600.0750*
H22A0.163200.940400.431900.1570*
H22B0.063500.917000.327500.1570*
H22C0.007400.932700.414500.1570*
H23A0.394400.643800.345700.0620*
H23B0.258800.799700.359900.0620*
H24A0.382200.724300.494700.1020*
H24B0.343100.591500.510200.1020*
H24C0.206000.747200.524700.1020*
H25A0.214700.486700.461200.0670*
H25B0.145600.466200.375100.0670*
H26A0.406200.296000.370300.1150*
H26B0.462100.417800.363200.1150*
H26C0.392800.396600.277300.1150*
H27A0.155100.771800.233700.0600*
H27B0.285600.613800.219300.0600*
H28A0.077300.652100.142500.1040*
H28B0.040600.694100.240500.1040*
H28C0.090300.535700.226000.1040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0546 (10)0.0724 (11)0.0522 (10)0.0367 (9)0.0148 (8)0.0210 (8)
O20.0531 (9)0.0440 (9)0.0541 (10)0.0103 (7)0.0238 (8)0.0070 (7)
O30.0453 (9)0.0406 (8)0.0523 (10)0.0056 (7)0.0148 (7)0.0048 (7)
O40.0418 (9)0.0579 (10)0.0421 (9)0.0154 (7)0.0106 (7)0.0033 (7)
C10.0343 (11)0.0336 (11)0.0370 (12)0.0107 (9)0.0068 (9)0.0021 (9)
C20.0330 (11)0.0359 (11)0.0377 (12)0.0066 (9)0.0075 (9)0.0005 (9)
C30.0300 (11)0.0458 (12)0.0437 (13)0.0125 (10)0.0079 (9)0.0025 (10)
C40.0356 (12)0.0465 (13)0.0405 (13)0.0115 (10)0.0101 (10)0.0043 (10)
C50.0424 (13)0.0421 (12)0.0430 (13)0.0172 (10)0.0068 (10)0.0051 (10)
C60.0406 (13)0.0623 (15)0.0574 (15)0.0287 (12)0.0167 (11)0.0135 (12)
C70.0442 (13)0.0556 (14)0.0476 (14)0.0198 (11)0.0198 (11)0.0102 (11)
C80.0330 (11)0.0371 (11)0.0350 (12)0.0119 (9)0.0070 (9)0.0006 (9)
C90.0434 (12)0.0471 (13)0.0335 (12)0.0139 (11)0.0069 (10)0.0019 (10)
C100.0363 (12)0.0415 (12)0.0440 (14)0.0089 (10)0.0050 (10)0.0041 (10)
C110.0340 (11)0.0385 (12)0.0471 (14)0.0158 (10)0.0161 (10)0.0053 (10)
C120.0487 (13)0.0422 (12)0.0342 (12)0.0216 (10)0.0112 (10)0.0002 (9)
C130.0391 (12)0.0369 (11)0.0371 (13)0.0126 (10)0.0048 (9)0.0043 (9)
C140.0408 (12)0.0356 (11)0.0351 (12)0.0147 (9)0.0124 (9)0.0074 (9)
C150.0487 (14)0.0416 (13)0.0503 (14)0.0130 (11)0.0142 (11)0.0020 (11)
C160.0728 (18)0.0464 (14)0.0590 (16)0.0242 (14)0.0330 (14)0.0044 (12)
C170.0617 (17)0.0517 (15)0.092 (2)0.0315 (14)0.0395 (15)0.0111 (14)
C180.0401 (13)0.0477 (14)0.0757 (18)0.0191 (11)0.0198 (12)0.0072 (13)
C190.0393 (12)0.0364 (11)0.0390 (12)0.0153 (10)0.0130 (9)0.0102 (9)
C200.0336 (11)0.0407 (12)0.0334 (12)0.0138 (10)0.0029 (9)0.0094 (9)
N10.0383 (10)0.0495 (11)0.0395 (11)0.0231 (9)0.0074 (8)0.0076 (8)
C210.0437 (14)0.091 (2)0.0435 (14)0.0243 (13)0.0033 (11)0.0037 (13)
C220.094 (2)0.086 (2)0.074 (2)0.0121 (19)0.0028 (18)0.0091 (18)
C230.0548 (14)0.0603 (15)0.0504 (15)0.0364 (12)0.0098 (11)0.0056 (11)
C240.0784 (19)0.091 (2)0.0543 (17)0.0523 (17)0.0235 (14)0.0101 (14)
C250.0663 (16)0.0576 (15)0.0610 (16)0.0412 (13)0.0272 (13)0.0199 (12)
C260.085 (2)0.0493 (15)0.095 (2)0.0190 (15)0.0402 (18)0.0026 (15)
C270.0532 (14)0.0561 (14)0.0375 (13)0.0234 (12)0.0059 (11)0.0061 (11)
C280.088 (2)0.0799 (19)0.0538 (16)0.0460 (17)0.0268 (15)0.0088 (14)
Geometric parameters (Å, º) top
O1—C51.368 (3)C6—H6A0.9300
O2—C111.372 (3)C7—H7A0.9300
O3—C201.273 (3)C9—H9A0.9300
O4—C201.237 (3)C10—H10A0.9300
O1—H1A0.8200C12—H12A0.9300
O2—H2A0.8200C13—H13A0.9300
N1—C271.517 (3)C15—H15A0.9300
N1—C211.511 (3)C16—H16A0.9300
N1—C231.511 (4)C17—H17A0.9300
N1—C251.517 (3)C18—H18A0.9300
C1—C21.529 (3)C21—C221.503 (4)
C1—C141.532 (3)C23—C241.507 (4)
C1—C81.524 (3)C25—C261.507 (4)
C2—C71.384 (4)C27—C281.507 (4)
C2—C31.386 (3)C21—H21A0.9700
C3—C41.381 (3)C21—H21B0.9700
C4—C51.376 (3)C22—H22A0.9600
C5—C61.380 (4)C22—H22B0.9600
C6—C71.385 (4)C22—H22C0.9600
C8—C131.386 (3)C23—H23A0.9700
C8—C91.388 (3)C23—H23B0.9700
C9—C101.382 (3)C24—H24A0.9600
C10—C111.376 (3)C24—H24B0.9600
C11—C121.380 (3)C24—H24C0.9600
C12—C131.386 (3)C25—H25A0.9700
C14—C151.394 (3)C25—H25B0.9700
C14—C191.404 (3)C26—H26A0.9600
C15—C161.379 (4)C26—H26B0.9600
C16—C171.371 (4)C26—H26C0.9600
C17—C181.365 (4)C27—H27A0.9700
C18—C191.397 (4)C27—H27B0.9700
C19—C201.514 (3)C28—H28A0.9600
C1—H1B0.9800C28—H28B0.9600
C3—H3A0.9300C28—H28C0.9600
C4—H4A0.9300
C5—O1—H1A109.00C11—C12—H12A120.00
C11—O2—H2A109.00C8—C13—H13A119.00
C23—N1—C27105.99 (19)C12—C13—H13A119.00
C25—N1—C27111.37 (18)C14—C15—H15A119.00
C21—N1—C27111.27 (19)C16—C15—H15A119.00
C21—N1—C23111.18 (19)C17—C16—H16A120.00
C21—N1—C25106.47 (19)C15—C16—H16A120.00
C23—N1—C25110.64 (19)C16—C17—H17A120.00
C2—C1—C14111.18 (17)C18—C17—H17A120.00
C8—C1—C14110.30 (16)C19—C18—H18A119.00
C2—C1—C8116.36 (17)C17—C18—H18A119.00
C1—C2—C3121.49 (19)N1—C21—C22115.6 (2)
C1—C2—C7121.35 (19)N1—C23—C24115.6 (2)
C3—C2—C7116.66 (19)N1—C25—C26114.6 (2)
C2—C3—C4121.8 (2)N1—C27—C28115.7 (2)
C3—C4—C5120.6 (2)N1—C21—H21A108.00
C4—C5—C6118.9 (2)N1—C21—H21B108.00
O1—C5—C6118.7 (2)C22—C21—H21A108.00
O1—C5—C4122.4 (2)C22—C21—H21B108.00
C5—C6—C7120.0 (3)H21A—C21—H21B107.00
C2—C7—C6122.1 (2)C21—C22—H22A110.00
C1—C8—C13118.85 (17)C21—C22—H22B109.00
C9—C8—C13116.94 (18)C21—C22—H22C109.00
C1—C8—C9124.13 (18)H22A—C22—H22B109.00
C8—C9—C10121.4 (2)H22A—C22—H22C110.00
C9—C10—C11120.82 (19)H22B—C22—H22C109.00
O2—C11—C10122.58 (18)N1—C23—H23A108.00
C10—C11—C12118.84 (19)N1—C23—H23B108.00
O2—C11—C12118.58 (19)C24—C23—H23A108.00
C11—C12—C13120.0 (2)C24—C23—H23B108.00
C8—C13—C12122.01 (19)H23A—C23—H23B107.00
C15—C14—C19118.1 (2)C23—C24—H24A109.00
C1—C14—C19123.21 (17)C23—C24—H24B109.00
C1—C14—C15118.6 (2)C23—C24—H24C109.00
C14—C15—C16122.0 (2)H24A—C24—H24B109.00
C15—C16—C17119.4 (2)H24A—C24—H24C109.00
C16—C17—C18120.0 (3)H24B—C24—H24C110.00
C17—C18—C19121.8 (3)N1—C25—H25A109.00
C14—C19—C18118.6 (2)N1—C25—H25B109.00
C14—C19—C20123.22 (19)C26—C25—H25A109.00
C18—C19—C20118.2 (2)C26—C25—H25B109.00
O4—C20—C19120.31 (18)H25A—C25—H25B107.00
O3—C20—O4123.56 (18)C25—C26—H26A109.00
O3—C20—C19116.11 (18)C25—C26—H26B109.00
C8—C1—H1B106.00C25—C26—H26C110.00
C14—C1—H1B106.00H26A—C26—H26B109.00
C2—C1—H1B106.00H26A—C26—H26C110.00
C4—C3—H3A119.00H26B—C26—H26C109.00
C2—C3—H3A119.00N1—C27—H27A108.00
C3—C4—H4A120.00N1—C27—H27B108.00
C5—C4—H4A120.00C28—C27—H27A108.00
C5—C6—H6A120.00C28—C27—H27B108.00
C7—C6—H6A120.00H27A—C27—H27B107.00
C6—C7—H7A119.00C27—C28—H28A109.00
C2—C7—H7A119.00C27—C28—H28B109.00
C8—C9—H9A119.00C27—C28—H28C109.00
C10—C9—H9A119.00H28A—C28—H28B109.00
C9—C10—H10A120.00H28A—C28—H28C110.00
C11—C10—H10A120.00H28B—C28—H28C110.00
C13—C12—H12A120.00
C21—N1—C25—C26178.7 (2)C3—C4—C5—O1178.00 (18)
C23—N1—C21—C2257.8 (3)O1—C5—C6—C7179.0 (2)
C25—N1—C21—C22178.4 (2)C4—C5—C6—C70.7 (3)
C27—N1—C21—C2260.1 (3)C5—C6—C7—C21.2 (4)
C21—N1—C23—C2458.7 (3)C1—C8—C9—C10175.2 (2)
C25—N1—C23—C2459.4 (3)C9—C8—C13—C121.1 (3)
C27—N1—C23—C24179.8 (2)C13—C8—C9—C101.3 (3)
C21—N1—C27—C2856.7 (3)C1—C8—C13—C12175.57 (19)
C23—N1—C25—C2657.8 (3)C8—C9—C10—C110.5 (3)
C27—N1—C25—C2659.8 (3)C9—C10—C11—O2176.8 (2)
C23—N1—C27—C28177.7 (2)C9—C10—C11—C122.6 (3)
C25—N1—C27—C2861.9 (3)C10—C11—C12—C132.7 (3)
C8—C1—C2—C3151.70 (19)O2—C11—C12—C13176.68 (19)
C2—C1—C8—C13143.2 (2)C11—C12—C13—C80.9 (3)
C14—C1—C8—C987.4 (2)C15—C14—C19—C180.9 (3)
C14—C1—C8—C1389.0 (2)C15—C14—C19—C20179.14 (19)
C8—C1—C2—C736.7 (3)C1—C14—C19—C18176.8 (2)
C14—C1—C2—C324.3 (2)C1—C14—C15—C16177.6 (2)
C14—C1—C2—C7164.05 (18)C19—C14—C15—C161.4 (3)
C2—C1—C8—C940.4 (3)C1—C14—C19—C203.2 (3)
C2—C1—C14—C1570.1 (2)C14—C15—C16—C170.7 (4)
C2—C1—C14—C19105.9 (2)C15—C16—C17—C180.7 (4)
C8—C1—C14—C1560.6 (2)C16—C17—C18—C191.2 (4)
C8—C1—C14—C19123.5 (2)C17—C18—C19—C140.4 (4)
C1—C2—C7—C6173.9 (2)C17—C18—C19—C20179.6 (2)
C3—C2—C7—C61.9 (3)C18—C19—C20—O339.8 (3)
C7—C2—C3—C40.9 (3)C18—C19—C20—O4138.7 (2)
C1—C2—C3—C4172.88 (18)C14—C19—C20—O441.3 (3)
C2—C3—C4—C50.9 (3)C14—C19—C20—O3140.2 (2)
C3—C4—C5—C61.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O3i0.821.872.689 (2)177
O2—H2A···O3ii0.821.872.686 (2)176
C1—H1B···O40.982.233.005 (3)135
C21—H21A···O2iii0.972.563.467 (4)156
C21—H21B···O4iv0.972.393.350 (3)171
C25—H25B···O40.972.423.382 (3)172
C27—H27B···O1v0.972.533.458 (4)160
Symmetry codes: (i) x, y+1, z; (ii) x+1, y1, z; (iii) x1, y+1, z; (iv) x, y+1, z+1; (v) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC8H20N+·C20H15O4
Mr449.57
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)9.559 (2), 10.406 (2), 14.087 (3)
α, β, γ (°)83.390 (3), 78.711 (3), 63.463 (3)
V3)1228.7 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.28 × 0.16 × 0.16
Data collection
DiffractometerBruker APEXII
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
5826, 3869, 2847
Rint0.027
(sin θ/λ)max1)0.583
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.136, 1.04
No. of reflections3869
No. of parameters298
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.22

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O3i0.821.872.689 (2)177
O2—H2A···O3ii0.821.872.686 (2)176
C1—H1B···O40.982.233.005 (3)135
C21—H21A···O2iii0.972.563.467 (4)156
C21—H21B···O4iv0.972.393.350 (3)171
C25—H25B···O40.972.423.382 (3)172
C27—H27B···O1v0.972.533.458 (4)160
Symmetry codes: (i) x, y+1, z; (ii) x+1, y1, z; (iii) x1, y+1, z; (iv) x, y+1, z+1; (v) x+1, y+1, z.
 

Acknowledgements

We thank Henan University of Traditional Medicine for supporting this study.

References

First citationBatten, S. R., Hoskins, B. F., Moubaraki, B., Murray, K. S. & Robson, R. (2000). Chem. Commun. pp. 1095–1096.  Web of Science CSD CrossRef Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLiu, R., Mok, K. F. & Valiyaveettil, S. (2001). New J. Chem. 25, 890–892.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds