organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-1-(4,4′′-Di­fluoro-5′-meth­­oxy-1,1′:3′,1′′-terphenyl-4′-yl)-3-phenyl­prop-2-en-1-one

aNelson Mandela Metropolitan University, Summerstrand Campus, Department of Chemistry, University Way, Summerstrand, PO Box 77000, Port Elizabeth 6031, South Africa, bMangalore University, Department of Studies in Chemistry, Mangalagangotri 574 199, India, and cUniversity of Mysore, Department of Studies in Chemistry, Manasagangotri, Mysore 570 006, India
*Correspondence e-mail: richard.betz@webmail.co.za

(Received 7 October 2011; accepted 28 October 2011; online 2 November 2011)

The title compound, C28H20F2O2, is a polysubstituted terphenyl derivative bearing a Michael system. The C=C double bond is E configured. In the crystal, C—H⋯O and C—H⋯F contacts connect the mol­ecules, forming undulating sheets that lie perpendicular to the crystallographic a axis. The shortest ππ inter­action [centroid–centroid distance = 3.7163 (7) Å] involves the para-fluoro­phenyl ring in the para position to the Michael system, and its symmetry-generated equivalent.

Related literature

For the pharmacological importance of terphenyls, see: Liu (2006[Liu, J. K. (2006). Chem. Rev. 106, 2209-2223.]) and of chalcones, see: Dhar (1981[Dhar, D. N. (1981). In The Chemistry of Chalcones and Related Compounds. New York: John Wiley.]); Dimmock et al. (1999[Dimmock, J. R., Elias, D. W., Beazely, M. A. & Kandepu, N. M. (1999). Curr. Med. Chem. 6, 1125-1149.]); Satyanarayana et al. (2004[Satyanarayana, M., Tiwari, P., Tripathi, B. K., Sriwastava, A. K. & Pratap, R. (2004). Bioorg. Med. Chem. 12, 883-887.]). For our work on the synthesis of different derivatives of chalcones, see: Samshuddin et al. (2011a[Samshuddin, S., Narayana, B., Shetty, D. N. & Raghavendra, R. (2011a). Der Pharma Chemica 3, 232-240.],b[Samshuddin, S., Butcher, R. J., Akkurt, M., Narayana, B., Yathirajan, H. S. & Sarojini, B. K. (2011b). Acta Cryst. E67, o1954-o1955.]); Fun et al. (2010a[Fun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010a). Acta Cryst. E66, o582-o583.],b[Fun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010b). Acta Cryst. E66, o864-o865.]); Jasinski et al. (2010a[Jasinski, J. P., Guild, C. J., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010a). Acta Cryst. E66, o1948-o1949.],b[Jasinski, J. P., Guild, C. J., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010b). Acta Cryst. E66, o2018.]); Baktır et al. (2011a[Baktır, Z., Akkurt, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2011a). Acta Cryst. E67, o1262-o1263.],b[Baktır, Z., Akkurt, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2011b). Acta Cryst. E67, o1292-o1293.]). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C28H20F2O2

  • Mr = 426.44

  • Monoclinic, P 21 /c

  • a = 13.9226 (4) Å

  • b = 6.7977 (2) Å

  • c = 22.4531 (7) Å

  • β = 101.874 (1)°

  • V = 2079.53 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 200 K

  • 0.48 × 0.13 × 0.10 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • 19250 measured reflections

  • 5125 independent reflections

  • 3527 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.094

  • S = 1.01

  • 5125 reflections

  • 290 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C25—H25⋯O1i 0.95 2.41 3.3092 (15) 157
C44—H44⋯F2ii 0.95 2.55 3.2761 (15) 133
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+1, y+{\script{3\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Chalcones constitute an important family of substances belonging to flavonoids, a large group of natural and synthetic products with interesting physicochemical properties, biological activity and structural characteristics. They have been reported to possess many interesting pharmacological activities (Dhar, 1981) including anti-inflammatory, antimicrobial, antifungal, antioxidant, cytotoxic, antitumor and anticancer activities (Dimmock et al., 1999; Satyanarayana et al., 2004).In recent years, it has been reported that some terphenyls exhibit considerable biological activities (e.g. being potent anticoagulants, immunosuppressants, antithrombotics, neuroprotectives, specific 5-lipoxygenase inhibitors) and showing cytotoxic activities (Liu, 2006). In view of the pharmacological importance of terphenyls and chalcones, and in continuation of our work on synthesis of various derivatives of 4,4'-difluoro chalcone (Samshuddin et al., 2011a/b, Fun et al., 2010a/b, Jasinski et al., 2010a/b, Baktır et al., 2011a/b), the molecular and crystal structure of the title compound is reported herein.

The molecular structure of the title molecule is shown in Fig. 1. The CC double bond along the Michael system is (E)-configured. The mean planes of the two para-fluoro phenyl moieties, (C21-C26) and (C31-C36), enclose angles of 49.66 (5) and 42.33 (5)°, respectively, with the mean plane of the central phenyl ring (C11-C16) in the terphenyl moiety.

In the crystal, C–H···O contacts as well as C–H···F contacts are present (Table 1). While the range of the latter ones falls only by more than 0.1 Å below the sum of van-der-Waals radii of the corresponding atoms, the shortening of the C–H···O contacts is found to be more than 0.3 Å below this cut-off criterion. The C–H···O contacts are apparent between one of the hydrogen atoms, H25, in an ortho position to fluorine atom, F1, on one of the para-fluoro phenyl moieties and the oxygen atom, O1, of the Michael system. The C–H···F contacts are exclusively supported by the fluorine atom, F2, of the para fluoro phenyl moiety that is not part of the system of C–H···O contacts. In terms of graph-set analysis (Etter et al., 1990; Bernstein et al., 1995), the descriptor for the C–H···O contacts is C11(10) on the unitary level (Fig. 2), while the C–H···F contacts necessitate a C11(15) descriptor on the same level (Fig. 3). In total, the molecules are connected to form undulating sheets lieing perpendicular to [100].

The crystal packing of the title compound is shown in Figure 4. The shortest ππ centroid-centroid distance is 3.7163 (7) Å, involving the para-fluoro phenyl moiety (C21-C26) and its symmetry-generated equivalent (symmetry code: -x, 0.5+y, -0.5-z).

Related literature top

For the pharmacological importance of terphenyls, see: Liu (2006) and of chalcones, see: Dhar (1981); Dimmock et al. (1999); Satyanarayana et al. (2004). For our work on the synthesis of different derivatives of chalcones, see: Samshuddin et al. (2011a,b); Fun et al. (2010a,b); Jasinski et al. (2010a,b); Baktır et al. (2011a,b). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990); Bernstein et al. (1995).

Experimental top

To a mixture of 1-(4,4''-difluoro-5'-methoxy-1,1':3',1''-terphenyl-4'-yl) ethanone (0.338 g, 0.001 mol) and benzaldehyde (0.106 g, 0.001 mol) in 20 mL of ethanol, was added 1 ml of 10% sodium hydroxide solution. the mixture was stirred at 278–283 K for 3 h. The precipitate formed was collected by filtration and dried (yield: 86%). The single-crystal suitable for the X-ray diffraction study was grown from a DMF-ethanol (v:v 1:1) solution of the title compound by slow evaporation at room temperature.

Refinement top

C-bound H atoms were placed in calculated positions and refined as riding atoms: C—H = 0.95 Å for aromatic and vinylic H atoms, 0.99 Å for methylene and 0.98 Å for methyl H atoms, with Uiso(H) = k × Ueq(C), where k = 1.5 for methyl H atoms, and k = 1.2 for all other H atoms.

Structure description top

Chalcones constitute an important family of substances belonging to flavonoids, a large group of natural and synthetic products with interesting physicochemical properties, biological activity and structural characteristics. They have been reported to possess many interesting pharmacological activities (Dhar, 1981) including anti-inflammatory, antimicrobial, antifungal, antioxidant, cytotoxic, antitumor and anticancer activities (Dimmock et al., 1999; Satyanarayana et al., 2004).In recent years, it has been reported that some terphenyls exhibit considerable biological activities (e.g. being potent anticoagulants, immunosuppressants, antithrombotics, neuroprotectives, specific 5-lipoxygenase inhibitors) and showing cytotoxic activities (Liu, 2006). In view of the pharmacological importance of terphenyls and chalcones, and in continuation of our work on synthesis of various derivatives of 4,4'-difluoro chalcone (Samshuddin et al., 2011a/b, Fun et al., 2010a/b, Jasinski et al., 2010a/b, Baktır et al., 2011a/b), the molecular and crystal structure of the title compound is reported herein.

The molecular structure of the title molecule is shown in Fig. 1. The CC double bond along the Michael system is (E)-configured. The mean planes of the two para-fluoro phenyl moieties, (C21-C26) and (C31-C36), enclose angles of 49.66 (5) and 42.33 (5)°, respectively, with the mean plane of the central phenyl ring (C11-C16) in the terphenyl moiety.

In the crystal, C–H···O contacts as well as C–H···F contacts are present (Table 1). While the range of the latter ones falls only by more than 0.1 Å below the sum of van-der-Waals radii of the corresponding atoms, the shortening of the C–H···O contacts is found to be more than 0.3 Å below this cut-off criterion. The C–H···O contacts are apparent between one of the hydrogen atoms, H25, in an ortho position to fluorine atom, F1, on one of the para-fluoro phenyl moieties and the oxygen atom, O1, of the Michael system. The C–H···F contacts are exclusively supported by the fluorine atom, F2, of the para fluoro phenyl moiety that is not part of the system of C–H···O contacts. In terms of graph-set analysis (Etter et al., 1990; Bernstein et al., 1995), the descriptor for the C–H···O contacts is C11(10) on the unitary level (Fig. 2), while the C–H···F contacts necessitate a C11(15) descriptor on the same level (Fig. 3). In total, the molecules are connected to form undulating sheets lieing perpendicular to [100].

The crystal packing of the title compound is shown in Figure 4. The shortest ππ centroid-centroid distance is 3.7163 (7) Å, involving the para-fluoro phenyl moiety (C21-C26) and its symmetry-generated equivalent (symmetry code: -x, 0.5+y, -0.5-z).

For the pharmacological importance of terphenyls, see: Liu (2006) and of chalcones, see: Dhar (1981); Dimmock et al. (1999); Satyanarayana et al. (2004). For our work on the synthesis of different derivatives of chalcones, see: Samshuddin et al. (2011a,b); Fun et al. (2010a,b); Jasinski et al. (2010a,b); Baktır et al. (2011a,b). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990); Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Intermolecular C–H···O contacts, viewed along [0 1 0]. (Symmetry operators: (i) x, -y + 3/2, z + 1/2; (ii) x, -y + 3/2, z - 1/2; displacement ellipsoids are drawn at the 50% probability level).
[Figure 3] Fig. 3. Intermolecular C–H···F contacts, viewed along [-1 0 0]. (Symmetry operators: (i) -x + 1, y - 3/2, -z + 1/2; (ii) -x + 1, y + 3/2, -z + 1/2; displacement ellipsoids are drawn at the 50% probability level).
[Figure 4] Fig. 4. Crystal packing of the title compound, viewed along [0 1 0].
(E)-1-(4,4''-Difluoro-5'-methoxy-1,1':3',1''-terphenyl-4'-yl)-3- phenylprop-2-en-1-one top
Crystal data top
C28H20F2O2F(000) = 888
Mr = 426.44Dx = 1.362 Mg m3
Monoclinic, P21/cMelting point: 423 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 13.9226 (4) ÅCell parameters from 7468 reflections
b = 6.7977 (2) Åθ = 2.6–28.0°
c = 22.4531 (7) ŵ = 0.10 mm1
β = 101.874 (1)°T = 200 K
V = 2079.53 (11) Å3Platelet, colourless
Z = 40.48 × 0.13 × 0.10 mm
Data collection top
Bruker APEXII CCD
diffractometer
3527 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.040
Graphite monochromatorθmax = 28.3°, θmin = 1.9°
φ and ω scansh = 1817
19250 measured reflectionsk = 89
5125 independent reflectionsl = 2529
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0511P)2]
where P = (Fo2 + 2Fc2)/3
5125 reflections(Δ/σ)max < 0.001
290 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C28H20F2O2V = 2079.53 (11) Å3
Mr = 426.44Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.9226 (4) ŵ = 0.10 mm1
b = 6.7977 (2) ÅT = 200 K
c = 22.4531 (7) Å0.48 × 0.13 × 0.10 mm
β = 101.874 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
3527 reflections with I > 2σ(I)
19250 measured reflectionsRint = 0.040
5125 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.094H-atom parameters constrained
S = 1.01Δρmax = 0.23 e Å3
5125 reflectionsΔρmin = 0.21 e Å3
290 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.03088 (6)0.94826 (11)0.35137 (3)0.0494 (2)
F20.50301 (6)0.12071 (11)0.05515 (3)0.0493 (2)
O10.21900 (6)0.67802 (12)0.11362 (4)0.0394 (2)
O20.11107 (6)1.12741 (12)0.04508 (4)0.0353 (2)
C10.23288 (8)0.83556 (17)0.09109 (5)0.0270 (3)
C20.27709 (8)1.00565 (17)0.12773 (5)0.0300 (3)
H20.29501.11750.10710.036*
C30.29307 (8)1.00990 (18)0.18816 (5)0.0310 (3)
H30.27480.89650.20790.037*
C40.06138 (9)1.30889 (18)0.02758 (6)0.0368 (3)
H4A0.00341.28180.00220.055*
H4B0.09991.38810.00450.055*
H4C0.05361.38120.06410.055*
C110.20575 (8)0.86471 (16)0.02319 (5)0.0238 (2)
C120.13992 (8)1.01639 (16)0.00102 (5)0.0257 (2)
C130.10403 (8)1.04127 (16)0.06077 (5)0.0267 (2)
H130.05821.14310.07490.032*
C140.13529 (8)0.91667 (16)0.10215 (5)0.0253 (2)
C150.20392 (8)0.77097 (16)0.08044 (5)0.0260 (2)
H150.22760.69010.10880.031*
C160.23890 (8)0.74032 (15)0.01843 (5)0.0239 (2)
C210.09231 (8)0.93258 (16)0.16842 (5)0.0259 (2)
C220.00938 (8)0.94150 (16)0.18843 (5)0.0297 (3)
H220.05060.94460.15960.036*
C230.05075 (9)0.94585 (17)0.25003 (6)0.0327 (3)
H230.12000.94960.26380.039*
C240.01025 (10)0.94466 (17)0.29052 (5)0.0331 (3)
C250.11065 (10)0.93945 (18)0.27319 (6)0.0353 (3)
H250.15100.94100.30250.042*
C260.15114 (9)0.93183 (17)0.21152 (5)0.0311 (3)
H260.22040.92600.19840.037*
C310.31015 (8)0.57820 (16)0.00173 (5)0.0243 (2)
C320.29576 (8)0.39510 (16)0.02707 (5)0.0279 (3)
H320.24050.37640.05930.033*
C330.36021 (9)0.24029 (17)0.00969 (5)0.0308 (3)
H330.34980.11620.02940.037*
C340.43955 (9)0.27162 (17)0.03683 (5)0.0317 (3)
C350.45767 (9)0.44935 (18)0.06604 (5)0.0319 (3)
H350.51350.46670.09800.038*
C360.39282 (8)0.60273 (17)0.04799 (5)0.0273 (3)
H360.40490.72690.06750.033*
C410.33623 (8)1.17345 (18)0.22707 (5)0.0298 (3)
C420.35335 (9)1.1541 (2)0.29036 (5)0.0372 (3)
H420.33451.03660.30780.045*
C430.39754 (9)1.3043 (2)0.32801 (6)0.0431 (3)
H430.40861.28900.37090.052*
C440.42550 (9)1.4751 (2)0.30357 (6)0.0431 (3)
H440.45721.57650.32950.052*
C450.40733 (9)1.4990 (2)0.24114 (6)0.0415 (3)
H450.42561.61780.22410.050*
C460.36256 (9)1.35020 (19)0.20337 (6)0.0364 (3)
H460.34951.36880.16050.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0717 (5)0.0466 (5)0.0227 (4)0.0038 (4)0.0068 (4)0.0007 (3)
F20.0611 (5)0.0429 (4)0.0427 (5)0.0271 (4)0.0080 (4)0.0095 (4)
O10.0557 (5)0.0331 (5)0.0312 (5)0.0031 (4)0.0136 (4)0.0058 (4)
O20.0426 (5)0.0358 (5)0.0272 (5)0.0140 (4)0.0067 (4)0.0025 (4)
C10.0259 (6)0.0309 (6)0.0255 (6)0.0033 (5)0.0079 (5)0.0025 (5)
C20.0318 (6)0.0336 (6)0.0243 (6)0.0018 (5)0.0047 (5)0.0014 (5)
C30.0325 (6)0.0347 (7)0.0255 (6)0.0022 (5)0.0054 (5)0.0037 (5)
C40.0400 (7)0.0283 (6)0.0429 (8)0.0077 (5)0.0100 (6)0.0037 (5)
C110.0248 (5)0.0233 (5)0.0225 (6)0.0028 (4)0.0029 (4)0.0001 (4)
C120.0271 (6)0.0239 (6)0.0260 (6)0.0015 (4)0.0055 (5)0.0031 (5)
C130.0268 (6)0.0236 (6)0.0285 (6)0.0016 (5)0.0026 (5)0.0016 (5)
C140.0259 (5)0.0241 (6)0.0244 (6)0.0033 (4)0.0020 (5)0.0005 (5)
C150.0271 (6)0.0255 (6)0.0248 (6)0.0006 (4)0.0046 (5)0.0040 (5)
C160.0227 (5)0.0217 (5)0.0265 (6)0.0022 (4)0.0032 (5)0.0002 (5)
C210.0310 (6)0.0207 (5)0.0242 (6)0.0009 (5)0.0019 (5)0.0005 (4)
C220.0319 (6)0.0273 (6)0.0287 (6)0.0017 (5)0.0037 (5)0.0008 (5)
C230.0333 (6)0.0285 (6)0.0318 (7)0.0019 (5)0.0038 (5)0.0002 (5)
C240.0504 (8)0.0235 (6)0.0209 (6)0.0016 (5)0.0034 (6)0.0001 (5)
C250.0482 (8)0.0315 (6)0.0279 (7)0.0009 (6)0.0115 (6)0.0006 (5)
C260.0310 (6)0.0312 (6)0.0300 (7)0.0007 (5)0.0040 (5)0.0018 (5)
C310.0250 (5)0.0252 (6)0.0236 (6)0.0008 (4)0.0073 (5)0.0025 (4)
C320.0283 (6)0.0276 (6)0.0278 (6)0.0015 (5)0.0060 (5)0.0003 (5)
C330.0390 (7)0.0242 (6)0.0321 (7)0.0000 (5)0.0139 (6)0.0002 (5)
C340.0371 (6)0.0311 (6)0.0296 (7)0.0126 (5)0.0129 (5)0.0098 (5)
C350.0296 (6)0.0396 (7)0.0252 (6)0.0042 (5)0.0024 (5)0.0031 (5)
C360.0296 (6)0.0269 (6)0.0252 (6)0.0004 (5)0.0051 (5)0.0009 (5)
C410.0271 (6)0.0391 (7)0.0222 (6)0.0049 (5)0.0028 (5)0.0009 (5)
C420.0399 (7)0.0448 (8)0.0257 (7)0.0043 (6)0.0041 (6)0.0036 (6)
C430.0429 (7)0.0596 (9)0.0235 (7)0.0066 (7)0.0005 (6)0.0054 (6)
C440.0379 (7)0.0505 (9)0.0377 (8)0.0004 (6)0.0002 (6)0.0130 (6)
C450.0423 (7)0.0415 (8)0.0414 (8)0.0054 (6)0.0098 (6)0.0032 (6)
C460.0415 (7)0.0430 (7)0.0243 (6)0.0015 (6)0.0056 (5)0.0003 (5)
Geometric parameters (Å, º) top
F1—C241.3687 (13)C23—C241.3658 (18)
F2—C341.3611 (13)C23—H230.9500
O1—C11.2167 (14)C24—C251.3722 (18)
O2—C121.3687 (13)C25—C261.3843 (16)
O2—C41.4294 (14)C25—H250.9500
C1—C21.4779 (16)C26—H260.9500
C1—C111.5064 (15)C31—C361.3926 (15)
C2—C31.3292 (16)C31—C321.3980 (15)
C2—H20.9500C32—C331.3860 (16)
C3—C411.4644 (17)C32—H320.9500
C3—H30.9500C33—C341.3719 (17)
C4—H4A0.9800C33—H330.9500
C4—H4B0.9800C34—C351.3730 (17)
C4—H4C0.9800C35—C361.3841 (16)
C11—C121.4012 (15)C35—H350.9500
C11—C161.4065 (15)C36—H360.9500
C12—C131.3849 (16)C41—C461.3933 (17)
C13—C141.3915 (15)C41—C421.3981 (16)
C13—H130.9500C42—C431.3860 (18)
C14—C151.3928 (15)C42—H420.9500
C14—C211.4893 (15)C43—C441.375 (2)
C15—C161.3930 (15)C43—H430.9500
C15—H150.9500C44—C451.3819 (19)
C16—C311.4895 (15)C44—H440.9500
C21—C261.3905 (16)C45—C461.3832 (18)
C21—C221.3958 (15)C45—H450.9500
C22—C231.3848 (16)C46—H460.9500
C22—H220.9500
C12—O2—C4118.33 (9)C23—C24—C25123.23 (11)
O1—C1—C2122.73 (11)F1—C24—C25118.43 (11)
O1—C1—C11120.56 (10)C24—C25—C26117.78 (12)
C2—C1—C11116.71 (10)C24—C25—H25121.1
C3—C2—C1123.25 (11)C26—C25—H25121.1
C3—C2—H2118.4C25—C26—C21121.26 (11)
C1—C2—H2118.4C25—C26—H26119.4
C2—C3—C41125.97 (11)C21—C26—H26119.4
C2—C3—H3117.0C36—C31—C32118.00 (10)
C41—C3—H3117.0C36—C31—C16122.32 (10)
O2—C4—H4A109.5C32—C31—C16119.67 (10)
O2—C4—H4B109.5C33—C32—C31121.53 (11)
H4A—C4—H4B109.5C33—C32—H32119.2
O2—C4—H4C109.5C31—C32—H32119.2
H4A—C4—H4C109.5C34—C33—C32118.02 (11)
H4B—C4—H4C109.5C34—C33—H33121.0
C12—C11—C16119.11 (10)C32—C33—H33121.0
C12—C11—C1117.76 (10)F2—C34—C33118.94 (10)
C16—C11—C1123.03 (10)F2—C34—C35118.35 (11)
O2—C12—C13123.90 (10)C33—C34—C35122.70 (10)
O2—C12—C11114.63 (10)C34—C35—C36118.58 (11)
C13—C12—C11121.37 (10)C34—C35—H35120.7
C12—C13—C14119.77 (10)C36—C35—H35120.7
C12—C13—H13120.1C35—C36—C31121.16 (11)
C14—C13—H13120.1C35—C36—H36119.4
C13—C14—C15119.05 (10)C31—C36—H36119.4
C13—C14—C21120.42 (10)C46—C41—C42117.78 (11)
C15—C14—C21120.46 (10)C46—C41—C3122.33 (11)
C14—C15—C16121.98 (10)C42—C41—C3119.88 (11)
C14—C15—H15119.0C43—C42—C41120.80 (12)
C16—C15—H15119.0C43—C42—H42119.6
C15—C16—C11118.62 (10)C41—C42—H42119.6
C15—C16—C31119.24 (10)C44—C43—C42120.37 (12)
C11—C16—C31122.14 (10)C44—C43—H43119.8
C26—C21—C22118.68 (10)C42—C43—H43119.8
C26—C21—C14121.47 (10)C43—C44—C45119.75 (12)
C22—C21—C14119.81 (10)C43—C44—H44120.1
C23—C22—C21120.55 (11)C45—C44—H44120.1
C23—C22—H22119.7C44—C45—C46120.10 (13)
C21—C22—H22119.7C44—C45—H45119.9
C24—C23—C22118.47 (11)C46—C45—H45119.9
C24—C23—H23120.8C45—C46—C41121.14 (12)
C22—C23—H23120.8C45—C46—H46119.4
C23—C24—F1118.33 (11)C41—C46—H46119.4
O1—C1—C2—C39.33 (18)C22—C23—C24—F1179.77 (10)
C11—C1—C2—C3171.15 (11)C22—C23—C24—C250.04 (18)
C1—C2—C3—C41179.84 (10)C23—C24—C25—C261.09 (18)
O1—C1—C11—C12122.58 (12)F1—C24—C25—C26178.72 (10)
C2—C1—C11—C1257.89 (13)C24—C25—C26—C211.01 (18)
O1—C1—C11—C1653.63 (15)C22—C21—C26—C250.09 (17)
C2—C1—C11—C16125.90 (11)C14—C21—C26—C25177.63 (11)
C4—O2—C12—C1316.63 (16)C15—C16—C31—C36136.15 (11)
C4—O2—C12—C11166.88 (10)C11—C16—C31—C3643.63 (15)
C16—C11—C12—O2179.15 (9)C15—C16—C31—C3242.56 (15)
C1—C11—C12—O22.78 (14)C11—C16—C31—C32137.65 (11)
C16—C11—C12—C132.56 (16)C36—C31—C32—C331.30 (17)
C1—C11—C12—C13173.81 (10)C16—C31—C32—C33179.93 (10)
O2—C12—C13—C14177.79 (10)C31—C32—C33—C340.23 (17)
C11—C12—C13—C141.52 (16)C32—C33—C34—F2179.12 (10)
C12—C13—C14—C151.23 (16)C32—C33—C34—C350.65 (17)
C12—C13—C14—C21175.78 (10)F2—C34—C35—C36179.38 (10)
C13—C14—C15—C162.99 (16)C33—C34—C35—C360.40 (18)
C21—C14—C15—C16174.03 (10)C34—C35—C36—C310.74 (17)
C14—C15—C16—C111.93 (16)C32—C31—C36—C351.56 (16)
C14—C15—C16—C31178.28 (10)C16—C31—C36—C35179.71 (11)
C12—C11—C16—C150.84 (15)C2—C3—C41—C462.43 (19)
C1—C11—C16—C15175.33 (10)C2—C3—C41—C42176.82 (12)
C12—C11—C16—C31178.95 (10)C46—C41—C42—C431.74 (18)
C1—C11—C16—C314.88 (16)C3—C41—C42—C43177.54 (11)
C13—C14—C21—C26134.17 (12)C41—C42—C43—C440.12 (19)
C15—C14—C21—C2648.86 (16)C42—C43—C44—C451.5 (2)
C13—C14—C21—C2248.15 (15)C43—C44—C45—C461.0 (2)
C15—C14—C21—C22128.83 (12)C44—C45—C46—C410.9 (2)
C26—C21—C22—C231.17 (17)C42—C41—C46—C452.25 (18)
C14—C21—C22—C23176.58 (11)C3—C41—C46—C45177.01 (11)
C21—C22—C23—C241.12 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C25—H25···O1i0.952.413.3092 (15)157
C44—H44···F2ii0.952.553.2761 (15)133
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x+1, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC28H20F2O2
Mr426.44
Crystal system, space groupMonoclinic, P21/c
Temperature (K)200
a, b, c (Å)13.9226 (4), 6.7977 (2), 22.4531 (7)
β (°) 101.874 (1)
V3)2079.53 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.48 × 0.13 × 0.10
Data collection
DiffractometerBruker APEXII CCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
19250, 5125, 3527
Rint0.040
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.094, 1.01
No. of reflections5125
No. of parameters290
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.21

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C25—H25···O1i0.952.413.3092 (15)157
C44—H44···F2ii0.952.553.2761 (15)133
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x+1, y+3/2, z+1/2.
 

Acknowledgements

BN thanks the UGC for financial assistance through the SAP and and a BSR one-time grant for the purchase of chemicals. SS thanks Mangalore University for research facilities.

References

First citationBaktır, Z., Akkurt, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2011a). Acta Cryst. E67, o1262–o1263.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBaktır, Z., Akkurt, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2011b). Acta Cryst. E67, o1292–o1293.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDhar, D. N. (1981). In The Chemistry of Chalcones and Related Compounds. New York: John Wiley.  Google Scholar
First citationDimmock, J. R., Elias, D. W., Beazely, M. A. & Kandepu, N. M. (1999). Curr. Med. Chem. 6, 1125–1149.  Web of Science PubMed CAS Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010a). Acta Cryst. E66, o582–o583.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010b). Acta Cryst. E66, o864–o865.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationJasinski, J. P., Guild, C. J., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010a). Acta Cryst. E66, o1948–o1949.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationJasinski, J. P., Guild, C. J., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010b). Acta Cryst. E66, o2018.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, J. K. (2006). Chem. Rev. 106, 2209–2223.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSamshuddin, S., Butcher, R. J., Akkurt, M., Narayana, B., Yathirajan, H. S. & Sarojini, B. K. (2011b). Acta Cryst. E67, o1954–o1955.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSamshuddin, S., Narayana, B., Shetty, D. N. & Raghavendra, R. (2011a). Der Pharma Chemica 3, 232–240.  CAS Google Scholar
First citationSatyanarayana, M., Tiwari, P., Tripathi, B. K., Sriwastava, A. K. & Pratap, R. (2004). Bioorg. Med. Chem. 12, 883–887.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds