organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2R,3R)-1-(4-Chloro­phen­yl)-2-[(S)-2-nitro-1-phenyl­eth­yl]-3-phenyl­pentan-1-one

aSchool of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, People's Republic of China
*Correspondence e-mail: wenqs_pro@126.com

(Received 27 October 2011; accepted 23 November 2011; online 30 November 2011)

The title compound, C25H24ClNO3, has three contiguous chiral centres. The absolute structure was determined by anomalous dispersion. The chloro­benzene ring is inclined to the two phenyl rings by 14.98 (9) and 59.05 (9)°. The two phenyl rings are inclined to one another by 49.51 (10)°. In the crystal, neighbouring mol­ecules are linked via C—H⋯O hydrogen bonds, forming chains propagating along [010]. There is also a C—H⋯π inter­action present that leads to the formation of a three-dimensional network.

Related literature

For the synthesis of the title compound, see: Xu et al. (2007[Xu, Y.-J., Liu, Q.-Z. & Dong, L. (2007). Synlett, 45, 273-277.]). For the role of pyrrolidine motifs as organo-catalysts in asymmetric catalysis, see: Taylor & Jacobsen (2006[Taylor, M. S. & Jacobsen, E. N. (2006). Angew. Chem. Int. Ed. 45, 1520-1543.]) and for their role in bioactive mol­ecules, see: Kawasaki et al. (2005[Kawasaki, M., Shinada, T., Hamada, M. & Ohfune, Y. (2005). Org. Lett. 7, 4165-4167.]).

[Scheme 1]

Experimental

Crystal data
  • C25H24ClNO3

  • Mr = 421.90

  • Orthorhombic, P 21 21 21

  • a = 8.4700 (1) Å

  • b = 13.1515 (2) Å

  • c = 20.7060 (2) Å

  • V = 2306.51 (5) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.66 mm−1

  • T = 293 K

  • 0.42 × 0.36 × 0.30 mm

Data collection
  • Gemini S Ultra Oxford Diffraction diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction, Yarnton, England.]) Tmin = 0.542, Tmax = 0.635

  • 22729 measured reflections

  • 4292 independent reflections

  • 4173 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.099

  • S = 1.04

  • 4292 reflections

  • 272 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.25 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1824 Friedel pairs

  • Flack parameter: −0.010 (13)

Table 1
Hydrogen-bond geometry (Å, °)

CgA is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O3i 0.93 2.43 3.198 (5) 140
C12—H12⋯CgAii 0.93 2.82 3.691 (4) 157
Symmetry codes: (i) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, -y, z-{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

Chiral pyrrolidines are readily obtained using the corresponding γ-nitro substituted carbonyl compounds (Xu et al., 2007). Pyrrolidine motifs are important as synthetic intermediates as well as organo-catalysts in asymmetric catalysis (Taylor & Jacobsen, 2006) and they are also present in many bioactive molecules (Kawasaki et al., 2005). α,β-unsaturated ketones react with nitro-olfine derivatives to produce γ-nitro ketones in good yields with high diastereoselectivities and enantioselectivities. The crystal structure of one such compound, the title optically pure compound, is described herein.

In the title molecule (Fig. 1), carbon atoms C8, C9 and C18 are three contiguous chiral centres, R, R, S, respectively. The chlorobenzene ring, A (C1—C6), and phenyl ring B (C10—C15), are inclined to one another by 14.98 (9)°. Phenyl ring C (C19—C24) make dihedral angles with rings A and B of 59.05 (9) and 49.51 (10)°, respectively.

In the crystal, neighbouring molecules are linked via C—H···O hydrogen bonds to form chains which propagate along the b axis direction (Tabe 1 and Fig. 2). There is also a C—H···π interaction (Table 1) present which leads to the formation of a three-dimensional network.

Related literature top

For the synthesis of the title compound, see: Xu et al. (2007). For the role of pyrrolidine motifs as organo-catalysts in asymmetric catalysis, see: Taylor & Jacobsen (2006) and for their role in bioactive molecules, see: Kawasaki et al. (2005).

Experimental top

The title compound was obtained by the procedure described by (Xu et al., 2007). It was recrystallized from petroleun ether and ethyl acetate (v/v = 1:1), yielding colourless block-like crystals suitable for X-ray diffraction analysis.

Refinement top

H atoms were placed in calculated positions with C—H = 0.93–0.98 Å, and refined in riding mode with Uiso(H) = 1.2Ueq(C).

Structure description top

Chiral pyrrolidines are readily obtained using the corresponding γ-nitro substituted carbonyl compounds (Xu et al., 2007). Pyrrolidine motifs are important as synthetic intermediates as well as organo-catalysts in asymmetric catalysis (Taylor & Jacobsen, 2006) and they are also present in many bioactive molecules (Kawasaki et al., 2005). α,β-unsaturated ketones react with nitro-olfine derivatives to produce γ-nitro ketones in good yields with high diastereoselectivities and enantioselectivities. The crystal structure of one such compound, the title optically pure compound, is described herein.

In the title molecule (Fig. 1), carbon atoms C8, C9 and C18 are three contiguous chiral centres, R, R, S, respectively. The chlorobenzene ring, A (C1—C6), and phenyl ring B (C10—C15), are inclined to one another by 14.98 (9)°. Phenyl ring C (C19—C24) make dihedral angles with rings A and B of 59.05 (9) and 49.51 (10)°, respectively.

In the crystal, neighbouring molecules are linked via C—H···O hydrogen bonds to form chains which propagate along the b axis direction (Tabe 1 and Fig. 2). There is also a C—H···π interaction (Table 1) present which leads to the formation of a three-dimensional network.

For the synthesis of the title compound, see: Xu et al. (2007). For the role of pyrrolidine motifs as organo-catalysts in asymmetric catalysis, see: Taylor & Jacobsen (2006) and for their role in bioactive molecules, see: Kawasaki et al. (2005).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atomic numbering.
[Figure 2] Fig. 2. Crystal packing of the title compound, viewed along the c axis, showing the neighbouring molecules linked via C—H···O interactions (dashed lines), which generate chains propagating along the b axis direction.
(2R,3R)-1-(4-Chlorophenyl)-2-[(S)-2-nitro-1-phenylethyl]- 3-phenylpentan-1-one top
Crystal data top
C25H24ClNO3F(000) = 888
Mr = 421.90Dx = 1.215 Mg m3
Orthorhombic, P212121Cu Kα radiation, λ = 1.54184 Å
Hall symbol: P 2ac 2abCell parameters from 16354 reflections
a = 8.4700 (1) Åθ = 3.4–69.8°
b = 13.1515 (2) ŵ = 1.66 mm1
c = 20.7060 (2) ÅT = 293 K
V = 2306.51 (5) Å3Block, colourless
Z = 40.42 × 0.36 × 0.30 mm
Data collection top
Gemini S Ultra Oxford Diffraction
diffractometer
4292 independent reflections
Radiation source: fine-focus sealed tube4173 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
Detector resolution: 15.9149 pixels mm-1θmax = 69.9°, θmin = 4.0°
ω scansh = 1010
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 1516
Tmin = 0.542, Tmax = 0.635l = 2125
22729 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.099 w = 1/[σ2(Fo2) + (0.0641P)2 + 0.1848P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
4292 reflectionsΔρmax = 0.14 e Å3
272 parametersΔρmin = 0.25 e Å3
0 restraintsAbsolute structure: Flack (1983), 1824 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.010 (13)
Crystal data top
C25H24ClNO3V = 2306.51 (5) Å3
Mr = 421.90Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 8.4700 (1) ŵ = 1.66 mm1
b = 13.1515 (2) ÅT = 293 K
c = 20.7060 (2) Å0.42 × 0.36 × 0.30 mm
Data collection top
Gemini S Ultra Oxford Diffraction
diffractometer
4292 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
4173 reflections with I > 2σ(I)
Tmin = 0.542, Tmax = 0.635Rint = 0.019
22729 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.099Δρmax = 0.14 e Å3
S = 1.04Δρmin = 0.25 e Å3
4292 reflectionsAbsolute structure: Flack (1983), 1824 Friedel pairs
272 parametersAbsolute structure parameter: 0.010 (13)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.58917 (6)0.37368 (4)0.50249 (2)0.08473 (17)
O10.50133 (14)0.00173 (10)0.28825 (7)0.0700 (3)
O20.7782 (3)0.30696 (14)0.25735 (12)0.1277 (8)
O30.9069 (3)0.23945 (18)0.18103 (18)0.1769 (14)
N10.8118 (2)0.23648 (13)0.22259 (12)0.0826 (5)
C10.5978 (2)0.28418 (13)0.44074 (8)0.0595 (4)
C20.46287 (19)0.23354 (13)0.42310 (7)0.0565 (4)
H20.36730.24820.44310.068*
C30.47066 (18)0.16045 (12)0.37513 (7)0.0509 (3)
H30.38010.12510.36340.061*
C40.61302 (18)0.13951 (11)0.34438 (7)0.0495 (3)
C50.7473 (2)0.19166 (15)0.36286 (9)0.0646 (4)
H50.84300.17780.34270.078*
C60.7404 (2)0.26467 (16)0.41126 (9)0.0697 (5)
H60.83080.29990.42360.084*
C70.61293 (18)0.05938 (12)0.29275 (7)0.0519 (3)
C80.74862 (17)0.05223 (12)0.24430 (7)0.0499 (3)
H80.82710.10370.25610.060*
C90.68287 (19)0.08030 (12)0.17641 (8)0.0544 (3)
H90.59120.03680.16810.065*
C100.80251 (19)0.06096 (12)0.12331 (7)0.0528 (3)
C110.7672 (2)0.00341 (15)0.07273 (8)0.0664 (4)
H110.66940.03550.07200.080*
C120.8725 (3)0.02151 (18)0.02330 (10)0.0846 (6)
H120.84540.06510.01030.102*
C131.0170 (3)0.0248 (2)0.02388 (11)0.0923 (7)
H131.08930.01230.00900.111*
C141.0545 (3)0.0903 (2)0.07361 (12)0.0973 (7)
H141.15230.12240.07400.117*
C150.9477 (2)0.10866 (18)0.12305 (10)0.0763 (5)
H150.97400.15330.15620.092*
C160.6259 (3)0.19137 (16)0.17528 (9)0.0745 (5)
H16A0.55160.20170.21040.089*
H16B0.71540.23590.18260.089*
C170.5474 (3)0.2207 (2)0.11228 (12)0.0983 (7)
H17A0.45870.17690.10460.148*
H17B0.62180.21390.07760.148*
H17C0.51190.28990.11470.148*
C180.83087 (17)0.05335 (12)0.24718 (7)0.0512 (3)
H180.91320.05220.21390.061*
C190.91484 (19)0.07057 (11)0.31084 (7)0.0529 (3)
C201.0760 (2)0.05423 (14)0.31501 (9)0.0652 (4)
H201.13100.03160.27890.078*
C211.1568 (3)0.07107 (16)0.37241 (12)0.0809 (6)
H211.26510.05950.37430.097*
C221.0794 (3)0.10408 (16)0.42545 (10)0.0813 (6)
H221.13450.11660.46350.098*
C230.9185 (3)0.11912 (17)0.42302 (9)0.0825 (6)
H230.86460.14060.45970.099*
C240.8368 (2)0.10225 (17)0.36589 (9)0.0702 (5)
H240.72820.11240.36470.084*
C250.7198 (2)0.14079 (12)0.22928 (9)0.0595 (4)
H25A0.64010.14890.26260.071*
H25B0.66670.12550.18890.071*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0818 (3)0.0920 (3)0.0804 (3)0.0158 (3)0.0070 (2)0.0388 (2)
O10.0573 (6)0.0679 (7)0.0848 (8)0.0145 (6)0.0197 (6)0.0212 (6)
O20.173 (2)0.0687 (10)0.1411 (17)0.0274 (12)0.0380 (16)0.0015 (11)
O30.1117 (16)0.1051 (15)0.314 (4)0.0056 (12)0.093 (2)0.073 (2)
N10.0698 (10)0.0618 (10)0.1162 (14)0.0089 (8)0.0152 (10)0.0261 (10)
C10.0637 (9)0.0612 (9)0.0537 (8)0.0092 (8)0.0010 (7)0.0099 (7)
C20.0540 (8)0.0620 (8)0.0536 (8)0.0105 (7)0.0070 (6)0.0017 (7)
C30.0480 (7)0.0555 (8)0.0493 (7)0.0025 (6)0.0041 (6)0.0031 (6)
C40.0502 (7)0.0518 (7)0.0465 (7)0.0006 (6)0.0057 (6)0.0005 (6)
C50.0518 (8)0.0776 (11)0.0645 (9)0.0060 (8)0.0100 (7)0.0164 (8)
C60.0586 (9)0.0806 (12)0.0698 (10)0.0073 (9)0.0011 (8)0.0215 (9)
C70.0490 (7)0.0529 (7)0.0539 (7)0.0023 (6)0.0069 (6)0.0027 (6)
C80.0467 (7)0.0538 (7)0.0493 (7)0.0039 (6)0.0071 (6)0.0063 (6)
C90.0505 (7)0.0588 (8)0.0540 (8)0.0016 (6)0.0059 (6)0.0044 (7)
C100.0554 (8)0.0547 (8)0.0481 (7)0.0027 (7)0.0048 (6)0.0021 (6)
C110.0731 (10)0.0700 (10)0.0561 (9)0.0023 (9)0.0004 (8)0.0106 (8)
C120.1079 (17)0.0870 (13)0.0590 (10)0.0122 (12)0.0094 (11)0.0191 (9)
C130.0968 (16)0.1098 (17)0.0703 (12)0.0169 (13)0.0332 (12)0.0050 (12)
C140.0749 (13)0.129 (2)0.0881 (14)0.0200 (13)0.0292 (11)0.0019 (14)
C150.0699 (10)0.0919 (14)0.0670 (10)0.0222 (10)0.0142 (9)0.0140 (10)
C160.0882 (13)0.0710 (11)0.0642 (10)0.0241 (10)0.0141 (9)0.0008 (8)
C170.1010 (17)0.1026 (17)0.0914 (15)0.0363 (14)0.0009 (13)0.0153 (13)
C180.0470 (7)0.0555 (8)0.0511 (7)0.0004 (6)0.0059 (6)0.0062 (6)
C190.0539 (8)0.0496 (7)0.0553 (8)0.0017 (6)0.0004 (6)0.0061 (6)
C200.0575 (9)0.0636 (9)0.0745 (10)0.0104 (8)0.0033 (8)0.0006 (8)
C210.0746 (12)0.0727 (12)0.0954 (15)0.0100 (10)0.0249 (11)0.0021 (11)
C220.1026 (15)0.0691 (11)0.0723 (11)0.0028 (11)0.0278 (11)0.0100 (9)
C230.1092 (16)0.0836 (13)0.0548 (9)0.0021 (13)0.0032 (10)0.0032 (9)
C240.0649 (10)0.0858 (12)0.0597 (9)0.0035 (9)0.0063 (8)0.0015 (9)
C250.0562 (8)0.0541 (8)0.0680 (9)0.0028 (7)0.0036 (7)0.0117 (7)
Geometric parameters (Å, º) top
Cl1—C11.7393 (15)C12—H120.9300
O1—C71.2153 (19)C13—C141.379 (4)
O2—N11.208 (3)C13—H130.9300
O3—N11.180 (3)C14—C151.387 (3)
N1—C251.487 (2)C14—H140.9300
C1—C21.372 (3)C15—H150.9300
C1—C61.378 (3)C16—C171.514 (3)
C2—C31.384 (2)C16—H16A0.9700
C2—H20.9300C16—H16B0.9700
C3—C41.391 (2)C17—H17A0.9600
C3—H30.9300C17—H17B0.9600
C4—C51.382 (2)C17—H17C0.9600
C4—C71.501 (2)C18—C191.515 (2)
C5—C61.389 (3)C18—C251.531 (2)
C5—H50.9300C18—H180.9800
C6—H60.9300C19—C241.382 (2)
C7—C81.5285 (19)C19—C201.385 (2)
C8—C181.555 (2)C20—C211.389 (3)
C8—C91.556 (2)C20—H200.9300
C8—H80.9800C21—C221.351 (3)
C9—C101.517 (2)C21—H210.9300
C9—C161.539 (2)C22—C231.378 (4)
C9—H90.9800C22—H220.9300
C10—C111.379 (2)C23—C241.388 (3)
C10—C151.381 (2)C23—H230.9300
C11—C121.378 (3)C24—H240.9300
C11—H110.9300C25—H25A0.9700
C12—C131.367 (4)C25—H25B0.9700
O3—N1—O2124.8 (2)C13—C14—C15120.6 (2)
O3—N1—C25117.0 (2)C13—C14—H14119.7
O2—N1—C25118.1 (2)C15—C14—H14119.7
C2—C1—C6121.45 (14)C10—C15—C14120.29 (19)
C2—C1—Cl1119.29 (12)C10—C15—H15119.9
C6—C1—Cl1119.25 (14)C14—C15—H15119.9
C1—C2—C3119.24 (14)C17—C16—C9113.12 (18)
C1—C2—H2120.4C17—C16—H16A109.0
C3—C2—H2120.4C9—C16—H16A109.0
C2—C3—C4120.49 (14)C17—C16—H16B109.0
C2—C3—H3119.8C9—C16—H16B109.0
C4—C3—H3119.8H16A—C16—H16B107.8
C5—C4—C3119.23 (13)C16—C17—H17A109.5
C5—C4—C7123.09 (13)C16—C17—H17B109.5
C3—C4—C7117.67 (13)H17A—C17—H17B109.5
C4—C5—C6120.54 (16)C16—C17—H17C109.5
C4—C5—H5119.7H17A—C17—H17C109.5
C6—C5—H5119.7H17B—C17—H17C109.5
C1—C6—C5119.03 (17)C19—C18—C25112.75 (14)
C1—C6—H6120.5C19—C18—C8112.17 (12)
C5—C6—H6120.5C25—C18—C8112.71 (13)
O1—C7—C4119.54 (13)C19—C18—H18106.2
O1—C7—C8119.74 (13)C25—C18—H18106.2
C4—C7—C8120.68 (13)C8—C18—H18106.2
C7—C8—C18111.51 (12)C24—C19—C20117.82 (16)
C7—C8—C9108.01 (12)C24—C19—C18122.57 (15)
C18—C8—C9114.01 (12)C20—C19—C18119.61 (15)
C7—C8—H8107.7C19—C20—C21120.96 (19)
C18—C8—H8107.7C19—C20—H20119.5
C9—C8—H8107.7C21—C20—H20119.5
C10—C9—C16110.97 (14)C22—C21—C20120.5 (2)
C10—C9—C8112.08 (12)C22—C21—H21119.7
C16—C9—C8110.56 (14)C20—C21—H21119.7
C10—C9—H9107.7C21—C22—C23119.76 (19)
C16—C9—H9107.7C21—C22—H22120.1
C8—C9—H9107.7C23—C22—H22120.1
C11—C10—C15117.99 (16)C22—C23—C24120.1 (2)
C11—C10—C9120.55 (15)C22—C23—H23120.0
C15—C10—C9121.44 (15)C24—C23—H23120.0
C12—C11—C10121.95 (19)C19—C24—C23120.83 (19)
C12—C11—H11119.0C19—C24—H24119.6
C10—C11—H11119.0C23—C24—H24119.6
C13—C12—C11119.7 (2)N1—C25—C18109.64 (14)
C13—C12—H12120.1N1—C25—H25A109.7
C11—C12—H12120.1C18—C25—H25A109.7
C12—C13—C14119.41 (19)N1—C25—H25B109.7
C12—C13—H13120.3C18—C25—H25B109.7
C14—C13—H13120.3H25A—C25—H25B108.2
C6—C1—C2—C30.7 (3)C10—C11—C12—C130.3 (4)
Cl1—C1—C2—C3178.32 (12)C11—C12—C13—C140.9 (4)
C1—C2—C3—C41.0 (2)C12—C13—C14—C150.5 (4)
C2—C3—C4—C50.8 (2)C11—C10—C15—C141.0 (3)
C2—C3—C4—C7179.95 (14)C9—C10—C15—C14179.4 (2)
C3—C4—C5—C60.4 (3)C13—C14—C15—C100.4 (4)
C7—C4—C5—C6179.60 (17)C10—C9—C16—C1760.0 (2)
C2—C1—C6—C50.3 (3)C8—C9—C16—C17174.97 (18)
Cl1—C1—C6—C5178.72 (16)C7—C8—C18—C1966.22 (16)
C4—C5—C6—C10.2 (3)C9—C8—C18—C19171.13 (12)
C5—C4—C7—O1164.28 (18)C7—C8—C18—C2562.33 (17)
C3—C4—C7—O114.9 (2)C9—C8—C18—C2560.31 (17)
C5—C4—C7—C818.1 (2)C25—C18—C19—C2447.1 (2)
C3—C4—C7—C8162.74 (14)C8—C18—C19—C2481.41 (19)
O1—C7—C8—C1861.3 (2)C25—C18—C19—C20132.96 (16)
C4—C7—C8—C18121.03 (15)C8—C18—C19—C2098.51 (16)
O1—C7—C8—C964.69 (19)C24—C19—C20—C211.2 (3)
C4—C7—C8—C9112.95 (15)C18—C19—C20—C21178.86 (17)
C7—C8—C9—C10171.81 (13)C19—C20—C21—C220.1 (3)
C18—C8—C9—C1047.28 (18)C20—C21—C22—C231.4 (3)
C7—C8—C9—C1663.81 (17)C21—C22—C23—C241.2 (3)
C18—C8—C9—C16171.65 (14)C20—C19—C24—C231.4 (3)
C16—C9—C10—C11113.53 (19)C18—C19—C24—C23178.72 (17)
C8—C9—C10—C11122.32 (17)C22—C23—C24—C190.2 (3)
C16—C9—C10—C1564.8 (2)O3—N1—C25—C1863.7 (3)
C8—C9—C10—C1559.3 (2)O2—N1—C25—C18120.2 (2)
C15—C10—C11—C120.7 (3)C19—C18—C25—N160.96 (19)
C9—C10—C11—C12179.12 (18)C8—C18—C25—N1170.79 (16)
Hydrogen-bond geometry (Å, º) top
CgA is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C5—H5···O3i0.932.433.198 (5)140
C12—H12···CgAii0.932.823.691 (4)157
Symmetry codes: (i) x+2, y+1/2, z+1/2; (ii) x+3/2, y, z1/2.

Experimental details

Crystal data
Chemical formulaC25H24ClNO3
Mr421.90
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)8.4700 (1), 13.1515 (2), 20.7060 (2)
V3)2306.51 (5)
Z4
Radiation typeCu Kα
µ (mm1)1.66
Crystal size (mm)0.42 × 0.36 × 0.30
Data collection
DiffractometerGemini S Ultra Oxford Diffraction
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.542, 0.635
No. of measured, independent and
observed [I > 2σ(I)] reflections
22729, 4292, 4173
Rint0.019
(sin θ/λ)max1)0.609
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.099, 1.04
No. of reflections4292
No. of parameters272
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.25
Absolute structureFlack (1983), 1824 Friedel pairs
Absolute structure parameter0.010 (13)

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).

Hydrogen-bond geometry (Å, º) top
CgA is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C5—H5···O3i0.932.433.198 (5)140
C12—H12···CgAii0.932.823.691 (4)157
Symmetry codes: (i) x+2, y+1/2, z+1/2; (ii) x+3/2, y, z1/2.
 

Acknowledgements

This work was supported financially by the National Natural Science Foundation of China (20772097) and the Sichuan Provincial Science Foundation for Outstanding Youth.

References

First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKawasaki, M., Shinada, T., Hamada, M. & Ohfune, Y. (2005). Org. Lett. 7, 4165–4167.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTaylor, M. S. & Jacobsen, E. N. (2006). Angew. Chem. Int. Ed. 45, 1520–1543.  Web of Science CrossRef CAS Google Scholar
First citationXu, Y.-J., Liu, Q.-Z. & Dong, L. (2007). Synlett, 45, 273–277.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds