organic compounds
(2R,3R)-1-(4-Chlorophenyl)-2-[(S)-2-nitro-1-phenylethyl]-3-phenylpentan-1-one
aSchool of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, People's Republic of China
*Correspondence e-mail: wenqs_pro@126.com
The title compound, C25H24ClNO3, has three contiguous chiral centres. The was determined by The chlorobenzene ring is inclined to the two phenyl rings by 14.98 (9) and 59.05 (9)°. The two phenyl rings are inclined to one another by 49.51 (10)°. In the crystal, neighbouring molecules are linked via C—H⋯O hydrogen bonds, forming chains propagating along [010]. There is also a C—H⋯π interaction present that leads to the formation of a three-dimensional network.
Related literature
For the synthesis of the title compound, see: Xu et al. (2007). For the role of pyrrolidine motifs as organo-catalysts in asymmetric catalysis, see: Taylor & Jacobsen (2006) and for their role in bioactive molecules, see: Kawasaki et al. (2005).
Experimental
Crystal data
|
Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2.
Supporting information
https://doi.org/10.1107/S1600536811050306/su2340sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536811050306/su2340Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S1600536811050306/su2340Isup3.cml
The title compound was obtained by the procedure described by (Xu et al., 2007). It was recrystallized from petroleun ether and ethyl acetate (v/v = 1:1), yielding colourless block-like crystals suitable for X-ray diffraction analysis.
H atoms were placed in calculated positions with C—H = 0.93–0.98 Å, and refined in riding mode with Uiso(H) = 1.2Ueq(C).
Chiral pyrrolidines are readily obtained using the corresponding γ-nitro substituted (Xu et al., 2007). Pyrrolidine motifs are important as synthetic intermediates as well as organo-catalysts in asymmetric catalysis (Taylor & Jacobsen, 2006) and they are also present in many bioactive molecules (Kawasaki et al., 2005). α,β-unsaturated react with nitro-olfine derivatives to produce γ-nitro in good yields with high diastereoselectivities and enantioselectivities. The of one such compound, the title optically pure compound, is described herein.
In the title molecule (Fig. 1), carbon atoms C8, C9 and C18 are three contiguous chiral centres, R, R, S, respectively. The chlorobenzene ring, A (C1—C6), and phenyl ring B (C10—C15), are inclined to one another by 14.98 (9)°. Phenyl ring C (C19—C24) make dihedral angles with rings A and B of 59.05 (9) and 49.51 (10)°, respectively.
In the crystal, neighbouring molecules are linked via C—H···O hydrogen bonds to form chains which propagate along the b axis direction (Tabe 1 and Fig. 2). There is also a C—H···π interaction (Table 1) present which leads to the formation of a three-dimensional network.
For the synthesis of the title compound, see: Xu et al. (2007). For the role of pyrrolidine motifs as organo-catalysts in asymmetric catalysis, see: Taylor & Jacobsen (2006) and for their role in bioactive molecules, see: Kawasaki et al. (2005).
Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell
CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).C25H24ClNO3 | F(000) = 888 |
Mr = 421.90 | Dx = 1.215 Mg m−3 |
Orthorhombic, P212121 | Cu Kα radiation, λ = 1.54184 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 16354 reflections |
a = 8.4700 (1) Å | θ = 3.4–69.8° |
b = 13.1515 (2) Å | µ = 1.66 mm−1 |
c = 20.7060 (2) Å | T = 293 K |
V = 2306.51 (5) Å3 | Block, colourless |
Z = 4 | 0.42 × 0.36 × 0.30 mm |
Gemini S Ultra Oxford Diffraction diffractometer | 4292 independent reflections |
Radiation source: fine-focus sealed tube | 4173 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.019 |
Detector resolution: 15.9149 pixels mm-1 | θmax = 69.9°, θmin = 4.0° |
ω scans | h = −10→10 |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) | k = −15→16 |
Tmin = 0.542, Tmax = 0.635 | l = −21→25 |
22729 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.035 | H-atom parameters constrained |
wR(F2) = 0.099 | w = 1/[σ2(Fo2) + (0.0641P)2 + 0.1848P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max = 0.001 |
4292 reflections | Δρmax = 0.14 e Å−3 |
272 parameters | Δρmin = −0.25 e Å−3 |
0 restraints | Absolute structure: Flack (1983), 1824 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: −0.010 (13) |
C25H24ClNO3 | V = 2306.51 (5) Å3 |
Mr = 421.90 | Z = 4 |
Orthorhombic, P212121 | Cu Kα radiation |
a = 8.4700 (1) Å | µ = 1.66 mm−1 |
b = 13.1515 (2) Å | T = 293 K |
c = 20.7060 (2) Å | 0.42 × 0.36 × 0.30 mm |
Gemini S Ultra Oxford Diffraction diffractometer | 4292 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) | 4173 reflections with I > 2σ(I) |
Tmin = 0.542, Tmax = 0.635 | Rint = 0.019 |
22729 measured reflections |
R[F2 > 2σ(F2)] = 0.035 | H-atom parameters constrained |
wR(F2) = 0.099 | Δρmax = 0.14 e Å−3 |
S = 1.04 | Δρmin = −0.25 e Å−3 |
4292 reflections | Absolute structure: Flack (1983), 1824 Friedel pairs |
272 parameters | Absolute structure parameter: −0.010 (13) |
0 restraints |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.58917 (6) | 0.37368 (4) | 0.50249 (2) | 0.08473 (17) | |
O1 | 0.50133 (14) | 0.00173 (10) | 0.28825 (7) | 0.0700 (3) | |
O2 | 0.7782 (3) | −0.30696 (14) | 0.25735 (12) | 0.1277 (8) | |
O3 | 0.9069 (3) | −0.23945 (18) | 0.18103 (18) | 0.1769 (14) | |
N1 | 0.8118 (2) | −0.23648 (13) | 0.22259 (12) | 0.0826 (5) | |
C1 | 0.5978 (2) | 0.28418 (13) | 0.44074 (8) | 0.0595 (4) | |
C2 | 0.46287 (19) | 0.23354 (13) | 0.42310 (7) | 0.0565 (4) | |
H2 | 0.3673 | 0.2482 | 0.4431 | 0.068* | |
C3 | 0.47066 (18) | 0.16045 (12) | 0.37513 (7) | 0.0509 (3) | |
H3 | 0.3801 | 0.1251 | 0.3634 | 0.061* | |
C4 | 0.61302 (18) | 0.13951 (11) | 0.34438 (7) | 0.0495 (3) | |
C5 | 0.7473 (2) | 0.19166 (15) | 0.36286 (9) | 0.0646 (4) | |
H5 | 0.8430 | 0.1778 | 0.3427 | 0.078* | |
C6 | 0.7404 (2) | 0.26467 (16) | 0.41126 (9) | 0.0697 (5) | |
H6 | 0.8308 | 0.2999 | 0.4236 | 0.084* | |
C7 | 0.61293 (18) | 0.05938 (12) | 0.29275 (7) | 0.0519 (3) | |
C8 | 0.74862 (17) | 0.05223 (12) | 0.24430 (7) | 0.0499 (3) | |
H8 | 0.8271 | 0.1037 | 0.2561 | 0.060* | |
C9 | 0.68287 (19) | 0.08030 (12) | 0.17641 (8) | 0.0544 (3) | |
H9 | 0.5912 | 0.0368 | 0.1681 | 0.065* | |
C10 | 0.80251 (19) | 0.06096 (12) | 0.12331 (7) | 0.0528 (3) | |
C11 | 0.7672 (2) | −0.00341 (15) | 0.07273 (8) | 0.0664 (4) | |
H11 | 0.6694 | −0.0355 | 0.0720 | 0.080* | |
C12 | 0.8725 (3) | −0.02151 (18) | 0.02330 (10) | 0.0846 (6) | |
H12 | 0.8454 | −0.0651 | −0.0103 | 0.102* | |
C13 | 1.0170 (3) | 0.0248 (2) | 0.02388 (11) | 0.0923 (7) | |
H13 | 1.0893 | 0.0123 | −0.0090 | 0.111* | |
C14 | 1.0545 (3) | 0.0903 (2) | 0.07361 (12) | 0.0973 (7) | |
H14 | 1.1523 | 0.1224 | 0.0740 | 0.117* | |
C15 | 0.9477 (2) | 0.10866 (18) | 0.12305 (10) | 0.0763 (5) | |
H15 | 0.9740 | 0.1533 | 0.1562 | 0.092* | |
C16 | 0.6259 (3) | 0.19137 (16) | 0.17528 (9) | 0.0745 (5) | |
H16A | 0.5516 | 0.2017 | 0.2104 | 0.089* | |
H16B | 0.7154 | 0.2359 | 0.1826 | 0.089* | |
C17 | 0.5474 (3) | 0.2207 (2) | 0.11228 (12) | 0.0983 (7) | |
H17A | 0.4587 | 0.1769 | 0.1046 | 0.148* | |
H17B | 0.6218 | 0.2139 | 0.0776 | 0.148* | |
H17C | 0.5119 | 0.2899 | 0.1147 | 0.148* | |
C18 | 0.83087 (17) | −0.05335 (12) | 0.24718 (7) | 0.0512 (3) | |
H18 | 0.9132 | −0.0522 | 0.2139 | 0.061* | |
C19 | 0.91484 (19) | −0.07057 (11) | 0.31084 (7) | 0.0529 (3) | |
C20 | 1.0760 (2) | −0.05423 (14) | 0.31501 (9) | 0.0652 (4) | |
H20 | 1.1310 | −0.0316 | 0.2789 | 0.078* | |
C21 | 1.1568 (3) | −0.07107 (16) | 0.37241 (12) | 0.0809 (6) | |
H21 | 1.2651 | −0.0595 | 0.3743 | 0.097* | |
C22 | 1.0794 (3) | −0.10408 (16) | 0.42545 (10) | 0.0813 (6) | |
H22 | 1.1345 | −0.1166 | 0.4635 | 0.098* | |
C23 | 0.9185 (3) | −0.11912 (17) | 0.42302 (9) | 0.0825 (6) | |
H23 | 0.8646 | −0.1406 | 0.4597 | 0.099* | |
C24 | 0.8368 (2) | −0.10225 (17) | 0.36589 (9) | 0.0702 (5) | |
H24 | 0.7282 | −0.1124 | 0.3647 | 0.084* | |
C25 | 0.7198 (2) | −0.14079 (12) | 0.22928 (9) | 0.0595 (4) | |
H25A | 0.6401 | −0.1489 | 0.2626 | 0.071* | |
H25B | 0.6667 | −0.1255 | 0.1889 | 0.071* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0818 (3) | 0.0920 (3) | 0.0804 (3) | 0.0158 (3) | −0.0070 (2) | −0.0388 (2) |
O1 | 0.0573 (6) | 0.0679 (7) | 0.0848 (8) | −0.0145 (6) | 0.0197 (6) | −0.0212 (6) |
O2 | 0.173 (2) | 0.0687 (10) | 0.1411 (17) | 0.0274 (12) | −0.0380 (16) | 0.0015 (11) |
O3 | 0.1117 (16) | 0.1051 (15) | 0.314 (4) | 0.0056 (12) | 0.093 (2) | −0.073 (2) |
N1 | 0.0698 (10) | 0.0618 (10) | 0.1162 (14) | 0.0089 (8) | −0.0152 (10) | −0.0261 (10) |
C1 | 0.0637 (9) | 0.0612 (9) | 0.0537 (8) | 0.0092 (8) | −0.0010 (7) | −0.0099 (7) |
C2 | 0.0540 (8) | 0.0620 (8) | 0.0536 (8) | 0.0105 (7) | 0.0070 (6) | −0.0017 (7) |
C3 | 0.0480 (7) | 0.0555 (8) | 0.0493 (7) | 0.0025 (6) | 0.0041 (6) | 0.0031 (6) |
C4 | 0.0502 (7) | 0.0518 (7) | 0.0465 (7) | 0.0006 (6) | 0.0057 (6) | −0.0005 (6) |
C5 | 0.0518 (8) | 0.0776 (11) | 0.0645 (9) | −0.0060 (8) | 0.0100 (7) | −0.0164 (8) |
C6 | 0.0586 (9) | 0.0806 (12) | 0.0698 (10) | −0.0073 (9) | 0.0011 (8) | −0.0215 (9) |
C7 | 0.0490 (7) | 0.0529 (7) | 0.0539 (7) | −0.0023 (6) | 0.0069 (6) | −0.0027 (6) |
C8 | 0.0467 (7) | 0.0538 (7) | 0.0493 (7) | −0.0039 (6) | 0.0071 (6) | −0.0063 (6) |
C9 | 0.0505 (7) | 0.0588 (8) | 0.0540 (8) | 0.0016 (6) | 0.0059 (6) | −0.0044 (7) |
C10 | 0.0554 (8) | 0.0547 (8) | 0.0481 (7) | 0.0027 (7) | 0.0048 (6) | −0.0021 (6) |
C11 | 0.0731 (10) | 0.0700 (10) | 0.0561 (9) | −0.0023 (9) | −0.0004 (8) | −0.0106 (8) |
C12 | 0.1079 (17) | 0.0870 (13) | 0.0590 (10) | 0.0122 (12) | 0.0094 (11) | −0.0191 (9) |
C13 | 0.0968 (16) | 0.1098 (17) | 0.0703 (12) | 0.0169 (13) | 0.0332 (12) | −0.0050 (12) |
C14 | 0.0749 (13) | 0.129 (2) | 0.0881 (14) | −0.0200 (13) | 0.0292 (11) | −0.0019 (14) |
C15 | 0.0699 (10) | 0.0919 (14) | 0.0670 (10) | −0.0222 (10) | 0.0142 (9) | −0.0140 (10) |
C16 | 0.0882 (13) | 0.0710 (11) | 0.0642 (10) | 0.0241 (10) | 0.0141 (9) | 0.0008 (8) |
C17 | 0.1010 (17) | 0.1026 (17) | 0.0914 (15) | 0.0363 (14) | −0.0009 (13) | 0.0153 (13) |
C18 | 0.0470 (7) | 0.0555 (8) | 0.0511 (7) | −0.0004 (6) | 0.0059 (6) | −0.0062 (6) |
C19 | 0.0539 (8) | 0.0496 (7) | 0.0553 (8) | −0.0017 (6) | 0.0004 (6) | −0.0061 (6) |
C20 | 0.0575 (9) | 0.0636 (9) | 0.0745 (10) | −0.0104 (8) | −0.0033 (8) | 0.0006 (8) |
C21 | 0.0746 (12) | 0.0727 (12) | 0.0954 (15) | −0.0100 (10) | −0.0249 (11) | −0.0021 (11) |
C22 | 0.1026 (15) | 0.0691 (11) | 0.0723 (11) | 0.0028 (11) | −0.0278 (11) | −0.0100 (9) |
C23 | 0.1092 (16) | 0.0836 (13) | 0.0548 (9) | 0.0021 (13) | 0.0032 (10) | 0.0032 (9) |
C24 | 0.0649 (10) | 0.0858 (12) | 0.0597 (9) | −0.0035 (9) | 0.0063 (8) | 0.0015 (9) |
C25 | 0.0562 (8) | 0.0541 (8) | 0.0680 (9) | 0.0028 (7) | −0.0036 (7) | −0.0117 (7) |
Cl1—C1 | 1.7393 (15) | C12—H12 | 0.9300 |
O1—C7 | 1.2153 (19) | C13—C14 | 1.379 (4) |
O2—N1 | 1.208 (3) | C13—H13 | 0.9300 |
O3—N1 | 1.180 (3) | C14—C15 | 1.387 (3) |
N1—C25 | 1.487 (2) | C14—H14 | 0.9300 |
C1—C2 | 1.372 (3) | C15—H15 | 0.9300 |
C1—C6 | 1.378 (3) | C16—C17 | 1.514 (3) |
C2—C3 | 1.384 (2) | C16—H16A | 0.9700 |
C2—H2 | 0.9300 | C16—H16B | 0.9700 |
C3—C4 | 1.391 (2) | C17—H17A | 0.9600 |
C3—H3 | 0.9300 | C17—H17B | 0.9600 |
C4—C5 | 1.382 (2) | C17—H17C | 0.9600 |
C4—C7 | 1.501 (2) | C18—C19 | 1.515 (2) |
C5—C6 | 1.389 (3) | C18—C25 | 1.531 (2) |
C5—H5 | 0.9300 | C18—H18 | 0.9800 |
C6—H6 | 0.9300 | C19—C24 | 1.382 (2) |
C7—C8 | 1.5285 (19) | C19—C20 | 1.385 (2) |
C8—C18 | 1.555 (2) | C20—C21 | 1.389 (3) |
C8—C9 | 1.556 (2) | C20—H20 | 0.9300 |
C8—H8 | 0.9800 | C21—C22 | 1.351 (3) |
C9—C10 | 1.517 (2) | C21—H21 | 0.9300 |
C9—C16 | 1.539 (2) | C22—C23 | 1.378 (4) |
C9—H9 | 0.9800 | C22—H22 | 0.9300 |
C10—C11 | 1.379 (2) | C23—C24 | 1.388 (3) |
C10—C15 | 1.381 (2) | C23—H23 | 0.9300 |
C11—C12 | 1.378 (3) | C24—H24 | 0.9300 |
C11—H11 | 0.9300 | C25—H25A | 0.9700 |
C12—C13 | 1.367 (4) | C25—H25B | 0.9700 |
O3—N1—O2 | 124.8 (2) | C13—C14—C15 | 120.6 (2) |
O3—N1—C25 | 117.0 (2) | C13—C14—H14 | 119.7 |
O2—N1—C25 | 118.1 (2) | C15—C14—H14 | 119.7 |
C2—C1—C6 | 121.45 (14) | C10—C15—C14 | 120.29 (19) |
C2—C1—Cl1 | 119.29 (12) | C10—C15—H15 | 119.9 |
C6—C1—Cl1 | 119.25 (14) | C14—C15—H15 | 119.9 |
C1—C2—C3 | 119.24 (14) | C17—C16—C9 | 113.12 (18) |
C1—C2—H2 | 120.4 | C17—C16—H16A | 109.0 |
C3—C2—H2 | 120.4 | C9—C16—H16A | 109.0 |
C2—C3—C4 | 120.49 (14) | C17—C16—H16B | 109.0 |
C2—C3—H3 | 119.8 | C9—C16—H16B | 109.0 |
C4—C3—H3 | 119.8 | H16A—C16—H16B | 107.8 |
C5—C4—C3 | 119.23 (13) | C16—C17—H17A | 109.5 |
C5—C4—C7 | 123.09 (13) | C16—C17—H17B | 109.5 |
C3—C4—C7 | 117.67 (13) | H17A—C17—H17B | 109.5 |
C4—C5—C6 | 120.54 (16) | C16—C17—H17C | 109.5 |
C4—C5—H5 | 119.7 | H17A—C17—H17C | 109.5 |
C6—C5—H5 | 119.7 | H17B—C17—H17C | 109.5 |
C1—C6—C5 | 119.03 (17) | C19—C18—C25 | 112.75 (14) |
C1—C6—H6 | 120.5 | C19—C18—C8 | 112.17 (12) |
C5—C6—H6 | 120.5 | C25—C18—C8 | 112.71 (13) |
O1—C7—C4 | 119.54 (13) | C19—C18—H18 | 106.2 |
O1—C7—C8 | 119.74 (13) | C25—C18—H18 | 106.2 |
C4—C7—C8 | 120.68 (13) | C8—C18—H18 | 106.2 |
C7—C8—C18 | 111.51 (12) | C24—C19—C20 | 117.82 (16) |
C7—C8—C9 | 108.01 (12) | C24—C19—C18 | 122.57 (15) |
C18—C8—C9 | 114.01 (12) | C20—C19—C18 | 119.61 (15) |
C7—C8—H8 | 107.7 | C19—C20—C21 | 120.96 (19) |
C18—C8—H8 | 107.7 | C19—C20—H20 | 119.5 |
C9—C8—H8 | 107.7 | C21—C20—H20 | 119.5 |
C10—C9—C16 | 110.97 (14) | C22—C21—C20 | 120.5 (2) |
C10—C9—C8 | 112.08 (12) | C22—C21—H21 | 119.7 |
C16—C9—C8 | 110.56 (14) | C20—C21—H21 | 119.7 |
C10—C9—H9 | 107.7 | C21—C22—C23 | 119.76 (19) |
C16—C9—H9 | 107.7 | C21—C22—H22 | 120.1 |
C8—C9—H9 | 107.7 | C23—C22—H22 | 120.1 |
C11—C10—C15 | 117.99 (16) | C22—C23—C24 | 120.1 (2) |
C11—C10—C9 | 120.55 (15) | C22—C23—H23 | 120.0 |
C15—C10—C9 | 121.44 (15) | C24—C23—H23 | 120.0 |
C12—C11—C10 | 121.95 (19) | C19—C24—C23 | 120.83 (19) |
C12—C11—H11 | 119.0 | C19—C24—H24 | 119.6 |
C10—C11—H11 | 119.0 | C23—C24—H24 | 119.6 |
C13—C12—C11 | 119.7 (2) | N1—C25—C18 | 109.64 (14) |
C13—C12—H12 | 120.1 | N1—C25—H25A | 109.7 |
C11—C12—H12 | 120.1 | C18—C25—H25A | 109.7 |
C12—C13—C14 | 119.41 (19) | N1—C25—H25B | 109.7 |
C12—C13—H13 | 120.3 | C18—C25—H25B | 109.7 |
C14—C13—H13 | 120.3 | H25A—C25—H25B | 108.2 |
C6—C1—C2—C3 | 0.7 (3) | C10—C11—C12—C13 | 0.3 (4) |
Cl1—C1—C2—C3 | −178.32 (12) | C11—C12—C13—C14 | −0.9 (4) |
C1—C2—C3—C4 | −1.0 (2) | C12—C13—C14—C15 | 0.5 (4) |
C2—C3—C4—C5 | 0.8 (2) | C11—C10—C15—C14 | −1.0 (3) |
C2—C3—C4—C7 | −179.95 (14) | C9—C10—C15—C14 | −179.4 (2) |
C3—C4—C5—C6 | −0.4 (3) | C13—C14—C15—C10 | 0.4 (4) |
C7—C4—C5—C6 | −179.60 (17) | C10—C9—C16—C17 | 60.0 (2) |
C2—C1—C6—C5 | −0.3 (3) | C8—C9—C16—C17 | −174.97 (18) |
Cl1—C1—C6—C5 | 178.72 (16) | C7—C8—C18—C19 | −66.22 (16) |
C4—C5—C6—C1 | 0.2 (3) | C9—C8—C18—C19 | 171.13 (12) |
C5—C4—C7—O1 | 164.28 (18) | C7—C8—C18—C25 | 62.33 (17) |
C3—C4—C7—O1 | −14.9 (2) | C9—C8—C18—C25 | −60.31 (17) |
C5—C4—C7—C8 | −18.1 (2) | C25—C18—C19—C24 | −47.1 (2) |
C3—C4—C7—C8 | 162.74 (14) | C8—C18—C19—C24 | 81.41 (19) |
O1—C7—C8—C18 | −61.3 (2) | C25—C18—C19—C20 | 132.96 (16) |
C4—C7—C8—C18 | 121.03 (15) | C8—C18—C19—C20 | −98.51 (16) |
O1—C7—C8—C9 | 64.69 (19) | C24—C19—C20—C21 | 1.2 (3) |
C4—C7—C8—C9 | −112.95 (15) | C18—C19—C20—C21 | −178.86 (17) |
C7—C8—C9—C10 | −171.81 (13) | C19—C20—C21—C22 | 0.1 (3) |
C18—C8—C9—C10 | −47.28 (18) | C20—C21—C22—C23 | −1.4 (3) |
C7—C8—C9—C16 | 63.81 (17) | C21—C22—C23—C24 | 1.2 (3) |
C18—C8—C9—C16 | −171.65 (14) | C20—C19—C24—C23 | −1.4 (3) |
C16—C9—C10—C11 | −113.53 (19) | C18—C19—C24—C23 | 178.72 (17) |
C8—C9—C10—C11 | 122.32 (17) | C22—C23—C24—C19 | 0.2 (3) |
C16—C9—C10—C15 | 64.8 (2) | O3—N1—C25—C18 | −63.7 (3) |
C8—C9—C10—C15 | −59.3 (2) | O2—N1—C25—C18 | 120.2 (2) |
C15—C10—C11—C12 | 0.7 (3) | C19—C18—C25—N1 | −60.96 (19) |
C9—C10—C11—C12 | 179.12 (18) | C8—C18—C25—N1 | 170.79 (16) |
CgA is the centroid of the C1–C6 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C5—H5···O3i | 0.93 | 2.43 | 3.198 (5) | 140 |
C12—H12···CgAii | 0.93 | 2.82 | 3.691 (4) | 157 |
Symmetry codes: (i) −x+2, y+1/2, −z+1/2; (ii) −x+3/2, −y, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | C25H24ClNO3 |
Mr | 421.90 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 293 |
a, b, c (Å) | 8.4700 (1), 13.1515 (2), 20.7060 (2) |
V (Å3) | 2306.51 (5) |
Z | 4 |
Radiation type | Cu Kα |
µ (mm−1) | 1.66 |
Crystal size (mm) | 0.42 × 0.36 × 0.30 |
Data collection | |
Diffractometer | Gemini S Ultra Oxford Diffraction |
Absorption correction | Multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) |
Tmin, Tmax | 0.542, 0.635 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 22729, 4292, 4173 |
Rint | 0.019 |
(sin θ/λ)max (Å−1) | 0.609 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.035, 0.099, 1.04 |
No. of reflections | 4292 |
No. of parameters | 272 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.14, −0.25 |
Absolute structure | Flack (1983), 1824 Friedel pairs |
Absolute structure parameter | −0.010 (13) |
Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).
CgA is the centroid of the C1–C6 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C5—H5···O3i | 0.93 | 2.43 | 3.198 (5) | 140 |
C12—H12···CgAii | 0.93 | 2.82 | 3.691 (4) | 157 |
Symmetry codes: (i) −x+2, y+1/2, −z+1/2; (ii) −x+3/2, −y, z−1/2. |
Acknowledgements
This work was supported financially by the National Natural Science Foundation of China (20772097) and the Sichuan Provincial Science Foundation for Outstanding Youth.
References
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Kawasaki, M., Shinada, T., Hamada, M. & Ohfune, Y. (2005). Org. Lett. 7, 4165–4167. Web of Science CrossRef PubMed CAS Google Scholar
Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction, Yarnton, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Taylor, M. S. & Jacobsen, E. N. (2006). Angew. Chem. Int. Ed. 45, 1520–1543. Web of Science CrossRef CAS Google Scholar
Xu, Y.-J., Liu, Q.-Z. & Dong, L. (2007). Synlett, 45, 273–277. CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Chiral pyrrolidines are readily obtained using the corresponding γ-nitro substituted carbonyl compounds (Xu et al., 2007). Pyrrolidine motifs are important as synthetic intermediates as well as organo-catalysts in asymmetric catalysis (Taylor & Jacobsen, 2006) and they are also present in many bioactive molecules (Kawasaki et al., 2005). α,β-unsaturated ketones react with nitro-olfine derivatives to produce γ-nitro ketones in good yields with high diastereoselectivities and enantioselectivities. The crystal structure of one such compound, the title optically pure compound, is described herein.
In the title molecule (Fig. 1), carbon atoms C8, C9 and C18 are three contiguous chiral centres, R, R, S, respectively. The chlorobenzene ring, A (C1—C6), and phenyl ring B (C10—C15), are inclined to one another by 14.98 (9)°. Phenyl ring C (C19—C24) make dihedral angles with rings A and B of 59.05 (9) and 49.51 (10)°, respectively.
In the crystal, neighbouring molecules are linked via C—H···O hydrogen bonds to form chains which propagate along the b axis direction (Tabe 1 and Fig. 2). There is also a C—H···π interaction (Table 1) present which leads to the formation of a three-dimensional network.