organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-2-[(2-Chloro­benzyl­­idene)amino]­isoindoline-1,3-dione

aDepartment of Chemistry, Fuyang Normal College, Fuyang Anhui 236041, People's Republic of China
*Correspondence e-mail: zhaodi_liu@163.com

(Received 24 October 2011; accepted 26 October 2011; online 5 November 2011)

The title compound, C15H9ClN2O2, adopts an E configuration about the C=N double bond. The mean plane of the isoindoline ring system [maximum deviation = 0.011 (2) Å] is inclined to the chloro­benzene ring by 22.62 (8)°. In the crystal, mol­ecules are connected by C—H⋯O hydrogen bonds, forming chains that propagate along [010].

Related literature

For background to and applications of amidrazones, see: Neilson et al. (1970[Neilson, D. G., Heatlie, J. W. M. & Newlands, L. R. (1970). Chem. Rev. 70, 151-170.]); Lee et al. (1998[Lee, K., Hwang, S. Y., Hong, S., Hong, C. Y., Lee, C.-S., Shin, Y., Kim, S., Yun, S., Yoo, Y. J., Kang, M. & Oh, Y. S. (1998). Bioorg. Med. Chem. 6, 869-876.]); Radwan et al. (2007[Radwan, M. A. A. & El-Sherbiny, M. (2007). Bioorg. Med. Chem. 15, 15, 2106-2119.]); Xu et al. (2009[Xu, H.-J., Du, N.-N., Jiang, X.-Y., Sheng, L.-Q. & Tian, Y.-P. (2009). Acta Cryst. E65, o1047.]); Liu et al. (2011[Liu, Z.-D., Xu, H.-J., Song, C.-F., Huang, D.-Q., Sheng, L.-Q. & Shi, R.-H. (2011). Chem. Lett. 40, 75-77.]).

[Scheme 1]

Experimental

Crystal data
  • C15H9ClN2O2

  • Mr = 284.69

  • Monoclinic, P 21 /c

  • a = 12.991 (8) Å

  • b = 4.808 (3) Å

  • c = 23.757 (11) Å

  • β = 120.60 (2)°

  • V = 1277.2 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.10 mm

Data collection
  • Siemens SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.942, Tmax = 0.971

  • 6727 measured reflections

  • 2628 independent reflections

  • 2017 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.104

  • S = 1.10

  • 2628 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15⋯O1i 0.93 2.52 3.421 (4) 163
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Amidrazones have been shown to act as important precursors or intermediates in the synthesis of various chemical compounds widely applied in industry (Neilson et al., 1970), and the amidrazone moiety (CNN) is an essential part of numerous molecules demonstrating high biological activity (Lee et al., 1998; Radwan et al., 2007). As part of an ongoing study of compounds based on the amidrazone moiety (Xu et al., 2009; Liu et al., 2011), we report herein on the crystal structure of the title compound, synthesized from 2-aminoisoindoline-1,3-dione and 2-chlorobenzaldehyde.

The molecular structure of the title compound is shown in Fig. 1. The CN double bond adopts an E configuration. The isoindoline ring system [(N2,C8-C15); maximum deviation 0.011 (2) Å] makes a dihedral angle of 22.62 (8)° with the chorobenzene ring (C1-C6).

In the cystal, molecules are connected by C15-H15···O1 hydrogen bonds forming dimers, which stack along the b-axis direction (Fig. 2).

Related literature top

For background to and applications of amidrazones, see: Neilson et al. (1970); Lee et al. (1998); Radwan et al. (2007); Xu et al. (2009); Liu et al. (2011).

Experimental top

A solution of 2-aminoisoindoline-1,3-dione (0.16 g, 1 mmol) in 15 ml ethanol was added slowly to a solution containing 2-chlorobenzaldehyde (0.14 g,1 mmol) in 5 ml absolute ethanol, under heating and stirring, then the mixture was refluxed for 2 h. The mixture was then cooled to room temperature and the resulting solution left to stand in air for 15 days. Colourless prism-shaped crystals were formed on slow evaporation of the solvent.

Refinement top

All H-atoms were placed in calculated positions and treated as riding: C—H = 0.93 Å, with Uiso(H) = 1.2Ueq(parent C-atom).

Structure description top

Amidrazones have been shown to act as important precursors or intermediates in the synthesis of various chemical compounds widely applied in industry (Neilson et al., 1970), and the amidrazone moiety (CNN) is an essential part of numerous molecules demonstrating high biological activity (Lee et al., 1998; Radwan et al., 2007). As part of an ongoing study of compounds based on the amidrazone moiety (Xu et al., 2009; Liu et al., 2011), we report herein on the crystal structure of the title compound, synthesized from 2-aminoisoindoline-1,3-dione and 2-chlorobenzaldehyde.

The molecular structure of the title compound is shown in Fig. 1. The CN double bond adopts an E configuration. The isoindoline ring system [(N2,C8-C15); maximum deviation 0.011 (2) Å] makes a dihedral angle of 22.62 (8)° with the chorobenzene ring (C1-C6).

In the cystal, molecules are connected by C15-H15···O1 hydrogen bonds forming dimers, which stack along the b-axis direction (Fig. 2).

For background to and applications of amidrazones, see: Neilson et al. (1970); Lee et al. (1998); Radwan et al. (2007); Xu et al. (2009); Liu et al. (2011).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Crystal packing viewed along the b-axis. The intermolecular C-H···O hydrogen bonds are shown as dashed lines (details are given in Table 1).
(E)-2-[(2-Chlorobenzylidene)amino]isoindoline-1,3-dione top
Crystal data top
C15H9ClN2O2F(000) = 584
Mr = 284.69Dx = 1.481 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2406 reflections
a = 12.991 (8) Åθ = 3.1–27.1°
b = 4.808 (3) ŵ = 0.30 mm1
c = 23.757 (11) ÅT = 293 K
β = 120.60 (2)°Prism, yellow
V = 1277.2 (13) Å30.20 × 0.20 × 0.10 mm
Z = 4
Data collection top
Siemens SMART CCD area-detector
diffractometer
2628 independent reflections
Radiation source: fine-focus sealed tube2017 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
φ and ω scansθmax = 26.5°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1616
Tmin = 0.942, Tmax = 0.971k = 65
6727 measured reflectionsl = 2923
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0444P)2 + 0.2726P]
where P = (Fo2 + 2Fc2)/3
2628 reflections(Δ/σ)max = 0.001
181 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C15H9ClN2O2V = 1277.2 (13) Å3
Mr = 284.69Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.991 (8) ŵ = 0.30 mm1
b = 4.808 (3) ÅT = 293 K
c = 23.757 (11) Å0.20 × 0.20 × 0.10 mm
β = 120.60 (2)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
2628 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2017 reflections with I > 2σ(I)
Tmin = 0.942, Tmax = 0.971Rint = 0.025
6727 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.104H-atom parameters constrained
S = 1.10Δρmax = 0.19 e Å3
2628 reflectionsΔρmin = 0.32 e Å3
181 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.46943 (4)0.33401 (14)0.57225 (3)0.0719 (2)
O10.37871 (11)0.9151 (3)0.67721 (7)0.0559 (5)
O20.04114 (11)0.5317 (3)0.66062 (6)0.0516 (4)
N10.18301 (12)0.4921 (3)0.60576 (7)0.0435 (5)
N20.20315 (12)0.6854 (3)0.65344 (7)0.0400 (5)
C10.23630 (16)0.2700 (4)0.53596 (8)0.0417 (6)
C20.32867 (16)0.1841 (4)0.52658 (8)0.0465 (6)
C30.3118 (2)0.0195 (4)0.48207 (10)0.0578 (8)
C40.2015 (2)0.1385 (4)0.44524 (10)0.0598 (8)
C50.1073 (2)0.0545 (4)0.45248 (9)0.0577 (7)
C60.12498 (17)0.1482 (4)0.49709 (9)0.0494 (6)
C70.25579 (16)0.4778 (4)0.58538 (9)0.0463 (6)
C80.29761 (14)0.8758 (4)0.68703 (8)0.0400 (5)
C90.27449 (14)1.0096 (3)0.73570 (8)0.0382 (5)
C100.17280 (14)0.8941 (3)0.73080 (8)0.0371 (5)
C110.12550 (15)0.6817 (4)0.67897 (8)0.0386 (5)
C120.13187 (16)0.9757 (4)0.77164 (8)0.0427 (5)
C130.19584 (17)1.1782 (4)0.81725 (9)0.0496 (6)
C140.29695 (17)1.2934 (4)0.82189 (9)0.0536 (6)
C150.33895 (16)1.2110 (4)0.78112 (9)0.0484 (6)
H30.375100.076100.477000.0690*
H40.189900.276700.415200.0720*
H50.032300.135100.427200.0690*
H60.061000.205400.501400.0590*
H70.320900.597900.601600.0560*
H120.063700.897100.768500.0510*
H130.170401.238000.845400.0600*
H140.338201.430100.853100.0640*
H150.407401.288600.784400.0580*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0515 (3)0.0882 (5)0.0847 (4)0.0060 (3)0.0411 (3)0.0103 (3)
O10.0474 (7)0.0648 (9)0.0705 (9)0.0068 (6)0.0410 (7)0.0087 (7)
O20.0510 (7)0.0584 (8)0.0576 (8)0.0154 (6)0.0365 (6)0.0163 (6)
N10.0482 (8)0.0460 (9)0.0451 (8)0.0008 (7)0.0301 (7)0.0061 (7)
N20.0422 (8)0.0420 (8)0.0454 (8)0.0015 (6)0.0293 (7)0.0056 (6)
C10.0516 (10)0.0414 (10)0.0415 (9)0.0053 (8)0.0305 (8)0.0038 (8)
C20.0521 (10)0.0507 (11)0.0462 (10)0.0107 (9)0.0319 (9)0.0065 (9)
C30.0763 (14)0.0585 (13)0.0582 (12)0.0177 (11)0.0485 (11)0.0051 (10)
C40.0942 (16)0.0474 (12)0.0489 (11)0.0047 (11)0.0445 (12)0.0038 (9)
C50.0731 (13)0.0559 (13)0.0479 (11)0.0055 (11)0.0335 (10)0.0033 (9)
C60.0555 (11)0.0506 (11)0.0502 (10)0.0009 (9)0.0329 (9)0.0018 (9)
C70.0483 (10)0.0479 (11)0.0527 (10)0.0014 (8)0.0329 (9)0.0061 (9)
C80.0377 (8)0.0412 (10)0.0448 (9)0.0044 (7)0.0236 (8)0.0034 (8)
C90.0358 (8)0.0381 (9)0.0418 (9)0.0037 (7)0.0205 (7)0.0018 (7)
C100.0379 (8)0.0367 (9)0.0389 (8)0.0025 (7)0.0211 (7)0.0001 (7)
C110.0394 (9)0.0411 (10)0.0423 (9)0.0029 (8)0.0258 (7)0.0007 (8)
C120.0464 (9)0.0444 (10)0.0459 (9)0.0001 (8)0.0297 (8)0.0024 (8)
C130.0588 (11)0.0515 (11)0.0453 (10)0.0024 (9)0.0314 (9)0.0060 (9)
C140.0556 (11)0.0521 (12)0.0464 (10)0.0036 (9)0.0212 (9)0.0126 (9)
C150.0396 (9)0.0494 (11)0.0542 (11)0.0034 (8)0.0224 (8)0.0031 (9)
Geometric parameters (Å, º) top
Cl1—C21.738 (2)C9—C151.372 (3)
O1—C81.204 (3)C10—C111.472 (3)
O2—C111.194 (3)C10—C121.380 (3)
N1—N21.383 (2)C12—C131.377 (3)
N1—C71.265 (3)C13—C141.377 (3)
N2—C81.409 (3)C14—C151.390 (3)
N2—C111.417 (3)C3—H30.9300
C1—C21.390 (3)C4—H40.9300
C1—C61.388 (3)C5—H50.9300
C1—C71.462 (3)C6—H60.9300
C2—C31.374 (3)C7—H70.9300
C3—C41.367 (4)C12—H120.9300
C4—C51.380 (4)C13—H130.9300
C5—C61.370 (3)C14—H140.9300
C8—C91.481 (3)C15—H150.9300
C9—C101.382 (3)
N2—N1—C7118.91 (17)O2—C11—C10129.75 (19)
N1—N2—C8130.37 (17)N2—C11—C10105.33 (16)
N1—N2—C11117.57 (15)C10—C12—C13117.4 (2)
C8—N2—C11111.74 (15)C12—C13—C14121.1 (2)
C2—C1—C6117.38 (18)C13—C14—C15121.77 (18)
C2—C1—C7121.40 (19)C9—C15—C14116.8 (2)
C6—C1—C7121.2 (2)C2—C3—H3120.00
Cl1—C2—C1119.77 (14)C4—C3—H3120.00
Cl1—C2—C3118.74 (19)C3—C4—H4120.00
C1—C2—C3121.5 (2)C5—C4—H4120.00
C2—C3—C4119.7 (2)C4—C5—H5120.00
C3—C4—C5120.3 (2)C6—C5—H5120.00
C4—C5—C6119.6 (2)C1—C6—H6119.00
C1—C6—C5121.5 (2)C5—C6—H6119.00
N1—C7—C1119.14 (19)N1—C7—H7120.00
O1—C8—N2126.02 (17)C1—C7—H7120.00
O1—C8—C9128.90 (18)C10—C12—H12121.00
N2—C8—C9105.08 (16)C13—C12—H12121.00
C8—C9—C10108.94 (15)C12—C13—H13119.00
C8—C9—C15129.43 (19)C14—C13—H13119.00
C10—C9—C15121.62 (18)C13—C14—H14119.00
C9—C10—C11108.86 (17)C15—C14—H14119.00
C9—C10—C12121.37 (16)C9—C15—H15122.00
C11—C10—C12129.75 (18)C14—C15—H15122.00
O2—C11—N2124.92 (17)
C7—N1—N2—C82.3 (3)C3—C4—C5—C60.3 (3)
C7—N1—N2—C11175.13 (16)C4—C5—C6—C10.7 (3)
N2—N1—C7—C1178.75 (15)O1—C8—C9—C10178.23 (19)
N1—N2—C8—O14.2 (3)O1—C8—C9—C150.4 (3)
N1—N2—C8—C9175.51 (16)N2—C8—C9—C101.44 (19)
C11—N2—C8—O1177.36 (18)N2—C8—C9—C15179.98 (18)
C11—N2—C8—C92.33 (19)C8—C9—C10—C110.09 (19)
N1—N2—C11—O23.1 (3)C8—C9—C10—C12178.45 (16)
N1—N2—C11—C10176.43 (14)C15—C9—C10—C11178.80 (16)
C8—N2—C11—O2177.28 (18)C15—C9—C10—C120.3 (3)
C8—N2—C11—C102.29 (19)C8—C9—C15—C14178.50 (17)
C6—C1—C2—Cl1178.49 (14)C10—C9—C15—C140.1 (3)
C6—C1—C2—C32.0 (3)C9—C10—C11—O2178.24 (19)
C7—C1—C2—Cl12.3 (2)C9—C10—C11—N21.30 (19)
C7—C1—C2—C3177.25 (18)C12—C10—C11—O20.1 (3)
C2—C1—C6—C51.8 (3)C12—C10—C11—N2179.67 (17)
C7—C1—C6—C5177.41 (18)C9—C10—C12—C130.4 (3)
C2—C1—C7—N1159.54 (18)C11—C10—C12—C13178.61 (18)
C6—C1—C7—N119.7 (3)C10—C12—C13—C140.2 (3)
Cl1—C2—C3—C4179.45 (16)C12—C13—C14—C150.1 (3)
C1—C2—C3—C41.0 (3)C13—C14—C15—C90.3 (3)
C2—C3—C4—C50.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···O1i0.932.523.421 (4)163
Symmetry code: (i) x+1, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC15H9ClN2O2
Mr284.69
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)12.991 (8), 4.808 (3), 23.757 (11)
β (°) 120.60 (2)
V3)1277.2 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.20 × 0.20 × 0.10
Data collection
DiffractometerSiemens SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.942, 0.971
No. of measured, independent and
observed [I > 2σ(I)] reflections
6727, 2628, 2017
Rint0.025
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.104, 1.10
No. of reflections2628
No. of parameters181
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.32

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···O1i0.932.523.421 (4)163
Symmetry code: (i) x+1, y+1/2, z+3/2.
 

Acknowledgements

This work was supported by the Natural Science Foundation of Fuyang Normal College (grant No. 2011HJJC03YB), the Natural Science Foundation of Anhui Provincial University (grant No. KJ2009A127, KJ2008A25) and the Natural Science Foundation of China (grant No. 20971024).

References

First citationLee, K., Hwang, S. Y., Hong, S., Hong, C. Y., Lee, C.-S., Shin, Y., Kim, S., Yun, S., Yoo, Y. J., Kang, M. & Oh, Y. S. (1998). Bioorg. Med. Chem. 6, 869–876.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLiu, Z.-D., Xu, H.-J., Song, C.-F., Huang, D.-Q., Sheng, L.-Q. & Shi, R.-H. (2011). Chem. Lett. 40, 75–77.  Web of Science CSD CrossRef CAS Google Scholar
First citationNeilson, D. G., Heatlie, J. W. M. & Newlands, L. R. (1970). Chem. Rev. 70, 151–170.  CrossRef CAS PubMed Web of Science Google Scholar
First citationRadwan, M. A. A. & El-Sherbiny, M. (2007). Bioorg. Med. Chem. 15, 15, 2106–2119.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationXu, H.-J., Du, N.-N., Jiang, X.-Y., Sheng, L.-Q. & Tian, Y.-P. (2009). Acta Cryst. E65, o1047.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds