organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[(E)-(2-Hy­dr­oxy­naphthalen-1-yl)methyl­­idene­amino]­isoindoline-1,3-dione

aDepartment of Chemistry, Fuyang Normal College, Fuyang Anhui 236041, People's Republic of China, and bXi'an Modern Chemistry, Research Institute, Xi'an Shanxi 710065, People's Republic of China
*Correspondence e-mail: zhaodi_liu@163.com

(Received 27 October 2011; accepted 30 October 2011; online 5 November 2011)

The title compound, C19H12N2O3, has two independent mol­ecules (A and B) in the asymmetric unit. There is an intra­molecular O—H⋯N hydrogen bond in each mol­ecule. The mean planes of the naphthalene [maximum deviations = 0.024 (3) and 0.030 (3) Å in A and B, respectively] and the isoindoline units [maximum deviations 0.009 (3) and 0.008 (3) Å in A and B, respectively] are almostly coplanar, with dihedral angles of 4.25 (9) ad 3.84 (9)° in mol­ecules A and B, respectively. The two independent mol­ecules are connected by ππ inter­actions [centroid-centroid distances 3.5527 (19) and 3.5627 (19) Å]. In the crystal, the A+B pairs are further connected via ππ inter­actions [centroid–centroid distances = 3.693 (2)–3.831 (2) Å], leading to the formation of columns propagating along the a-axis direction. The columns are linked via C—H⋯O inter­actions, leading to the formation of a three-dimensional network.

Related literature

For details concerning the naphthalene group as a fluoro­phore and as a fluorescent chemosensor, see: Li et al. (2010[Li, L., Dang, Y.-Q., Li, H.-W., Wang, B. & Wu, Y.-Q. (2010). Tetrahedron Lett. 51, 618-621.]); Liu et al. (2011[Liu, Z.-D., Xu, H.-J., Song, C.-F., Huang, D.-Q., Sheng, L.-Q. & Shi, R.-H. (2011). Chem. Lett. 40, 75-77.]); Iijima et al. (2010[Iijima, T., Momotake, A., Shinohara, Y., Sato, T., Nishimura, Y. & Arai, T. (2010). J. Phys. Chem. A, 114, 1603-1609.]); Hosseini et al. (2010[Hosseini, M., Vaezi, Z., Ganjali, M. R., Faridbod, F., Abkenar, S. D., Alizadeh, K. & Salavati-Niasari, M. (2010). Spectrochim. Acta Part A, 75, 978-982.]); Singh et al. (2008[Singh, N., Kaur, N., Mulrooney, R. C. & Callan, J. F. (2008). Tetrahedron Lett. 49, 6690-6692.]).

[Scheme 1]

Experimental

Crystal data
  • C19H12N2O3

  • Mr = 316.31

  • Monoclinic, P 21

  • a = 7.153 (2) Å

  • b = 15.503 (4) Å

  • c = 13.446 (4) Å

  • β = 100.763 (5)°

  • V = 1464.7 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 298 K

  • 0.20 × 0.20 × 0.10 mm

Data collection
  • Siemens SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.981, Tmax = 0.990

  • 8507 measured reflections

  • 5907 independent reflections

  • 4475 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.109

  • S = 1.02

  • 5907 reflections

  • 433 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.19 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2608 Friedel pairs

  • Flack parameter: 0.2 (12)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.83 2.555 (3) 147
O4—H4A⋯N3 0.82 1.93 2.555 (3) 133
C18—H18⋯O6i 0.93 2.53 3.204 (4) 129
C35—H35⋯O4ii 0.93 2.56 3.339 (4) 141
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z]; (ii) [-x+1, y+{\script{1\over 2}}, -z+1].

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The naphthalene group as a fluorophore has been studied extensively due to its characteristic photophysical properties and the competitive stability in the environment (Li et al., 2010; Liu et al., 2011; Iijima et al., 2010; Hosseini et al., 2010; Singh et al., 2008). As part of an ongoing study of such compounds based on the naphthalene group for fluorescent chemosensors (Liu et al., 2011), we herein report on the crystal structure of the title compound.

The molecular structure of the two indepedent molecules (A and B) in the title compound are shown in Fig. 1. There is an intramolecular O-H···N hydrogen bond in each molecule (Table 1). The naphthalene [(C1-C10) in A and (C20-C28) in B] and the isoindoline [(N2,C12-C19) in A and (N4,C31-C38) in B] ring systems are almostly co-planar, with dihedral angles of 4.25 (9) ad 3.84 (9)° in molecules A and B, respectively. The A and B molecules are linked via ππ interactions, Cg2···Cg8 = 3.5627 (19) Å and Cg4···Cg6 = 3.5527 (19) Å (see Table 2 for details).

In the crystal further ππ interactions (Table 2), connect the pairs of A+B molecules to form columns propagating in the a-axis direction. There are also C-H···O interactions present that link the columns to form of a three-dimensional network (Table 1 and Fig. 2).

Related literature top

For details concerning the naphthalene group as a fluorophore and as a fluorescent chemosensor, see: Li et al. (2010); Liu et al. (2011); Iijima et al. (2010); Hosseini et al. (2010); Singh et al. (2008).

Experimental top

A solution of 2-aminoisoindoline-1,3-dione (0.16 g, 1 mmol) in 15 ml ethanol was added slowly to a solution containing 2-chlorobenzaldehyde (0.14 g,1 mmol) in 5 ml absolute ethanol under heating and stirring. The mixture was refluxed for 2 h, and then cooled to room temperature. The resulting solution was left to stand in air for 15 days. Colourless prism-shaped crystals were formed on slow evaporation of the solvent.

Refinement top

All H-atoms were placed in calculated positions and treated as riding: C—H = 0.93 Å, O—H = 0.82 Å, with Uiso(H) = 1.2Ueq(parent C-atom) and 1.5Ueq(parent O-atom). The Flack parameter, 0.2 (12), has no meaning.

Structure description top

The naphthalene group as a fluorophore has been studied extensively due to its characteristic photophysical properties and the competitive stability in the environment (Li et al., 2010; Liu et al., 2011; Iijima et al., 2010; Hosseini et al., 2010; Singh et al., 2008). As part of an ongoing study of such compounds based on the naphthalene group for fluorescent chemosensors (Liu et al., 2011), we herein report on the crystal structure of the title compound.

The molecular structure of the two indepedent molecules (A and B) in the title compound are shown in Fig. 1. There is an intramolecular O-H···N hydrogen bond in each molecule (Table 1). The naphthalene [(C1-C10) in A and (C20-C28) in B] and the isoindoline [(N2,C12-C19) in A and (N4,C31-C38) in B] ring systems are almostly co-planar, with dihedral angles of 4.25 (9) ad 3.84 (9)° in molecules A and B, respectively. The A and B molecules are linked via ππ interactions, Cg2···Cg8 = 3.5627 (19) Å and Cg4···Cg6 = 3.5527 (19) Å (see Table 2 for details).

In the crystal further ππ interactions (Table 2), connect the pairs of A+B molecules to form columns propagating in the a-axis direction. There are also C-H···O interactions present that link the columns to form of a three-dimensional network (Table 1 and Fig. 2).

For details concerning the naphthalene group as a fluorophore and as a fluorescent chemosensor, see: Li et al. (2010); Liu et al. (2011); Iijima et al. (2010); Hosseini et al. (2010); Singh et al. (2008).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the two independent molecules (A and B) of the title compound, showing 30% probability displacement ellipsoids and the atom numbering scheme. The intramolecular O-H···N hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. Crystal packing, viewed along the b axis, of the title compound. The C-H···O interactions are shown as dashed lines (see Table 1 for details).
2-[(E)-(2-Hydroxynaphthalen-1-yl)methylideneamino]isoindoline-1,3-dione top
Crystal data top
C19H12N2O3F(000) = 656
Mr = 316.31Dx = 1.434 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 2910 reflections
a = 7.153 (2) Åθ = 2.6–26.2°
b = 15.503 (4) ŵ = 0.10 mm1
c = 13.446 (4) ÅT = 298 K
β = 100.763 (5)°Prism, yellow
V = 1464.7 (7) Å30.20 × 0.20 × 0.10 mm
Z = 4
Data collection top
Siemens SMART CCD area-detector
diffractometer
5907 independent reflections
Radiation source: fine-focus sealed tube4475 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
φ and ω scansθmax = 27.0°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 89
Tmin = 0.981, Tmax = 0.990k = 1919
8507 measured reflectionsl = 1217
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.109 w = 1/[σ2(Fo2) + (0.0506P)2 + 0.109P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
5907 reflectionsΔρmax = 0.14 e Å3
433 parametersΔρmin = 0.19 e Å3
1 restraintAbsolute structure: Flack (1983), 2608 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.2 (12)
Crystal data top
C19H12N2O3V = 1464.7 (7) Å3
Mr = 316.31Z = 4
Monoclinic, P21Mo Kα radiation
a = 7.153 (2) ŵ = 0.10 mm1
b = 15.503 (4) ÅT = 298 K
c = 13.446 (4) Å0.20 × 0.20 × 0.10 mm
β = 100.763 (5)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
5907 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4475 reflections with I > 2σ(I)
Tmin = 0.981, Tmax = 0.990Rint = 0.026
8507 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.109Δρmax = 0.14 e Å3
S = 1.02Δρmin = 0.19 e Å3
5907 reflectionsAbsolute structure: Flack (1983), 2608 Friedel pairs
433 parametersAbsolute structure parameter: 0.2 (12)
1 restraint
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1927 (3)1.08135 (14)0.28132 (14)0.0610 (7)
O20.0403 (3)0.73412 (13)0.26399 (14)0.0597 (7)
O30.1942 (3)0.94247 (12)0.05260 (14)0.0620 (7)
N10.1344 (3)0.92084 (13)0.24519 (16)0.0473 (8)
N20.1193 (3)0.85427 (17)0.17763 (17)0.0458 (8)
C10.1297 (3)0.98047 (18)0.40655 (19)0.0429 (8)
C20.1675 (4)1.0640 (2)0.3758 (2)0.0458 (9)
C30.1821 (4)1.1335 (2)0.4416 (2)0.0515 (11)
C40.1629 (4)1.12177 (19)0.5388 (2)0.0524 (10)
C50.1157 (4)1.0274 (2)0.6779 (2)0.0588 (10)
C60.0851 (5)0.9482 (2)0.7147 (2)0.0718 (13)
C70.0660 (5)0.8776 (2)0.6500 (2)0.0699 (11)
C80.0786 (4)0.88593 (19)0.5504 (2)0.0573 (9)
C90.1118 (3)0.96774 (18)0.50983 (19)0.0434 (8)
C100.1299 (4)1.0395 (2)0.5766 (2)0.0471 (10)
C110.1131 (4)0.9094 (2)0.33675 (19)0.0443 (9)
C120.0763 (3)0.76652 (17)0.1887 (2)0.0468 (8)
C130.1526 (3)0.87223 (18)0.07966 (19)0.0453 (8)
C140.1294 (3)0.78991 (18)0.0249 (2)0.0446 (9)
C150.0850 (4)0.7274 (2)0.0903 (2)0.0451 (9)
C160.0560 (4)0.6426 (2)0.0581 (2)0.0560 (11)
C170.0706 (4)0.6244 (2)0.0405 (2)0.0624 (11)
C180.1145 (4)0.6860 (2)0.1048 (2)0.0606 (11)
C190.1445 (4)0.7711 (2)0.0721 (2)0.0502 (10)
O40.5655 (3)0.70099 (13)0.22569 (13)0.0604 (7)
O50.5765 (3)0.84240 (12)0.45454 (14)0.0671 (8)
O60.6863 (3)1.05028 (13)0.23145 (14)0.0636 (8)
N30.6153 (3)0.86251 (12)0.25785 (15)0.0453 (7)
N40.6275 (3)0.93017 (16)0.32441 (16)0.0445 (8)
C200.6151 (3)0.80171 (17)0.09706 (18)0.0405 (8)
C210.5877 (4)0.7193 (2)0.13030 (19)0.0463 (9)
C220.5778 (4)0.6479 (2)0.0648 (2)0.0531 (11)
C230.5919 (4)0.65916 (19)0.0325 (2)0.0528 (10)
C240.6215 (4)0.7534 (2)0.1750 (2)0.0622 (11)
C250.6385 (5)0.8332 (2)0.2133 (2)0.0768 (13)
C260.6504 (5)0.9047 (2)0.1502 (2)0.0741 (13)
C270.6458 (4)0.89602 (18)0.0499 (2)0.0586 (10)
C280.6263 (3)0.81455 (19)0.00696 (19)0.0433 (9)
C290.6146 (4)0.7425 (2)0.0723 (2)0.0467 (10)
C300.6276 (4)0.8741 (2)0.16541 (19)0.0452 (9)
C310.6607 (3)1.01881 (17)0.30956 (19)0.0452 (8)
C320.6049 (3)0.91258 (18)0.42416 (18)0.0461 (8)
C330.6265 (4)0.99628 (18)0.4763 (2)0.0436 (9)
C340.6154 (5)1.0177 (2)0.5741 (2)0.0546 (10)
C350.6407 (4)1.1019 (2)0.6024 (2)0.0622 (11)
C360.6709 (4)1.1646 (2)0.5349 (2)0.0606 (11)
C370.6803 (4)1.1441 (2)0.4362 (2)0.0535 (11)
C380.6587 (3)1.0595 (2)0.40803 (19)0.0424 (8)
H10.181801.036700.247900.0920*
H30.205201.188400.418900.0620*
H40.171801.169200.581800.0630*
H50.127401.074700.721200.0710*
H60.077100.941200.782400.0860*
H70.044200.823400.675200.0840*
H80.065300.837500.508800.0690*
H110.086700.854500.358300.0530*
H160.027900.599700.101300.0670*
H170.049800.568200.063900.0750*
H180.124400.671100.170700.0730*
H190.174000.813700.115400.0600*
H4A0.617500.738400.264400.0910*
H220.561400.592700.089000.0640*
H230.586800.611400.074700.0630*
H240.614300.705500.217200.0750*
H250.642300.840000.281600.0920*
H260.661600.959400.176900.0890*
H270.655800.944800.009100.0700*
H300.644700.929400.142000.0540*
H340.591200.976000.619700.0650*
H350.637601.117300.668900.0750*
H360.685101.221700.556000.0730*
H370.700801.186400.390300.0640*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0772 (13)0.0557 (13)0.0489 (11)0.0106 (10)0.0088 (9)0.0065 (9)
O20.0760 (13)0.0537 (12)0.0485 (10)0.0071 (10)0.0096 (9)0.0120 (10)
O30.0853 (14)0.0447 (11)0.0606 (11)0.0025 (9)0.0257 (10)0.0050 (9)
N10.0519 (13)0.0472 (14)0.0428 (12)0.0029 (11)0.0088 (9)0.0028 (11)
N20.0524 (13)0.0449 (15)0.0408 (12)0.0026 (10)0.0109 (10)0.0001 (10)
C10.0357 (13)0.0446 (15)0.0467 (15)0.0003 (11)0.0031 (10)0.0005 (12)
C20.0401 (15)0.0473 (17)0.0482 (15)0.0023 (12)0.0033 (11)0.0082 (14)
C30.0523 (19)0.0413 (18)0.0598 (19)0.0028 (13)0.0074 (13)0.0039 (15)
C40.0492 (16)0.0472 (17)0.0583 (17)0.0015 (13)0.0035 (12)0.0116 (14)
C50.0657 (19)0.0622 (19)0.0481 (16)0.0054 (14)0.0094 (13)0.0081 (13)
C60.102 (3)0.070 (2)0.0469 (16)0.0097 (18)0.0233 (15)0.0064 (16)
C70.096 (2)0.0573 (18)0.0596 (17)0.0049 (17)0.0228 (15)0.0109 (15)
C80.0718 (18)0.0495 (16)0.0521 (15)0.0011 (13)0.0155 (13)0.0024 (12)
C90.0406 (14)0.0456 (16)0.0427 (14)0.0036 (12)0.0047 (10)0.0021 (13)
C100.0386 (15)0.0509 (19)0.0505 (16)0.0036 (12)0.0052 (12)0.0014 (14)
C110.0445 (14)0.0441 (16)0.0439 (15)0.0007 (12)0.0072 (11)0.0003 (12)
C120.0407 (14)0.0442 (15)0.0534 (15)0.0003 (11)0.0032 (11)0.0077 (13)
C130.0460 (14)0.0451 (15)0.0454 (14)0.0039 (12)0.0101 (11)0.0042 (12)
C140.0370 (14)0.0465 (17)0.0495 (17)0.0040 (11)0.0059 (11)0.0011 (13)
C150.0389 (14)0.0445 (16)0.0504 (15)0.0012 (12)0.0043 (11)0.0027 (14)
C160.0472 (19)0.046 (2)0.073 (2)0.0024 (13)0.0064 (14)0.0026 (16)
C170.0553 (18)0.0529 (19)0.076 (2)0.0008 (15)0.0049 (14)0.0188 (17)
C180.0573 (18)0.069 (2)0.0553 (17)0.0076 (15)0.0102 (13)0.0134 (16)
C190.0509 (16)0.0525 (19)0.0479 (16)0.0085 (13)0.0108 (12)0.0002 (13)
O40.0766 (14)0.0559 (13)0.0485 (11)0.0123 (10)0.0110 (9)0.0107 (10)
O50.1025 (16)0.0481 (12)0.0534 (11)0.0120 (11)0.0212 (10)0.0064 (9)
O60.0879 (15)0.0543 (13)0.0501 (11)0.0116 (11)0.0167 (10)0.0097 (10)
N30.0517 (12)0.0437 (13)0.0398 (11)0.0019 (11)0.0067 (9)0.0048 (10)
N40.0556 (13)0.0393 (14)0.0394 (12)0.0034 (10)0.0112 (10)0.0006 (10)
C200.0373 (13)0.0430 (15)0.0400 (13)0.0003 (10)0.0038 (10)0.0001 (11)
C210.0402 (15)0.0518 (17)0.0457 (15)0.0046 (12)0.0051 (11)0.0013 (15)
C220.055 (2)0.0386 (18)0.063 (2)0.0065 (13)0.0043 (14)0.0001 (15)
C230.0503 (16)0.0472 (18)0.0584 (17)0.0020 (13)0.0037 (12)0.0122 (15)
C240.072 (2)0.067 (2)0.0480 (16)0.0105 (15)0.0123 (13)0.0075 (14)
C250.110 (3)0.081 (2)0.0436 (16)0.018 (2)0.0255 (16)0.0034 (17)
C260.113 (3)0.0608 (19)0.0530 (17)0.0070 (18)0.0271 (16)0.0134 (15)
C270.082 (2)0.0460 (17)0.0500 (15)0.0030 (14)0.0179 (13)0.0011 (12)
C280.0375 (14)0.0477 (16)0.0441 (15)0.0012 (11)0.0064 (10)0.0006 (13)
C290.0410 (15)0.055 (2)0.0431 (15)0.0030 (13)0.0056 (11)0.0065 (14)
C300.0479 (15)0.0454 (16)0.0412 (14)0.0008 (12)0.0054 (11)0.0017 (12)
C310.0448 (15)0.0439 (15)0.0465 (14)0.0003 (11)0.0076 (11)0.0072 (13)
C320.0495 (14)0.0465 (16)0.0421 (14)0.0033 (12)0.0080 (11)0.0035 (12)
C330.0380 (14)0.0453 (17)0.0469 (16)0.0036 (11)0.0065 (11)0.0024 (12)
C340.0529 (17)0.069 (2)0.0433 (16)0.0020 (14)0.0128 (12)0.0029 (14)
C350.0544 (17)0.073 (2)0.0585 (18)0.0048 (15)0.0088 (13)0.0235 (17)
C360.0568 (18)0.0501 (19)0.073 (2)0.0033 (15)0.0073 (14)0.0154 (17)
C370.0496 (19)0.0461 (19)0.0627 (19)0.0025 (13)0.0049 (13)0.0001 (15)
C380.0359 (13)0.0442 (15)0.0462 (14)0.0007 (11)0.0055 (10)0.0022 (13)
Geometric parameters (Å, º) top
O1—C21.343 (3)C6—H60.9300
O2—C121.200 (3)C7—H70.9300
O3—C131.203 (3)C8—H80.9300
O1—H10.8200C11—H110.9300
O4—C211.352 (3)C16—H160.9300
O5—C321.193 (3)C17—H170.9300
O6—C311.203 (3)C18—H180.9300
O4—H4A0.8200C19—H190.9300
N1—C111.281 (3)C20—C211.380 (4)
N1—N21.366 (3)C20—C281.430 (3)
N2—C121.409 (4)C20—C301.443 (4)
N2—C131.410 (3)C21—C221.408 (4)
N3—N41.371 (3)C22—C231.342 (4)
N3—C301.275 (3)C23—C291.419 (4)
N4—C321.407 (3)C24—C291.401 (4)
N4—C311.415 (4)C24—C251.354 (4)
C1—C21.401 (4)C25—C261.389 (4)
C1—C111.438 (4)C26—C271.362 (4)
C1—C91.432 (4)C27—C281.407 (4)
C2—C31.386 (4)C28—C291.414 (4)
C3—C41.352 (4)C31—C381.469 (4)
C4—C101.409 (4)C32—C331.469 (4)
C5—C61.357 (4)C33—C381.391 (4)
C5—C101.397 (4)C33—C341.373 (4)
C6—C71.389 (4)C34—C351.362 (4)
C7—C81.365 (4)C35—C361.374 (4)
C8—C91.418 (4)C36—C371.378 (4)
C9—C101.420 (4)C37—C381.366 (4)
C12—C151.467 (4)C22—H220.9300
C13—C141.467 (4)C23—H230.9300
C14—C151.385 (4)C24—H240.9300
C14—C191.360 (4)C25—H250.9300
C15—C161.388 (4)C26—H260.9300
C16—C171.378 (4)C27—H270.9300
C17—C181.364 (4)C30—H300.9300
C18—C191.395 (4)C34—H340.9300
C3—H30.9300C35—H350.9300
C4—H40.9300C36—H360.9300
C5—H50.9300C37—H370.9300
C2—O1—H1109.00C16—C17—H17119.00
C21—O4—H4A110.00C19—C18—H18120.00
N2—N1—C11121.7 (2)C17—C18—H18120.00
N1—N2—C13117.8 (2)C14—C19—H19121.00
C12—N2—C13111.6 (2)C18—C19—H19121.00
N1—N2—C12130.6 (2)C21—C20—C28118.9 (2)
N4—N3—C30121.4 (2)C28—C20—C30120.5 (2)
C31—N4—C32112.0 (2)C21—C20—C30120.6 (2)
N3—N4—C32118.0 (2)O4—C21—C20123.4 (2)
N3—N4—C31130.0 (2)C20—C21—C22121.3 (2)
C9—C1—C11121.1 (2)O4—C21—C22115.3 (3)
C2—C1—C11120.8 (2)C21—C22—C23120.2 (3)
C2—C1—C9118.1 (2)C22—C23—C29121.4 (3)
C1—C2—C3121.7 (2)C25—C24—C29120.5 (3)
O1—C2—C3116.2 (3)C24—C25—C26119.8 (3)
O1—C2—C1122.1 (3)C25—C26—C27121.1 (3)
C2—C3—C4120.2 (3)C26—C27—C28121.2 (3)
C3—C4—C10121.6 (3)C20—C28—C27123.7 (3)
C6—C5—C10121.5 (3)C27—C28—C29117.0 (2)
C5—C6—C7119.2 (3)C20—C28—C29119.4 (3)
C6—C7—C8121.5 (3)C23—C29—C24120.6 (3)
C7—C8—C9120.6 (3)C23—C29—C28118.9 (2)
C1—C9—C10119.4 (2)C24—C29—C28120.6 (3)
C8—C9—C10117.4 (2)N3—C30—C20120.3 (3)
C1—C9—C8123.2 (2)O6—C31—N4125.0 (2)
C5—C10—C9119.8 (3)N4—C31—C38105.1 (2)
C4—C10—C9118.9 (2)O6—C31—C38129.9 (3)
C4—C10—C5121.4 (3)O5—C32—C33130.7 (2)
N1—C11—C1120.7 (3)N4—C32—C33105.3 (2)
N2—C12—C15104.9 (2)O5—C32—N4124.1 (2)
O2—C12—C15129.8 (3)C32—C33—C38108.8 (2)
O2—C12—N2125.4 (2)C34—C33—C38120.5 (3)
N2—C13—C14105.9 (2)C32—C33—C34130.6 (3)
O3—C13—N2123.8 (2)C33—C34—C35118.1 (3)
O3—C13—C14130.3 (2)C34—C35—C36121.5 (3)
C13—C14—C15107.9 (2)C35—C36—C37121.0 (3)
C13—C14—C19130.2 (3)C36—C37—C38117.7 (3)
C15—C14—C19121.8 (3)C31—C38—C37130.0 (3)
C14—C15—C16120.2 (2)C33—C38—C37121.2 (2)
C12—C15—C16130.1 (3)C31—C38—C33108.8 (3)
C12—C15—C14109.7 (3)C21—C22—H22120.00
C15—C16—C17117.4 (3)C23—C22—H22120.00
C16—C17—C18122.3 (3)C22—C23—H23119.00
C17—C18—C19120.2 (3)C29—C23—H23119.00
C14—C19—C18118.0 (3)C25—C24—H24120.00
C4—C3—H3120.00C29—C24—H24120.00
C2—C3—H3120.00C24—C25—H25120.00
C10—C4—H4119.00C26—C25—H25120.00
C3—C4—H4119.00C25—C26—H26119.00
C10—C5—H5119.00C27—C26—H26119.00
C6—C5—H5119.00C26—C27—H27119.00
C5—C6—H6120.00C28—C27—H27119.00
C7—C6—H6120.00N3—C30—H30120.00
C8—C7—H7119.00C20—C30—H30120.00
C6—C7—H7119.00C33—C34—H34121.00
C9—C8—H8120.00C35—C34—H34121.00
C7—C8—H8120.00C34—C35—H35119.00
N1—C11—H11120.00C36—C35—H35119.00
C1—C11—H11120.00C35—C36—H36120.00
C15—C16—H16121.00C37—C36—H36119.00
C17—C16—H16121.00C36—C37—H37121.00
C18—C17—H17119.00C38—C37—H37121.00
C11—N1—N2—C121.8 (4)C13—C14—C15—C16179.7 (2)
C11—N1—N2—C13177.5 (2)C13—C14—C15—C120.4 (3)
N2—N1—C11—C1180.0 (2)C13—C14—C19—C18179.9 (2)
C13—N2—C12—C150.4 (3)C19—C14—C15—C12179.3 (2)
C12—N2—C13—O3179.0 (2)C19—C14—C15—C160.6 (4)
N1—N2—C13—C14179.3 (2)C15—C14—C19—C180.2 (4)
C12—N2—C13—C140.1 (3)C14—C15—C16—C170.9 (4)
N1—N2—C13—O30.4 (4)C12—C15—C16—C17178.9 (3)
N1—N2—C12—O21.5 (4)C15—C16—C17—C181.0 (4)
C13—N2—C12—O2179.3 (2)C16—C17—C18—C190.7 (5)
N1—N2—C12—C15178.9 (2)C17—C18—C19—C140.3 (4)
C30—N3—N4—C312.6 (4)C30—C20—C21—C22179.1 (3)
C30—N3—N4—C32177.5 (2)C28—C20—C21—C222.4 (4)
N4—N3—C30—C20179.7 (2)C30—C20—C21—O42.0 (4)
C32—N4—C31—C380.0 (3)C28—C20—C30—N3179.2 (2)
C31—N4—C32—O5179.6 (2)C30—C20—C28—C29179.7 (2)
N3—N4—C32—C33179.6 (2)C21—C20—C30—N30.7 (4)
C31—N4—C32—C330.3 (3)C28—C20—C21—O4176.5 (2)
N3—N4—C32—O50.3 (4)C30—C20—C28—C271.3 (4)
N3—N4—C31—O60.6 (4)C21—C20—C28—C27177.2 (2)
C32—N4—C31—O6179.3 (2)C21—C20—C28—C291.8 (3)
N3—N4—C31—C38179.9 (2)O4—C21—C22—C23177.9 (3)
C9—C1—C2—O1177.8 (2)C20—C21—C22—C231.1 (4)
C9—C1—C11—N1178.1 (2)C21—C22—C23—C290.8 (4)
C11—C1—C2—C3179.3 (3)C22—C23—C29—C281.3 (4)
C11—C1—C2—O11.1 (4)C22—C23—C29—C24177.5 (3)
C9—C1—C2—C31.9 (4)C25—C24—C29—C280.3 (4)
C2—C1—C9—C8178.3 (2)C29—C24—C25—C260.4 (5)
C2—C1—C9—C100.9 (3)C25—C24—C29—C23178.4 (3)
C2—C1—C11—N10.7 (4)C24—C25—C26—C270.2 (5)
C11—C1—C9—C10179.7 (2)C25—C26—C27—C280.9 (5)
C11—C1—C9—C80.5 (4)C26—C27—C28—C290.9 (4)
C1—C2—C3—C41.1 (4)C26—C27—C28—C20178.1 (3)
O1—C2—C3—C4178.6 (3)C27—C28—C29—C240.3 (4)
C2—C3—C4—C100.7 (4)C20—C28—C29—C24178.8 (2)
C3—C4—C10—C91.6 (4)C27—C28—C29—C23179.1 (3)
C3—C4—C10—C5178.1 (3)C20—C28—C29—C230.0 (4)
C6—C5—C10—C90.1 (4)O6—C31—C38—C372.0 (4)
C10—C5—C6—C70.5 (5)N4—C31—C38—C330.3 (3)
C6—C5—C10—C4179.6 (3)N4—C31—C38—C37178.8 (3)
C5—C6—C7—C80.5 (5)O6—C31—C38—C33178.9 (3)
C6—C7—C8—C90.0 (5)O5—C32—C33—C341.8 (5)
C7—C8—C9—C100.4 (4)O5—C32—C33—C38179.7 (3)
C7—C8—C9—C1178.9 (3)N4—C32—C33—C34178.9 (3)
C8—C9—C10—C4180.0 (3)N4—C32—C33—C380.5 (3)
C1—C9—C10—C5179.0 (2)C32—C33—C34—C35179.6 (3)
C1—C9—C10—C40.7 (4)C38—C33—C34—C351.3 (5)
C8—C9—C10—C50.3 (4)C32—C33—C38—C310.5 (3)
N2—C12—C15—C16179.7 (3)C32—C33—C38—C37178.7 (2)
N2—C12—C15—C140.5 (3)C34—C33—C38—C31179.1 (3)
O2—C12—C15—C14179.1 (3)C34—C33—C38—C370.1 (4)
O2—C12—C15—C160.7 (5)C33—C34—C35—C361.9 (5)
N2—C13—C14—C19179.5 (3)C34—C35—C36—C371.3 (5)
O3—C13—C14—C15178.6 (3)C35—C36—C37—C380.0 (4)
N2—C13—C14—C150.2 (3)C36—C37—C38—C31179.6 (2)
O3—C13—C14—C191.7 (5)C36—C37—C38—C330.6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.832.555 (3)147
O4—H4A···N30.821.932.555 (3)133
C18—H18···O6i0.932.533.204 (4)129
C35—H35···O4ii0.932.563.339 (4)141
Symmetry codes: (i) x+1, y1/2, z; (ii) x+1, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC19H12N2O3
Mr316.31
Crystal system, space groupMonoclinic, P21
Temperature (K)298
a, b, c (Å)7.153 (2), 15.503 (4), 13.446 (4)
β (°) 100.763 (5)
V3)1464.7 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.20 × 0.20 × 0.10
Data collection
DiffractometerSiemens SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.981, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
8507, 5907, 4475
Rint0.026
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.109, 1.02
No. of reflections5907
No. of parameters433
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.19
Absolute structureFlack (1983), 2608 Friedel pairs
Absolute structure parameter0.2 (12)

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.832.555 (3)147
O4—H4A···N30.821.932.555 (3)133
C18—H18···O6i0.932.533.204 (4)129
C35—H35···O4ii0.932.563.339 (4)141
Symmetry codes: (i) x+1, y1/2, z; (ii) x+1, y+1/2, z+1.
ππ interactions (Å) top
ππDistance
Cg2···Cg43.5627 (19)
Cg4···Cg63.5527 (19)
Cg1···Cg6i3.7758 (19)
Cg2···Cg5i3.7759 (19)
Cg2···Cg8i3.693 (2)
Cg3···Cg8i3.784 (2)
Cg4···Cg6i3.7065 (19)
Cg4···Cg7i3.831 (2)
Cg1 = Centroid of ring [N2,C12-C15], Cg2 = Centroid of ring [C1-C4,C9,C10]; Cg3 = Centroid of ring [C5-C10]; Cg4 = centroid of ring [C14-C19]; Cg5 = Centroid of ring [N4,C31-C33,C38]; Cg6 = centroid of ring [C20-C23,C28,C29]; Cg7 = Centroid of ring [C24-C29]; Cg8 = centroid of ring [C33-C38]; Symmetry operator: (i) x-1, y, z.
 

Acknowledgements

This work was supported by the Natural Science Foundation of Fuyang Normal College (grant No. 2011HJJC03YB), the Natural Science Foundation of Anhui Provincial University (grant No. KJ2009A127, KJ2008A25) and the Natural Science Foundation of China (grant No. 20971024).

References

First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHosseini, M., Vaezi, Z., Ganjali, M. R., Faridbod, F., Abkenar, S. D., Alizadeh, K. & Salavati-Niasari, M. (2010). Spectrochim. Acta Part A, 75, 978–982.  CrossRef Google Scholar
First citationIijima, T., Momotake, A., Shinohara, Y., Sato, T., Nishimura, Y. & Arai, T. (2010). J. Phys. Chem. A, 114, 1603–1609.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLi, L., Dang, Y.-Q., Li, H.-W., Wang, B. & Wu, Y.-Q. (2010). Tetrahedron Lett. 51, 618–621.  Web of Science CrossRef CAS Google Scholar
First citationLiu, Z.-D., Xu, H.-J., Song, C.-F., Huang, D.-Q., Sheng, L.-Q. & Shi, R.-H. (2011). Chem. Lett. 40, 75–77.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSingh, N., Kaur, N., Mulrooney, R. C. & Callan, J. F. (2008). Tetrahedron Lett. 49, 6690–6692.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds