metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{4,6-Bis[(E)-1-methyl-2-(pyridin-2-yl­methyl­­idene)hydrazinyl]pyrimidine-κ3N,N′,N′′}di­chloridomanganese(II)

aSchool of Chemistry and CRANN, Trinity College, University of Dublin, College Green, Dublin 2, Republic of Ireland
*Correspondence e-mail: schmittw@tcd.ie

(Received 11 October 2011; accepted 19 October 2011; online 5 November 2011)

In the title compound, [MnCl2(C18H18N8)], the geometry around the MnII centre is distorted square-pyramidal. In the crystal structure, mol­ecules pack via weak C—H⋯N and C—H⋯Cl inter­actions.

Related literature

For the synthesis of the ligand, see: Schmitt et al. (2003[Schmitt, J.-L., Stadler, A.-M., Kyritsakas, N. & Lehn, J. M. (2003). Helv. Chim. Acta, 86, 1598-1624.]). For the coordination chemistry of similar ligand types, see: Stadler et al. (2005[Stadler, A.-M., Puntoriero, F., Campagna, S., Kyritsakas, N., Welter, R. & Lehn, J.-M. (2005). Chem. Eur. J. 11, 3997-4009.], 2006[Stadler, A.-M., Kyritsakas, N., Graff, R. & Lehn, J.-M. (2006). Chem. Eur. J. 12, 4503-4522.]). For coordination chemistry of similar complexes that contain Mn—N bonds, see: Romain et al. (2011[Romain, S., Rich, J., Sens, C., Stoll, T., Benet-Buchholz, J., Llobet, A., Rodriguez, M., Romero, I., Clerac, R., Mathoniere, C., Duboc, C., Deronzier, A. & Collomb, M.-N. (2011). Inorg. Chem. 50, 8427-8436.]). For a related structure containing copper(II) ions, see: Marzec et al. (2011[Marzec, B., Mariyatra, M. B., McCabe, T. & Schmitt, W. (2011). Acta Cryst. E67, m1073-m1074.]).

[Scheme 1]

Experimental

Crystal data
  • [MnCl2(C18H18N8)]

  • Mr = 472.24

  • Triclinic, [P \overline 1]

  • a = 8.8355 (12) Å

  • b = 10.0972 (14) Å

  • c = 12.1466 (17) Å

  • α = 72.571 (3)°

  • β = 77.694 (3)°

  • γ = 75.700 (3)°

  • V = 990.4 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.96 mm−1

  • T = 123 K

  • 0.15 × 0.10 × 0.08 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.891, Tmax = 0.926

  • 13578 measured reflections

  • 4889 independent reflections

  • 4095 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.088

  • S = 1.04

  • 4889 reflections

  • 264 parameters

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯N3i 0.95 2.50 3.358 (3) 151
C18—H18⋯Cl3ii 0.95 2.80 3.508 (2) 133
Symmetry codes: (i) -x-1, -y+2, -z+1; (ii) -x+2, -y, -z+2.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalMaker (Palmer, 2011[Palmer, D. (2011). CrystalMaker. Crystal Maker Software Ltd, Yarnton, Oxfordshire, England.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

(Pyridin-2-ylmethylene)hydrazinyl)pyrimidine-based ligands are an interesting class of compounds due to their functionalities and their geometrical features that might contribute significantly to the field of supramolecular chemistry. Lehn and coworkers recently reported that this class of compounds can systematically and modularly be extended resulting in N-functional ligand strands with varying dimensions (Stadler et al., 2005, 2006; Schmitt et al., 2003). The modular nature of the ligands enhances their appeal to be used in coordination chemistry. We present herein, the crystal structure of a manganese(II) complex of the above mentioned ligand.

In the title complex the manganese(II) atom is penta-coordinated by three N atoms of the organic ligand (4,6-bis[(N-methyl-2-(pyrindin-2-ylmethylene)hydrazinyl]pyrimidine) and two Cl atoms (Fig. 1). The coordination geometry of the central MnII ion can be best described as distorted square pyramidal. The N5, N7, N8 and Cl3 atoms form the basal plane and the Cl6 Cl atom occupys the apical position. The bond distances between the N atoms and the metal ion vary between 2.2227 (16) Å [Mn1—N5] and 2.2628 (16) Å [Mn1—N7]. The Mn—Cl bond distances are 2.3695 (6) Å for Mn1—Cl3 and 2.3453 (7) Å for Mn1—Cl6. The angle between the central metal ion and the Cl atoms [Cl3—Mn1—Cl6] is equal to 113.06 (2)°. The angles between the MnII ion and the coordinating atoms located in the basal plane vary between 69.14 (6)° [N5—Mn1—N7] and 103.08 (4)° [Cl3—Mn1—N8]. The configuration around atoms C6 and C13 is assigned to be E, as the torsion angles N2—N1—C6—C1 and N6—N7—C13—C14 are 176.36 (17)° and -177.09 (16)°, respectively.

In the crystal the complex molecules are connected by intermolecular C—H···Cl and C—H···N hydrogen bonds (Fig. 2). The former exists between the non-coordinating N atom N3 and C atom C2, and the latter between the Cl atom Cl3 and C atom C18, see Table 1 for details.

A related structure that contains copper(II) ions was reported on by us recently (Marzec et al., 2011).

Related literature top

For the synthesis of the ligand, see: Schmitt et al. (2003). For the coordination chemistry of similar ligand types, see: Stadler et al. (2005,2006). For coordination chemistry of similar ligands that contain Mn—N bonds, see: Romain et al. (2011). For a related structure containing copper(II) ions, see: Marzec et al. (2011).

Experimental top

4,6-Bis[N-methyl-2-(pyrindin-2-ylmethylene)hydrazinyl]pyrimidine (0.007 g, 0.025 mmol) was dissolved in 5 ml of dichloromethane and 4.50 ml of methanol. Then 0.50 ml of a methanolic 0.1 M manganese(II)chloride tetrahydrate solution was added and the mixture was left for slow evaporation. Orange, block-shaped crystals of the title compound were collected after 4 d. Yield: ca 85%.

Refinement top

The H atoms were positioned geometrically and were included in the refinement in a riding model approximation: C—H = 0.95 and 0.98 Å for CH and CH3 H atoms, respectively, with Uiso(H) = kUeq(C), where k = 1.5 for CH3 H atoms, and k = 1.2 for all other H atoms.

Structure description top

(Pyridin-2-ylmethylene)hydrazinyl)pyrimidine-based ligands are an interesting class of compounds due to their functionalities and their geometrical features that might contribute significantly to the field of supramolecular chemistry. Lehn and coworkers recently reported that this class of compounds can systematically and modularly be extended resulting in N-functional ligand strands with varying dimensions (Stadler et al., 2005, 2006; Schmitt et al., 2003). The modular nature of the ligands enhances their appeal to be used in coordination chemistry. We present herein, the crystal structure of a manganese(II) complex of the above mentioned ligand.

In the title complex the manganese(II) atom is penta-coordinated by three N atoms of the organic ligand (4,6-bis[(N-methyl-2-(pyrindin-2-ylmethylene)hydrazinyl]pyrimidine) and two Cl atoms (Fig. 1). The coordination geometry of the central MnII ion can be best described as distorted square pyramidal. The N5, N7, N8 and Cl3 atoms form the basal plane and the Cl6 Cl atom occupys the apical position. The bond distances between the N atoms and the metal ion vary between 2.2227 (16) Å [Mn1—N5] and 2.2628 (16) Å [Mn1—N7]. The Mn—Cl bond distances are 2.3695 (6) Å for Mn1—Cl3 and 2.3453 (7) Å for Mn1—Cl6. The angle between the central metal ion and the Cl atoms [Cl3—Mn1—Cl6] is equal to 113.06 (2)°. The angles between the MnII ion and the coordinating atoms located in the basal plane vary between 69.14 (6)° [N5—Mn1—N7] and 103.08 (4)° [Cl3—Mn1—N8]. The configuration around atoms C6 and C13 is assigned to be E, as the torsion angles N2—N1—C6—C1 and N6—N7—C13—C14 are 176.36 (17)° and -177.09 (16)°, respectively.

In the crystal the complex molecules are connected by intermolecular C—H···Cl and C—H···N hydrogen bonds (Fig. 2). The former exists between the non-coordinating N atom N3 and C atom C2, and the latter between the Cl atom Cl3 and C atom C18, see Table 1 for details.

A related structure that contains copper(II) ions was reported on by us recently (Marzec et al., 2011).

For the synthesis of the ligand, see: Schmitt et al. (2003). For the coordination chemistry of similar ligand types, see: Stadler et al. (2005,2006). For coordination chemistry of similar ligands that contain Mn—N bonds, see: Romain et al. (2011). For a related structure containing copper(II) ions, see: Marzec et al. (2011).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalMaker (Palmer, 2011) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex, showing the numbering scheme and displacement ellipsoids drawn at 50% probability level (H atoms have been omitted for clarity).
[Figure 2] Fig. 2. Crystal packing of the title complex, viewed along the a-axis, showing the C—H···Cl interactions as dashed red lines (H atoms have been omitted for clarity).
{4,6-Bis[(E)-1-methyl-2-(pyridin-2-ylmethylidene)hydrazinyl]pyrimidine- κ3N,N',N''}dichloridomanganese(II) top
Crystal data top
[MnCl2(C18H18N8)]Z = 2
Mr = 472.24F(000) = 482
Triclinic, P1Dx = 1.583 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.8355 (12) ÅCell parameters from 209 reflections
b = 10.0972 (14) Åθ = 1.8–28.4°
c = 12.1466 (17) ŵ = 0.96 mm1
α = 72.571 (3)°T = 123 K
β = 77.694 (3)°Block, orange
γ = 75.700 (3)°0.15 × 0.10 × 0.08 mm
V = 990.4 (2) Å3
Data collection top
Bruker SMART CCD
diffractometer
4889 independent reflections
Radiation source: fine-focus sealed tube4095 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ω and φ scansθmax = 28.4°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Blessing, 1995)
h = 1111
Tmin = 0.891, Tmax = 0.926k = 1313
13578 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0408P)2 + 0.5107P]
where P = (Fo2 + 2Fc2)/3
4889 reflections(Δ/σ)max = 0.001
264 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
[MnCl2(C18H18N8)]γ = 75.700 (3)°
Mr = 472.24V = 990.4 (2) Å3
Triclinic, P1Z = 2
a = 8.8355 (12) ÅMo Kα radiation
b = 10.0972 (14) ŵ = 0.96 mm1
c = 12.1466 (17) ÅT = 123 K
α = 72.571 (3)°0.15 × 0.10 × 0.08 mm
β = 77.694 (3)°
Data collection top
Bruker SMART CCD
diffractometer
4889 independent reflections
Absorption correction: multi-scan
(SADABS; Blessing, 1995)
4095 reflections with I > 2σ(I)
Tmin = 0.891, Tmax = 0.926Rint = 0.029
13578 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.088H-atom parameters constrained
S = 1.04Δρmax = 0.47 e Å3
4889 reflectionsΔρmin = 0.24 e Å3
264 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.67993 (3)0.16794 (3)0.82771 (3)0.01792 (9)
Cl30.79147 (6)0.23004 (5)0.96172 (5)0.02639 (12)
Cl60.83681 (6)0.18893 (6)0.64375 (4)0.02952 (13)
N10.01708 (19)0.67410 (17)0.66222 (14)0.0208 (3)
N20.14098 (19)0.69997 (17)0.69778 (15)0.0212 (3)
N30.3287 (2)0.85135 (18)0.53910 (16)0.0256 (4)
N40.37974 (19)0.59915 (17)0.76727 (15)0.0213 (3)
N50.47733 (18)0.34990 (17)0.80430 (14)0.0191 (3)
N60.32711 (18)0.19442 (17)0.79741 (15)0.0201 (3)
N70.45792 (18)0.09592 (16)0.82524 (14)0.0183 (3)
N80.72286 (18)0.07073 (17)0.88859 (14)0.0193 (3)
C10.2119 (2)0.7419 (2)0.57423 (17)0.0213 (4)
C20.4426 (2)0.8238 (2)0.49708 (19)0.0282 (5)
H20.52680.89970.47310.034*
C30.4455 (3)0.6926 (2)0.48639 (19)0.0291 (5)
H30.52880.67890.45530.035*
C40.3236 (3)0.5808 (2)0.52218 (19)0.0294 (5)
H40.32170.48880.51600.035*
C50.2060 (2)0.6057 (2)0.56669 (18)0.0257 (4)
H50.12150.53090.59210.031*
C60.0873 (2)0.7771 (2)0.61700 (17)0.0219 (4)
H60.08440.87240.61130.026*
C70.1690 (2)0.8430 (2)0.6747 (2)0.0269 (4)
H7A0.08170.89810.71720.040*
H7B0.17560.88850.59080.040*
H7C0.26830.83850.70060.040*
C80.2476 (2)0.5803 (2)0.74022 (16)0.0192 (4)
C90.2191 (2)0.4463 (2)0.75266 (17)0.0202 (4)
H90.12170.43390.73980.024*
C100.3397 (2)0.3324 (2)0.78463 (16)0.0178 (4)
C110.4861 (2)0.4824 (2)0.79677 (18)0.0218 (4)
H110.58050.49430.81490.026*
C120.1896 (2)0.1539 (2)0.7783 (2)0.0257 (4)
H12A0.16240.07390.84280.039*
H12B0.21360.12630.70470.039*
H12C0.10010.23410.77440.039*
C130.4659 (2)0.0363 (2)0.83818 (17)0.0211 (4)
H130.38200.07050.82530.025*
C140.6114 (2)0.1315 (2)0.87384 (16)0.0189 (4)
C150.6297 (2)0.2762 (2)0.89248 (18)0.0236 (4)
H150.54850.31550.88160.028*
C160.7687 (2)0.3630 (2)0.92733 (18)0.0252 (4)
H160.78500.46270.94000.030*
C170.8830 (2)0.3016 (2)0.94323 (18)0.0243 (4)
H170.97910.35850.96750.029*
C180.8557 (2)0.1558 (2)0.92326 (17)0.0217 (4)
H180.93480.11450.93470.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.01333 (14)0.01712 (15)0.02342 (16)0.00139 (10)0.00637 (11)0.00423 (11)
Cl30.0216 (2)0.0294 (3)0.0326 (3)0.00431 (19)0.0116 (2)0.0098 (2)
Cl60.0247 (3)0.0315 (3)0.0265 (3)0.0013 (2)0.0011 (2)0.0043 (2)
N10.0168 (8)0.0219 (8)0.0227 (8)0.0002 (6)0.0064 (6)0.0049 (7)
N20.0178 (8)0.0173 (8)0.0283 (9)0.0002 (6)0.0094 (7)0.0047 (7)
N30.0191 (8)0.0237 (9)0.0309 (9)0.0026 (7)0.0094 (7)0.0042 (7)
N40.0189 (8)0.0192 (8)0.0273 (9)0.0003 (6)0.0082 (7)0.0075 (7)
N50.0149 (7)0.0200 (8)0.0234 (8)0.0008 (6)0.0065 (6)0.0068 (6)
N60.0130 (7)0.0175 (8)0.0294 (9)0.0005 (6)0.0083 (6)0.0041 (7)
N70.0135 (7)0.0185 (8)0.0211 (8)0.0012 (6)0.0057 (6)0.0039 (6)
N80.0175 (8)0.0189 (8)0.0213 (8)0.0021 (6)0.0062 (6)0.0038 (6)
C10.0180 (9)0.0223 (9)0.0205 (9)0.0003 (7)0.0052 (7)0.0030 (8)
C20.0185 (10)0.0324 (11)0.0302 (11)0.0001 (8)0.0087 (8)0.0036 (9)
C30.0233 (10)0.0387 (12)0.0266 (11)0.0096 (9)0.0074 (8)0.0050 (9)
C40.0326 (12)0.0275 (11)0.0287 (11)0.0073 (9)0.0070 (9)0.0055 (9)
C50.0245 (10)0.0232 (10)0.0265 (10)0.0001 (8)0.0075 (8)0.0034 (8)
C60.0199 (9)0.0190 (9)0.0244 (10)0.0000 (7)0.0051 (8)0.0039 (8)
C70.0236 (10)0.0183 (9)0.0391 (12)0.0005 (8)0.0115 (9)0.0061 (9)
C80.0170 (9)0.0216 (9)0.0174 (9)0.0001 (7)0.0034 (7)0.0052 (7)
C90.0143 (9)0.0209 (9)0.0247 (10)0.0001 (7)0.0073 (7)0.0048 (8)
C100.0153 (8)0.0193 (9)0.0191 (9)0.0020 (7)0.0034 (7)0.0060 (7)
C110.0175 (9)0.0225 (10)0.0275 (10)0.0017 (7)0.0082 (8)0.0079 (8)
C120.0159 (9)0.0231 (10)0.0401 (12)0.0034 (7)0.0101 (8)0.0075 (9)
C130.0176 (9)0.0210 (9)0.0254 (10)0.0031 (7)0.0071 (8)0.0048 (8)
C140.0164 (9)0.0189 (9)0.0202 (9)0.0023 (7)0.0041 (7)0.0036 (7)
C150.0225 (10)0.0205 (9)0.0293 (11)0.0035 (8)0.0082 (8)0.0064 (8)
C160.0282 (10)0.0168 (9)0.0291 (11)0.0008 (8)0.0076 (9)0.0055 (8)
C170.0209 (10)0.0245 (10)0.0242 (10)0.0039 (8)0.0087 (8)0.0044 (8)
C180.0176 (9)0.0236 (10)0.0238 (10)0.0025 (7)0.0072 (8)0.0045 (8)
Geometric parameters (Å, º) top
Mn1—N52.2227 (16)C3—H30.9500
Mn1—N82.2580 (16)C4—C51.373 (3)
Mn1—N72.2628 (16)C4—H40.9500
Mn1—Cl62.3453 (7)C5—H50.9500
Mn1—Cl32.3695 (6)C6—H60.9500
N1—C61.279 (2)C7—H7A0.9800
N1—N21.365 (2)C7—H7B0.9800
N2—C81.373 (2)C7—H7C0.9800
N2—C71.459 (3)C8—C91.396 (3)
N3—C21.339 (3)C9—C101.382 (2)
N3—C11.345 (2)C9—H90.9500
N4—C111.320 (2)C11—H110.9500
N4—C81.348 (2)C12—H12A0.9800
N5—C111.334 (2)C12—H12B0.9800
N5—C101.350 (2)C12—H12C0.9800
N6—N71.355 (2)C13—C141.463 (3)
N6—C101.385 (2)C13—H130.9500
N6—C121.457 (2)C14—C151.384 (3)
N7—C131.282 (2)C15—C161.387 (3)
N8—C181.338 (2)C15—H150.9500
N8—C141.348 (2)C16—C171.380 (3)
C1—C51.394 (3)C16—H160.9500
C1—C61.468 (3)C17—C181.385 (3)
C2—C31.376 (3)C17—H170.9500
C2—H20.9500C18—H180.9500
C3—C41.389 (3)
N5—Mn1—N8138.73 (6)N1—C6—H6121.4
N5—Mn1—N769.14 (6)C1—C6—H6121.4
N8—Mn1—N771.34 (6)N2—C7—H7A109.5
N5—Mn1—Cl6105.58 (5)N2—C7—H7B109.5
N8—Mn1—Cl698.09 (4)H7A—C7—H7B109.5
N7—Mn1—Cl6109.23 (4)N2—C7—H7C109.5
N5—Mn1—Cl398.11 (4)H7A—C7—H7C109.5
N8—Mn1—Cl3103.08 (4)H7B—C7—H7C109.5
N7—Mn1—Cl3137.70 (4)N4—C8—N2117.01 (17)
Cl6—Mn1—Cl3113.06 (2)N4—C8—C9122.41 (17)
C6—N1—N2120.08 (17)N2—C8—C9120.58 (17)
N1—N2—C8114.05 (15)C10—C9—C8116.66 (17)
N1—N2—C7121.98 (15)C10—C9—H9121.7
C8—N2—C7123.26 (16)C8—C9—H9121.7
C2—N3—C1116.94 (18)N5—C10—C9121.65 (17)
C11—N4—C8115.07 (17)N5—C10—N6116.17 (16)
C11—N5—C10115.84 (16)C9—C10—N6122.17 (17)
C11—N5—Mn1123.94 (12)N4—C11—N5128.05 (18)
C10—N5—Mn1119.88 (12)N4—C11—H11116.0
N7—N6—C10114.64 (15)N5—C11—H11116.0
N7—N6—C12120.81 (15)N6—C12—H12A109.5
C10—N6—C12124.50 (15)N6—C12—H12B109.5
C13—N7—N6122.20 (16)H12A—C12—H12B109.5
C13—N7—Mn1118.24 (12)N6—C12—H12C109.5
N6—N7—Mn1119.14 (12)H12A—C12—H12C109.5
C18—N8—C14117.69 (16)H12B—C12—H12C109.5
C18—N8—Mn1125.94 (13)N7—C13—C14116.34 (17)
C14—N8—Mn1115.79 (12)N7—C13—H13121.8
N3—C1—C5122.57 (18)C14—C13—H13121.8
N3—C1—C6115.26 (17)N8—C14—C15122.81 (17)
C5—C1—C6122.13 (17)N8—C14—C13116.59 (16)
N3—C2—C3124.18 (19)C15—C14—C13120.59 (17)
N3—C2—H2117.9C14—C15—C16118.86 (18)
C3—C2—H2117.9C14—C15—H15120.6
C2—C3—C4118.28 (19)C16—C15—H15120.6
C2—C3—H3120.9C17—C16—C15118.62 (18)
C4—C3—H3120.9C17—C16—H16120.7
C5—C4—C3118.8 (2)C15—C16—H16120.7
C5—C4—H4120.6C16—C17—C18119.14 (18)
C3—C4—H4120.6C16—C17—H17120.4
C4—C5—C1119.22 (19)C18—C17—H17120.4
C4—C5—H5120.4N8—C18—C17122.87 (18)
C1—C5—H5120.4N8—C18—H18118.6
N1—C6—C1117.14 (18)C17—C18—H18118.6
C6—N1—N2—C8177.44 (18)N3—C1—C6—N1173.05 (18)
C6—N1—N2—C76.8 (3)C5—C1—C6—N19.2 (3)
N8—Mn1—N5—C11160.34 (14)C11—N4—C8—N2173.62 (17)
N7—Mn1—N5—C11177.93 (17)C11—N4—C8—C95.6 (3)
Cl6—Mn1—N5—C1177.03 (16)N1—N2—C8—N4174.36 (16)
Cl3—Mn1—N5—C1139.75 (16)C7—N2—C8—N43.8 (3)
N8—Mn1—N5—C1026.59 (19)N1—N2—C8—C94.8 (3)
N7—Mn1—N5—C109.01 (13)C7—N2—C8—C9175.38 (19)
Cl6—Mn1—N5—C1096.04 (14)N4—C8—C9—C105.5 (3)
Cl3—Mn1—N5—C10147.19 (14)N2—C8—C9—C10173.61 (17)
C10—N6—N7—C13178.82 (18)C11—N5—C10—C93.3 (3)
C12—N6—N7—C131.4 (3)Mn1—N5—C10—C9170.32 (14)
C10—N6—N7—Mn16.4 (2)C11—N5—C10—N6177.21 (17)
C12—N6—N7—Mn1171.03 (14)Mn1—N5—C10—N69.2 (2)
N5—Mn1—N7—C13179.21 (16)C8—C9—C10—N50.8 (3)
N8—Mn1—N7—C1311.35 (14)C8—C9—C10—N6178.64 (17)
Cl6—Mn1—N7—C1380.91 (15)N7—N6—C10—N51.6 (2)
Cl3—Mn1—N7—C13100.42 (15)C12—N6—C10—N5178.96 (18)
N5—Mn1—N7—N68.07 (13)N7—N6—C10—C9177.86 (17)
N8—Mn1—N7—N6175.93 (15)C12—N6—C10—C90.5 (3)
Cl6—Mn1—N7—N691.81 (13)C8—N4—C11—N50.9 (3)
Cl3—Mn1—N7—N686.86 (14)C10—N5—C11—N43.4 (3)
N5—Mn1—N8—C18161.13 (14)Mn1—N5—C11—N4169.90 (16)
N7—Mn1—N8—C18178.46 (17)N6—N7—C13—C14177.09 (16)
Cl6—Mn1—N8—C1873.90 (16)Mn1—N7—C13—C1410.4 (2)
Cl3—Mn1—N8—C1842.16 (16)C18—N8—C14—C150.3 (3)
N5—Mn1—N8—C1427.89 (18)Mn1—N8—C14—C15171.45 (15)
N7—Mn1—N8—C1410.56 (13)C18—N8—C14—C13178.80 (17)
Cl6—Mn1—N8—C1497.09 (13)Mn1—N8—C14—C139.4 (2)
Cl3—Mn1—N8—C14146.86 (13)N7—C13—C14—N80.5 (3)
C2—N3—C1—C50.8 (3)N7—C13—C14—C15178.61 (19)
C2—N3—C1—C6178.55 (18)N8—C14—C15—C160.3 (3)
C1—N3—C2—C31.0 (3)C13—C14—C15—C16179.37 (19)
N3—C2—C3—C40.6 (3)C14—C15—C16—C170.6 (3)
C2—C3—C4—C50.1 (3)C15—C16—C17—C180.4 (3)
C3—C4—C5—C10.2 (3)C14—N8—C18—C170.6 (3)
N3—C1—C5—C40.2 (3)Mn1—N8—C18—C17170.26 (15)
C6—C1—C5—C4177.8 (2)C16—C17—C18—N80.2 (3)
N2—N1—C6—C1176.38 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···N3i0.952.503.358 (3)151
C18—H18···Cl3ii0.952.803.508 (2)133
Symmetry codes: (i) x1, y+2, z+1; (ii) x+2, y, z+2.

Experimental details

Crystal data
Chemical formula[MnCl2(C18H18N8)]
Mr472.24
Crystal system, space groupTriclinic, P1
Temperature (K)123
a, b, c (Å)8.8355 (12), 10.0972 (14), 12.1466 (17)
α, β, γ (°)72.571 (3), 77.694 (3), 75.700 (3)
V3)990.4 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.96
Crystal size (mm)0.15 × 0.10 × 0.08
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Blessing, 1995)
Tmin, Tmax0.891, 0.926
No. of measured, independent and
observed [I > 2σ(I)] reflections
13578, 4889, 4095
Rint0.029
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.088, 1.04
No. of reflections4889
No. of parameters264
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.24

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), CrystalMaker (Palmer, 2011) and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···N3i0.952.503.358 (3)151
C18—H18···Cl3ii0.952.803.508 (2)133
Symmetry codes: (i) x1, y+2, z+1; (ii) x+2, y, z+2.
 

Acknowledgements

The authors thank the Science Foundation Ireland (SFI) for financial support (grant Nos 06/RFP/CHE174 and 08/IN.1/I2047). BM gratefully acknowledges financial support from DRHEA and Trinity College.

References

First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA  Google Scholar
First citationMarzec, B., Mariyatra, M. B., McCabe, T. & Schmitt, W. (2011). Acta Cryst. E67, m1073–m1074.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPalmer, D. (2011). CrystalMaker. Crystal Maker Software Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationRomain, S., Rich, J., Sens, C., Stoll, T., Benet-Buchholz, J., Llobet, A., Rodriguez, M., Romero, I., Clerac, R., Mathoniere, C., Duboc, C., Deronzier, A. & Collomb, M.-N. (2011). Inorg. Chem. 50, 8427–8436.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSchmitt, J.-L., Stadler, A.-M., Kyritsakas, N. & Lehn, J. M. (2003). Helv. Chim. Acta, 86, 1598–1624.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStadler, A.-M., Kyritsakas, N., Graff, R. & Lehn, J.-M. (2006). Chem. Eur. J. 12, 4503–4522.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationStadler, A.-M., Puntoriero, F., Campagna, S., Kyritsakas, N., Welter, R. & Lehn, J.-M. (2005). Chem. Eur. J. 11, 3997–4009.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds