organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5,10,15,20-Tetra­kis(1-methyl­pyridinium-4-yl)porphyrin tetra­iodide tetra­hydrate

aDepartment of Chemistry, University of Aveiro, QOPNA, 3810-193 Aveiro, Portugal, and bDepartment of Chemistry, University of Aveiro, CICECO, 3810-193 Aveiro, Portugal
*Correspondence e-mail: filipe.paz@ua.pt

(Received 19 October 2011; accepted 21 October 2011; online 2 November 2011)

The asymmetric unit of the title compound, C44H38N82+·4I·4H2O, comprises two halves of non-equivalent cations of 5,10,15,20-tetra­kis­(1-methyl­pyridinium)porphyrin (with the full mol­ecule of each completed by the application of inversion symmetry), four charge balancing iodide anions and four water mol­ecules of crystallization (two water mol­ecules are fully occupied and four mol­ecules have a site occupancy of 50%). The porphyrin cations are arranged into supramolecular columns parallel to the b axis, mediated by ππ [centroid–centroid distance = 3.762 (4) Å] and C—H⋯π supra­molecular inter­actions [C⋯centroid distance = 3.522 (7) Å, C—H⋯centroid = 128°], leading to the formation of columns parallel to the b axis. The close packing leads to the presence of a one-dimensional channel filled with partially occupied water mol­ecules engaged in O—H⋯O and O—H⋯I hydrogen bonds

Related literature

For general background on the search for alternative treatments for microbial infections, see: Gomes et al. (2011[Gomes, M. C., Woranovicz-Barreira, S. M., Faustino, M. A. F., Fernandes, R., Neves, M. G. P. M. S., Tomé, A. C., Gomes, N. C. M., Almeida, A., Cavaleiro, J. A. S., Cunha, A. & Tomé, J. P. C. (2011). Photochem. Photobiol. Sci. doi:10.1039/c1pp05174a.]); Alves et al. (2008[Alves, E., Carvalho, C. M. B., Tomé, J. P. C., Faustino, M. A. F., Neves, M. G. P. M. S., Tomé, A. C., Cavaleiro, J. A. S., Cunha, A., Mendo, S. & Almeida, A. (2008). J. Ind. Microbiol. Biotechnol. 35, 1447-1454.]); Carvalho et al. (2009[Carvalho, C. M. B., Tomé, J. P. C., Faustino, M. A. F., Neves, M. G. P. M. S., Tomé, A. C., Cavaleiro, J. A. S., Costa, L., Alves, E., Oliveira, A., Cunha, A. & Almeida, A. (2009). J. Porphyrins Phthalocyanines, 13, 574-577.]). For the use of porphyrins as photosensitizers, see: Alves et al. (2009[Alves, E., Costa, L., Carvalho, C. M. B., Tomé, J. P. C., Faustino, M. A., Neves, M. G. P. M. S., Tomé, A. C., Cavaleiro, J. A. S., Cunha, A. & Almeida, A. (2009). BMC Microbiol. 9, 70.]); Banfi et al. (2006[Banfi, S., Caruso, E., Buccafurni, L., Battini, V., Zazzaron, S., Barbieri, P. & Orlandi, V. (2006). J. Photochem. Photobiol. B, 85, 28-38.]); Merchat et al. (1996[Merchat, M., Bertolini, G., Giacomini, P., Villanueva, A. & Jori, G. (1996). J. Photochem. Photobiol. B, 32, 153-157.]); Tomé et al. (2004[Tomé, J. P. C., Neves, M. G. P. M. S., Tomé, A. C., Cavaleiro, J. A. S., Soncin, M., Magaraggia, M., Ferro, F. & Jori, G. (2004). J. Med. Chem. 47, 6649-6652.]); Yu et al. (2009[Yu, K. G., Li, D. H., Zhou, C. H. & Diao, J. L. (2009). Chin. Chem. Lett. 20, 411-414.]). For general background on the work carried out by our group, see: Paz et al. (2002[Paz, F. A. A., Bond, A. D., Khimyak, Y. Z. & Klinowski, J. (2002). New J. Chem. 26, 381-383.]); Paz & Klinowski (2003[Paz, F. A. A. & Klinowski, J. (2003). CrystEngComm, 5, 238-244.]); Shi et al. (2008[Shi, F.-N., Cunha-Silva, L., Sá Ferreira, R. A., Mafra, L., Trindade, T., Carlos, L. D., Paz, F. A. A. & Rocha, J. (2008). J. Am. Chem. Soc. 130, 150-167.]).

[Scheme 1]

Experimental

Crystal data
  • C44H38N82+·4I·4H2O

  • Mr = 1258.49

  • Monoclinic, P 21 /n

  • a = 24.3331 (4) Å

  • b = 6.5209 (1) Å

  • c = 30.5663 (5) Å

  • β = 95.025 (1)°

  • V = 4831.43 (13) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 20.65 mm−1

  • T = 100 K

  • 0.20 × 0.15 × 0.08 mm

Data collection
  • Bruker X8 KappaCCD APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1997[Sheldrick, G. M. (1997). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.104, Tmax = 0.289

  • 47661 measured reflections

  • 7346 independent reflections

  • 7013 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.110

  • S = 1.09

  • 7346 reflections

  • 563 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 2.73 e Å−3

  • Δρmin = −2.79 e Å−3

Table 1
Selected interatomic distances (Å)

O2W⋯O4Wi 2.781 (15)
O2W⋯O6Wii 2.793 (15)
O3W⋯O5Wii 2.730 (19)
O3W⋯O6W 2.56 (2)
O4W⋯O5W 2.721 (19)
O5W⋯O6Wii 2.73 (2)
O1W⋯I2iii 3.565 (5)
O1W⋯I3iii 3.594 (5)
O2W⋯I3 3.684 (9)
O6W⋯I4iv 3.299 (18)
C13⋯I1 3.691 (6)
C14⋯I2iv 3.760 (6)
C44⋯I2 3.844 (7)
C22⋯I3i 3.882 (7)
C36⋯I4v 3.566 (5)
Symmetry codes: (i) x, y+1, z; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) x, y-1, z; (v) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT-Plus (Bruker, 2005[Bruker (2005). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg, 2009[Brandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

With the increasing number of antibiotic-resistant strains of microorganisms it is imperative to find alternative treatments for microbial infections (Alves et al., 2008). Photodynamic therapy is a promising non-antibiotic approach to photoinactivate antibiotic-multi-resistant pathogenic microorganisms. The photodynamic destruction of microorganisms is based on the ability of certain photosensitizers, when activated by light, generate reactive oxygen species that are able to destroy or affect bacterial membranes (Carvalho et al., 2009). For example, studies using cationic meso-substituted porphyrins acting as photosensitizers revealed interesting results in the destruction of Gram-positive and Gram-negative bacteria (Alves et al., 2009; Banfi et al., 2006; Merchat et al., 1996). The compound 5,10,15,20-tetrakis(1-methylpyridinium-4-yl)porphyrin (Gomes et al., 2011) is one of the most used photosensitizers in the photo-inactivation studies of microorganisms. Results have shown that the cationic conjugates are able to efficiently photosensitize different types of microorganisms (Gomes et al., 2011; Tomé et al., 2004; Alves et al., 2008; Yu et al., 2009). Following our on-going interest on organic crystals (Paz et al., 2002; Paz & Klinowski, 2003) and in water clusters confined in organic/hybrid matrices (Shi et al., 2008), here we wish to describe the crystal structure of the title compound.

The asymmetric unit (Fig. 1) of the title compound, (C44H38N8)I4.4H2O, comprises two distinct halves of centrosymmetric tetracationic porphyrin molecules, whose charge is balanced by four iodide anions, plus four water molecules of crystallization. The porphyrin rings are planar (with deviations from planarity smaller than ca 0.16 Å) subtending angles with the substituent pyridinium rings which range from ca 56 to ca 68°. The crystal structure is rich in weak supramolecular interactions such as ππ stacking and C—H···π interactions: there are two ππ stacking interactions between adjacent pyrrole rings [Cg···Cg distances of 3.762 (4) and 4.108 (4) Å], and there is a single C35—H35···π interaction [C···Cg of 3.522 (7) Å] between a hydrogen from the pyridinium ring and a pyrrole ring (interactions not shown). These supramolecular interactions contribute to the formation of columns of porphyrin molecules which are parallel to the b axis as depicted in Fig. 2. These columnar arrangements close pack in the ac plane leading to the formation of one-dimensional channels which, due to the need of close proximity of the iodide anions with the pyridinium rings, are instead filled with disordered water molecules of crystallization engaged in hydrogen bonding interactions (Table 1 and Figs 2 and 3). We note that a sole water molecule (O1W) is located between two iodide anions (I2 and I3) and outside the aforementioned channel, deeply embedded into the hydrophobic portion of the crystal structure. The remaining three water molecules are distributed among five independent crystallographic sites which may be involved in several O—H···O hydrogen bonding interactions as depicted in Fig. 3 (see Table 1 for geometric details). It is also interesting to note that only one iodide anion (I1) is not close to water molecules, participating instead in several short contacts with the porphyrin cations, among which a C—H···I- weak hydrogen interaction (dD···A = 3.691 (6) Å) arises as the strongest and more directional one (green dashed lines in Fig. 2). I2 to I4 are also involved in such type of interactions (not shown) as summarized in Table 1.

Related literature top

For general background on the search for alternative treatments for microbial infections, see: Gomes et al. (2011); Alves et al. (2008); Carvalho et al. (2009). For the use of porphyrins as photosensitizers, see: Alves et al. (2009); Banfi et al. (2006); Merchat et al. (1996); Tomé et al. (2004); Yu et al. (2009). For general background on the work carried out by our group, see: Paz et al. (2002); Paz & Klinowski (2003); Shi et al. (2008).

Experimental top

Crystals of the title compound have been isolated using the synthetic procedure described in detail by Gomes et al. (2011).

Refinement top

Hydrogen atoms bound to carbon and nitrogen were placed in idealized positions with C—H = 0.95 Å (aromatic) or 0.98 Å (terminal methyl groups), and N—H = 0.88 Å. These atoms were included in the final structural model in riding-motion approximation. The isotropic thermal displacement parameters for these atoms were fixed at 1.2 (for the aromatic H atoms) or 1.5 (for the terminal —CH3 moieties) times Ueq of the atom (C or N) to which they are attached.

Four water molecules of crystallization were found to be partially occupied and were included in the final structural model with fixed rates of occupancy of 50% (calculated from unrestrained refinement for the site occupancies). Hydrogen atoms associated with water molecules could not be located from difference Fourier maps and attempts to include these in calculated positions did not lead stable structural refinements. Nevertheless, the hydrogen atoms associated with these chemical entities have been included in the empirical formula of the title compound.

The structural model contains a large residual electron densities of 2.73 and -2.79 e.Å-3 located at 0.91 and 0.82 Å from the I4 atom, respectively. Attempts to include these peaks as a disordered iodide anion did not lead to sensible structural refinements.

Structure description top

With the increasing number of antibiotic-resistant strains of microorganisms it is imperative to find alternative treatments for microbial infections (Alves et al., 2008). Photodynamic therapy is a promising non-antibiotic approach to photoinactivate antibiotic-multi-resistant pathogenic microorganisms. The photodynamic destruction of microorganisms is based on the ability of certain photosensitizers, when activated by light, generate reactive oxygen species that are able to destroy or affect bacterial membranes (Carvalho et al., 2009). For example, studies using cationic meso-substituted porphyrins acting as photosensitizers revealed interesting results in the destruction of Gram-positive and Gram-negative bacteria (Alves et al., 2009; Banfi et al., 2006; Merchat et al., 1996). The compound 5,10,15,20-tetrakis(1-methylpyridinium-4-yl)porphyrin (Gomes et al., 2011) is one of the most used photosensitizers in the photo-inactivation studies of microorganisms. Results have shown that the cationic conjugates are able to efficiently photosensitize different types of microorganisms (Gomes et al., 2011; Tomé et al., 2004; Alves et al., 2008; Yu et al., 2009). Following our on-going interest on organic crystals (Paz et al., 2002; Paz & Klinowski, 2003) and in water clusters confined in organic/hybrid matrices (Shi et al., 2008), here we wish to describe the crystal structure of the title compound.

The asymmetric unit (Fig. 1) of the title compound, (C44H38N8)I4.4H2O, comprises two distinct halves of centrosymmetric tetracationic porphyrin molecules, whose charge is balanced by four iodide anions, plus four water molecules of crystallization. The porphyrin rings are planar (with deviations from planarity smaller than ca 0.16 Å) subtending angles with the substituent pyridinium rings which range from ca 56 to ca 68°. The crystal structure is rich in weak supramolecular interactions such as ππ stacking and C—H···π interactions: there are two ππ stacking interactions between adjacent pyrrole rings [Cg···Cg distances of 3.762 (4) and 4.108 (4) Å], and there is a single C35—H35···π interaction [C···Cg of 3.522 (7) Å] between a hydrogen from the pyridinium ring and a pyrrole ring (interactions not shown). These supramolecular interactions contribute to the formation of columns of porphyrin molecules which are parallel to the b axis as depicted in Fig. 2. These columnar arrangements close pack in the ac plane leading to the formation of one-dimensional channels which, due to the need of close proximity of the iodide anions with the pyridinium rings, are instead filled with disordered water molecules of crystallization engaged in hydrogen bonding interactions (Table 1 and Figs 2 and 3). We note that a sole water molecule (O1W) is located between two iodide anions (I2 and I3) and outside the aforementioned channel, deeply embedded into the hydrophobic portion of the crystal structure. The remaining three water molecules are distributed among five independent crystallographic sites which may be involved in several O—H···O hydrogen bonding interactions as depicted in Fig. 3 (see Table 1 for geometric details). It is also interesting to note that only one iodide anion (I1) is not close to water molecules, participating instead in several short contacts with the porphyrin cations, among which a C—H···I- weak hydrogen interaction (dD···A = 3.691 (6) Å) arises as the strongest and more directional one (green dashed lines in Fig. 2). I2 to I4 are also involved in such type of interactions (not shown) as summarized in Table 1.

For general background on the search for alternative treatments for microbial infections, see: Gomes et al. (2011); Alves et al. (2008); Carvalho et al. (2009). For the use of porphyrins as photosensitizers, see: Alves et al. (2009); Banfi et al. (2006); Merchat et al. (1996); Tomé et al. (2004); Yu et al. (2009). For general background on the work carried out by our group, see: Paz et al. (2002); Paz & Klinowski (2003); Shi et al. (2008).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: APEX2 (Bruker, 2006); data reduction: SAINT-Plus (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular units comprising the asymmetric unit of the title compound. The porphyrin molecules have been completed (through inversion symmetry) for clarity. Displacement ellipsoids are drawn at the 50% probability level and the atomic labeling is provided for all non-hydrogen atoms comprising the asymmetric unit. Hydrogen atoms are represented as small spheres with arbitrary radius.
[Figure 2] Fig. 2. Crystal packing of the title compound viewed in perspective along the [010] direction of the unit cell. Hydrogen bonds involving only water molecules are depicted as dashed bright green lines and those involving water molecules and iodide anions are depicted as dashed pink lines. The C—H···I- weak hydrogen bond is depicted as a dashed green line.
[Figure 3] Fig. 3. Portion of the hydrogen bonded zigzag chain involving iodide anions and water molecules of crystallization present in the crystal structure of the title compound. For clarity, the site occupancy of each water molecule is represented next to the label, and the symmetry codes used to generate equivalent atoms are omitted. For geometric details on the represented supramolecular interactions see Table 1.
5,10,15,20-Tetrakis(1-methylpyridinium-4-yl)porphyrin tetraiodide tetrahydrate top
Crystal data top
C44H38N82+·4I·4H2OF(000) = 2440
Mr = 1258.49Dx = 1.730 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ynCell parameters from 8573 reflections
a = 24.3331 (4) Åθ = 3.7–62.2°
b = 6.5209 (1) ŵ = 20.65 mm1
c = 30.5663 (5) ÅT = 100 K
β = 95.025 (1)°Block, brown
V = 4831.43 (13) Å30.20 × 0.15 × 0.08 mm
Z = 4
Data collection top
Bruker X8 KappaCCD APEXII
diffractometer
7346 independent reflections
Radiation source: fine-focus sealed tube7013 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ω and φ scansθmax = 62.7°, θmin = 7.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
h = 2727
Tmin = 0.104, Tmax = 0.289k = 77
47661 measured reflectionsl = 2234
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0481P)2 + 42.1978P]
where P = (Fo2 + 2Fc2)/3
7346 reflections(Δ/σ)max = 0.001
563 parametersΔρmax = 2.73 e Å3
6 restraintsΔρmin = 2.79 e Å3
Crystal data top
C44H38N82+·4I·4H2OV = 4831.43 (13) Å3
Mr = 1258.49Z = 4
Monoclinic, P21/nCu Kα radiation
a = 24.3331 (4) ŵ = 20.65 mm1
b = 6.5209 (1) ÅT = 100 K
c = 30.5663 (5) Å0.20 × 0.15 × 0.08 mm
β = 95.025 (1)°
Data collection top
Bruker X8 KappaCCD APEXII
diffractometer
7346 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
7013 reflections with I > 2σ(I)
Tmin = 0.104, Tmax = 0.289Rint = 0.039
47661 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0446 restraints
wR(F2) = 0.110H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0481P)2 + 42.1978P]
where P = (Fo2 + 2Fc2)/3
7346 reflectionsΔρmax = 2.73 e Å3
563 parametersΔρmin = 2.79 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.46552 (19)0.1385 (8)0.05010 (16)0.0156 (11)
N20.43689 (19)0.2216 (8)0.00352 (16)0.0161 (11)
H20.46400.13200.00090.019*
N30.24687 (19)0.1678 (8)0.12933 (15)0.0145 (11)
N40.6006 (2)0.7920 (9)0.17192 (18)0.0247 (12)
C10.4873 (2)0.2957 (9)0.0757 (2)0.0160 (13)
C20.4553 (2)0.3298 (10)0.1131 (2)0.0178 (13)
H2A0.46300.42670.13600.021*
C30.4128 (2)0.1972 (10)0.1089 (2)0.0172 (13)
H30.38390.18490.12780.021*
C40.4196 (2)0.0765 (9)0.06957 (19)0.0146 (12)
C50.3859 (2)0.0908 (9)0.05650 (19)0.0137 (12)
C60.3943 (2)0.2300 (9)0.02283 (19)0.0153 (13)
C70.3613 (2)0.4026 (10)0.0091 (2)0.0173 (13)
H70.32950.44880.02220.021*
C80.3828 (2)0.4894 (10)0.0258 (2)0.0192 (14)
H80.36870.60600.04170.023*
C90.4311 (2)0.3731 (9)0.0346 (2)0.0174 (13)
C100.5360 (2)0.4044 (9)0.0686 (2)0.0161 (13)
C110.3363 (2)0.1240 (9)0.08095 (19)0.0133 (12)
C120.2939 (2)0.0224 (9)0.07885 (19)0.0139 (12)
H120.29550.13860.06030.017*
C130.2500 (2)0.0028 (9)0.1039 (2)0.0171 (13)
H130.22170.09800.10300.021*
C140.2850 (2)0.3158 (9)0.13028 (19)0.0155 (12)
H140.28080.43570.14730.019*
C150.3306 (2)0.2950 (9)0.10647 (19)0.0165 (13)
H150.35790.39920.10780.020*
C160.1992 (2)0.1914 (10)0.1559 (2)0.0211 (14)
H16A0.16800.25030.13760.032*
H16B0.18880.05690.16680.032*
H16C0.20930.28250.18080.032*
C170.5575 (2)0.5474 (9)0.1041 (2)0.0155 (12)
C180.6056 (2)0.4934 (10)0.1296 (2)0.0201 (14)
H180.62430.37030.12340.024*
C190.6261 (3)0.6164 (10)0.1634 (2)0.0229 (14)
H190.65850.57710.18090.027*
C200.5550 (3)0.8516 (10)0.1477 (2)0.0249 (15)
H200.53810.97810.15400.030*
C210.5323 (3)0.7323 (10)0.1136 (2)0.0212 (14)
H210.49960.77530.09680.025*
C220.6256 (3)0.9247 (14)0.2076 (3)0.045 (2)
H22A0.65521.00660.19670.068*
H22B0.64070.83910.23220.068*
H22C0.59731.01620.21770.068*
N50.51171 (18)0.1474 (7)0.44291 (15)0.0119 (10)
N60.54933 (18)0.2175 (7)0.53522 (15)0.0120 (10)
H60.53120.11890.52050.014*
N70.6882 (2)0.8716 (8)0.43573 (17)0.0179 (11)
N80.4068 (2)0.1873 (8)0.25635 (16)0.0205 (12)
C230.4912 (2)0.0947 (9)0.40114 (18)0.0139 (12)
C240.5102 (3)0.2350 (10)0.3689 (2)0.0201 (14)
H240.50040.23340.33810.024*
C250.5444 (3)0.3681 (9)0.3913 (2)0.0182 (13)
H250.56470.47560.37930.022*
C260.5441 (2)0.3150 (9)0.43721 (19)0.0126 (12)
C270.5742 (2)0.4198 (9)0.47193 (19)0.0130 (12)
C280.5731 (2)0.3828 (9)0.51656 (19)0.0115 (12)
C290.5950 (2)0.5102 (9)0.5519 (2)0.0145 (13)
H290.61350.63720.54900.017*
C300.5850 (2)0.4185 (9)0.59024 (19)0.0138 (12)
H300.59430.47170.61890.017*
C310.5579 (2)0.2279 (9)0.57998 (19)0.0138 (12)
C320.4584 (2)0.0811 (9)0.39060 (19)0.0131 (12)
C330.6133 (2)0.5840 (9)0.45991 (18)0.0131 (12)
C340.5960 (2)0.7561 (9)0.4354 (2)0.0170 (13)
H340.55780.77600.42700.020*
C350.6340 (3)0.8974 (10)0.4233 (2)0.0191 (13)
H350.62201.01320.40620.023*
C360.7057 (2)0.7111 (10)0.4609 (2)0.0198 (14)
H360.74380.69830.47040.024*
C370.6690 (2)0.5647 (9)0.4733 (2)0.0160 (12)
H370.68190.45140.49090.019*
C380.7285 (3)1.0258 (11)0.4241 (2)0.0287 (16)
H38A0.73901.11230.44960.043*
H38B0.71211.11120.40000.043*
H38C0.76130.95670.41480.043*
C390.4407 (2)0.1190 (9)0.34373 (19)0.0141 (12)
C400.3846 (2)0.1374 (9)0.3289 (2)0.0165 (13)
H400.35750.12570.34930.020*
C410.3686 (3)0.1720 (9)0.2855 (2)0.0194 (13)
H410.33060.18520.27600.023*
C420.4608 (3)0.1704 (10)0.2694 (2)0.0212 (14)
H420.48710.18050.24830.025*
C430.4784 (3)0.1387 (9)0.3127 (2)0.0197 (14)
H430.51680.13020.32140.024*
C440.3891 (3)0.2322 (11)0.2096 (2)0.0309 (17)
H44A0.42150.23680.19270.046*
H44B0.36390.12460.19780.046*
H44C0.37010.36500.20750.046*
I10.195450 (15)0.46659 (6)0.048331 (12)0.01785 (12)
I20.294854 (17)0.24104 (7)0.209298 (13)0.02653 (13)
I30.52507 (2)0.35907 (8)0.235129 (16)0.04044 (15)
I40.68215 (2)0.99182 (7)0.09052 (2)0.04330 (16)
O1W0.09764 (19)0.8556 (8)0.20744 (16)0.0320 (11)
O2W0.6112 (3)0.6675 (15)0.3155 (3)0.088 (3)
O3W0.7269 (5)0.367 (2)0.2106 (6)0.075 (4)0.50
O4W0.6235 (5)0.0915 (17)0.3155 (3)0.040 (3)0.50
O5W0.7152 (6)0.225 (2)0.2792 (6)0.074 (4)0.50
O6W0.7762 (5)0.078 (2)0.1729 (7)0.093 (6)0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.010 (2)0.020 (3)0.017 (3)0.001 (2)0.0031 (19)0.001 (2)
N20.010 (2)0.021 (3)0.018 (3)0.003 (2)0.006 (2)0.002 (2)
N30.010 (2)0.022 (3)0.012 (2)0.001 (2)0.0000 (19)0.002 (2)
N40.019 (3)0.033 (3)0.023 (3)0.008 (2)0.004 (2)0.008 (3)
C10.012 (3)0.018 (3)0.018 (3)0.004 (2)0.005 (2)0.002 (3)
C20.019 (3)0.018 (3)0.017 (3)0.001 (3)0.007 (2)0.005 (3)
C30.013 (3)0.021 (3)0.018 (3)0.000 (3)0.006 (2)0.001 (3)
C40.011 (3)0.016 (3)0.017 (3)0.001 (2)0.003 (2)0.002 (3)
C50.010 (3)0.016 (3)0.015 (3)0.004 (2)0.005 (2)0.004 (3)
C60.010 (3)0.021 (3)0.016 (3)0.002 (2)0.004 (2)0.003 (3)
C70.010 (3)0.023 (3)0.019 (3)0.003 (3)0.005 (2)0.002 (3)
C80.014 (3)0.023 (3)0.021 (3)0.004 (3)0.002 (2)0.002 (3)
C90.014 (3)0.019 (3)0.019 (3)0.000 (2)0.002 (2)0.000 (3)
C100.009 (3)0.018 (3)0.022 (3)0.001 (2)0.004 (2)0.003 (3)
C110.008 (3)0.019 (3)0.013 (3)0.004 (2)0.001 (2)0.004 (2)
C120.012 (3)0.015 (3)0.014 (3)0.000 (2)0.003 (2)0.004 (2)
C130.012 (3)0.017 (3)0.022 (3)0.003 (2)0.001 (2)0.002 (3)
C140.017 (3)0.017 (3)0.012 (3)0.003 (3)0.000 (2)0.001 (2)
C150.012 (3)0.019 (3)0.018 (3)0.003 (2)0.001 (2)0.002 (3)
C160.017 (3)0.026 (4)0.021 (3)0.004 (3)0.008 (3)0.002 (3)
C170.012 (3)0.016 (3)0.019 (3)0.003 (2)0.006 (2)0.000 (3)
C180.015 (3)0.022 (3)0.024 (3)0.003 (3)0.006 (3)0.000 (3)
C190.019 (3)0.029 (4)0.020 (3)0.002 (3)0.001 (3)0.006 (3)
C200.024 (3)0.019 (3)0.033 (4)0.002 (3)0.012 (3)0.006 (3)
C210.016 (3)0.023 (3)0.026 (4)0.002 (3)0.004 (3)0.000 (3)
C220.040 (5)0.048 (5)0.046 (5)0.003 (4)0.001 (4)0.028 (4)
N50.010 (2)0.012 (2)0.014 (3)0.0003 (19)0.0006 (19)0.000 (2)
N60.010 (2)0.015 (3)0.010 (2)0.006 (2)0.0029 (18)0.001 (2)
N70.016 (3)0.015 (3)0.024 (3)0.006 (2)0.007 (2)0.001 (2)
N80.031 (3)0.017 (3)0.011 (3)0.002 (2)0.007 (2)0.002 (2)
C230.014 (3)0.015 (3)0.012 (3)0.000 (2)0.000 (2)0.000 (2)
C240.025 (3)0.021 (3)0.014 (3)0.004 (3)0.000 (3)0.001 (3)
C250.022 (3)0.015 (3)0.018 (3)0.005 (3)0.000 (3)0.002 (3)
C260.010 (3)0.013 (3)0.015 (3)0.002 (2)0.001 (2)0.001 (2)
C270.012 (3)0.010 (3)0.017 (3)0.001 (2)0.000 (2)0.001 (2)
C280.006 (2)0.012 (3)0.016 (3)0.000 (2)0.001 (2)0.002 (2)
C290.010 (3)0.015 (3)0.019 (3)0.000 (2)0.000 (2)0.001 (2)
C300.014 (3)0.013 (3)0.014 (3)0.000 (2)0.004 (2)0.001 (2)
C310.008 (3)0.017 (3)0.017 (3)0.001 (2)0.001 (2)0.001 (2)
C320.013 (3)0.014 (3)0.012 (3)0.002 (2)0.001 (2)0.002 (2)
C330.012 (3)0.014 (3)0.013 (3)0.002 (2)0.002 (2)0.005 (2)
C340.014 (3)0.016 (3)0.022 (3)0.000 (2)0.001 (2)0.000 (3)
C350.021 (3)0.014 (3)0.023 (3)0.001 (3)0.003 (3)0.000 (3)
C360.013 (3)0.021 (3)0.025 (3)0.001 (3)0.003 (3)0.003 (3)
C370.016 (3)0.013 (3)0.018 (3)0.000 (2)0.003 (2)0.003 (3)
C380.024 (4)0.027 (4)0.036 (4)0.009 (3)0.009 (3)0.002 (3)
C390.020 (3)0.009 (3)0.012 (3)0.001 (2)0.002 (2)0.001 (2)
C400.017 (3)0.014 (3)0.017 (3)0.001 (2)0.005 (2)0.005 (2)
C410.022 (3)0.016 (3)0.020 (3)0.001 (3)0.006 (3)0.000 (3)
C420.030 (4)0.018 (3)0.016 (3)0.001 (3)0.005 (3)0.002 (3)
C430.020 (3)0.017 (3)0.021 (3)0.004 (3)0.003 (3)0.000 (3)
C440.044 (4)0.031 (4)0.016 (3)0.002 (3)0.006 (3)0.005 (3)
I10.0156 (2)0.0166 (2)0.0208 (2)0.00044 (15)0.00111 (15)0.00148 (15)
I20.0291 (2)0.0267 (2)0.0232 (2)0.00046 (18)0.00126 (17)0.00460 (17)
I30.0449 (3)0.0435 (3)0.0363 (3)0.0162 (2)0.0227 (2)0.0111 (2)
I40.0381 (3)0.0211 (2)0.0761 (4)0.0003 (2)0.0356 (3)0.0008 (2)
O1W0.028 (3)0.035 (3)0.033 (3)0.001 (2)0.005 (2)0.006 (2)
O2W0.060 (5)0.111 (7)0.094 (6)0.011 (5)0.015 (4)0.032 (5)
O3W0.026 (5)0.054 (6)0.141 (9)0.004 (5)0.019 (6)0.042 (7)
O4W0.051 (6)0.040 (6)0.029 (6)0.011 (5)0.004 (5)0.001 (5)
O5W0.051 (8)0.045 (8)0.125 (13)0.007 (6)0.004 (8)0.009 (8)
O6W0.038 (7)0.067 (10)0.164 (17)0.012 (7)0.054 (9)0.029 (10)
Geometric parameters (Å, º) top
N1—C11.368 (8)N5—C261.367 (8)
N1—C41.373 (8)N5—C231.373 (7)
N2—C61.367 (8)N6—C311.367 (8)
N2—C91.370 (8)N6—C281.371 (8)
N2—H20.8800N6—H60.8800
N3—C131.334 (8)N7—C361.347 (8)
N3—C141.337 (8)N7—C351.350 (8)
N3—C161.480 (8)N7—C381.471 (8)
N4—C201.337 (9)N8—C421.344 (8)
N4—C191.339 (9)N8—C411.347 (9)
N4—C221.481 (9)N8—C441.484 (8)
C1—C101.414 (8)C23—C321.417 (8)
C1—C21.454 (8)C23—C241.450 (9)
C2—C31.347 (9)C24—C251.348 (9)
C2—H2A0.9500C24—H240.9500
C3—C41.458 (9)C25—C261.446 (9)
C3—H30.9500C25—H250.9500
C4—C51.401 (9)C26—C271.413 (8)
C5—C61.401 (9)C27—C281.388 (8)
C5—C111.490 (8)C27—C331.499 (8)
C6—C71.426 (9)C28—C291.428 (8)
C7—C81.353 (9)C29—C301.358 (9)
C7—H70.9500C29—H290.9500
C8—C91.442 (9)C30—C311.429 (8)
C8—H80.9500C30—H300.9500
C9—C10i1.384 (9)C31—C32ii1.394 (9)
C10—C9i1.384 (9)C32—C31ii1.394 (9)
C10—C171.489 (9)C32—C391.480 (8)
C11—C151.375 (9)C33—C371.386 (8)
C11—C121.402 (8)C33—C341.394 (9)
C12—C131.378 (9)C34—C351.379 (9)
C12—H120.9500C34—H340.9500
C13—H130.9500C35—H350.9500
C14—C151.385 (9)C36—C371.382 (9)
C14—H140.9500C36—H360.9500
C15—H150.9500C37—H370.9500
C16—H16A0.9800C38—H38A0.9800
C16—H16B0.9800C38—H38B0.9800
C16—H16C0.9800C38—H38C0.9800
C17—C181.393 (9)C39—C431.383 (9)
C17—C211.395 (9)C39—C401.404 (8)
C18—C191.367 (9)C40—C411.368 (9)
C18—H180.9500C40—H400.9500
C19—H190.9500C41—H410.9500
C20—C211.376 (10)C42—C431.372 (9)
C20—H200.9500C42—H420.9500
C21—H210.9500C43—H430.9500
C22—H22A0.9800C44—H44A0.9800
C22—H22B0.9800C44—H44B0.9800
C22—H22C0.9800C44—H44C0.9800
O2W···O4Wiii2.781 (15)O2W···I33.684 (9)
O2W···O6Wiv2.793 (15)O6W···I4vi3.299 (18)
O3W···O5Wiv2.730 (19)C13···I13.691 (6)
O3W···O6W2.56 (2)C14···I2vi3.760 (6)
O4W···O5W2.721 (19)C44···I23.844 (7)
O5W···O6Wiv2.73 (2)C22···I3iii3.882 (7)
O1W···I2v3.565 (5)C36···I4vii3.566 (5)
O1W···I3v3.594 (5)
C1—N1—C4105.2 (5)C26—N5—C23104.4 (5)
C6—N2—C9110.0 (5)C31—N6—C28110.2 (5)
C6—N2—H2125.0C31—N6—H6124.9
C9—N2—H2125.0C28—N6—H6124.9
C13—N3—C14121.3 (5)C36—N7—C35120.6 (5)
C13—N3—C16119.4 (5)C36—N7—C38119.1 (5)
C14—N3—C16119.2 (5)C35—N7—C38120.2 (5)
C20—N4—C19121.1 (6)C42—N8—C41120.8 (5)
C20—N4—C22120.4 (6)C42—N8—C44119.7 (6)
C19—N4—C22118.5 (6)C41—N8—C44119.5 (5)
N1—C1—C10125.1 (5)N5—C23—C32124.4 (5)
N1—C1—C2111.0 (5)N5—C23—C24111.2 (5)
C10—C1—C2123.8 (6)C32—C23—C24124.2 (5)
C3—C2—C1106.6 (5)C25—C24—C23106.3 (5)
C3—C2—H2A126.7C25—C24—H24126.8
C1—C2—H2A126.7C23—C24—H24126.8
C2—C3—C4106.5 (5)C24—C25—C26106.4 (5)
C2—C3—H3126.7C24—C25—H25126.8
C4—C3—H3126.7C26—C25—H25126.8
N1—C4—C5125.8 (5)N5—C26—C27124.0 (5)
N1—C4—C3110.7 (5)N5—C26—C25111.5 (5)
C5—C4—C3123.3 (5)C27—C26—C25124.5 (5)
C6—C5—C4126.4 (5)C28—C27—C26126.9 (5)
C6—C5—C11116.9 (5)C28—C27—C33115.7 (5)
C4—C5—C11116.7 (5)C26—C27—C33117.4 (5)
N2—C6—C5125.1 (5)N6—C28—C27126.2 (5)
N2—C6—C7107.1 (5)N6—C28—C29106.6 (5)
C5—C6—C7127.8 (5)C27—C28—C29127.1 (5)
C8—C7—C6108.4 (5)C30—C29—C28108.2 (5)
C8—C7—H7125.8C30—C29—H29125.9
C6—C7—H7125.8C28—C29—H29125.9
C7—C8—C9107.7 (6)C29—C30—C31108.0 (5)
C7—C8—H8126.1C29—C30—H30126.0
C9—C8—H8126.1C31—C30—H30126.0
N2—C9—C10i126.6 (6)N6—C31—C32ii125.8 (5)
N2—C9—C8106.7 (5)N6—C31—C30106.8 (5)
C10i—C9—C8126.7 (6)C32ii—C31—C30127.4 (5)
C9i—C10—C1126.2 (6)C31ii—C32—C23126.5 (5)
C9i—C10—C17116.7 (5)C31ii—C32—C39115.8 (5)
C1—C10—C17116.7 (5)C23—C32—C39117.7 (5)
C15—C11—C12117.9 (5)C37—C33—C34118.4 (5)
C15—C11—C5122.0 (5)C37—C33—C27119.1 (5)
C12—C11—C5120.1 (5)C34—C33—C27122.5 (5)
C13—C12—C11119.8 (5)C35—C34—C33120.2 (5)
C13—C12—H12120.1C35—C34—H34119.9
C11—C12—H12120.1C33—C34—H34119.9
N3—C13—C12120.4 (5)N7—C35—C34120.2 (6)
N3—C13—H13119.8N7—C35—H35119.9
C12—C13—H13119.8C34—C35—H35119.9
N3—C14—C15120.2 (6)N7—C36—C37121.0 (5)
N3—C14—H14119.9N7—C36—H36119.5
C15—C14—H14119.9C37—C36—H36119.5
C11—C15—C14120.2 (6)C36—C37—C33119.6 (6)
C11—C15—H15119.9C36—C37—H37120.2
C14—C15—H15119.9C33—C37—H37120.2
N3—C16—H16A109.5N7—C38—H38A109.5
N3—C16—H16B109.5N7—C38—H38B109.5
H16A—C16—H16B109.5H38A—C38—H38B109.5
N3—C16—H16C109.5N7—C38—H38C109.5
H16A—C16—H16C109.5H38A—C38—H38C109.5
H16B—C16—H16C109.5H38B—C38—H38C109.5
C18—C17—C21117.7 (6)C43—C39—C40117.1 (5)
C18—C17—C10118.3 (5)C43—C39—C32121.7 (5)
C21—C17—C10124.0 (5)C40—C39—C32121.2 (5)
C19—C18—C17120.4 (6)C41—C40—C39120.8 (6)
C19—C18—H18119.8C41—C40—H40119.6
C17—C18—H18119.8C39—C40—H40119.6
N4—C19—C18120.4 (6)N8—C41—C40120.0 (6)
N4—C19—H19119.8N8—C41—H41120.0
C18—C19—H19119.8C40—C41—H41120.0
N4—C20—C21121.0 (6)N8—C42—C43120.9 (6)
N4—C20—H20119.5N8—C42—H42119.6
C21—C20—H20119.5C43—C42—H42119.6
C20—C21—C17119.4 (6)C42—C43—C39120.4 (6)
C20—C21—H21120.3C42—C43—H43119.8
C17—C21—H21120.3C39—C43—H43119.8
N4—C22—H22A109.5N8—C44—H44A109.5
N4—C22—H22B109.5N8—C44—H44B109.5
H22A—C22—H22B109.5H44A—C44—H44B109.5
N4—C22—H22C109.5N8—C44—H44C109.5
H22A—C22—H22C109.5H44A—C44—H44C109.5
H22B—C22—H22C109.5H44B—C44—H44C109.5
C4—N1—C1—C10178.6 (6)C26—N5—C23—C32175.1 (5)
C4—N1—C1—C21.9 (6)C26—N5—C23—C241.3 (6)
N1—C1—C2—C32.4 (7)N5—C23—C24—C252.6 (7)
C10—C1—C2—C3179.2 (6)C32—C23—C24—C25173.8 (6)
C1—C2—C3—C41.9 (7)C23—C24—C25—C262.7 (7)
C1—N1—C4—C5175.4 (6)C23—N5—C26—C27179.2 (5)
C1—N1—C4—C30.6 (6)C23—N5—C26—C250.5 (6)
C2—C3—C4—N10.9 (7)C24—C25—C26—N52.1 (7)
C2—C3—C4—C5174.0 (6)C24—C25—C26—C27179.2 (6)
N1—C4—C5—C63.3 (10)N5—C26—C27—C285.3 (9)
C3—C4—C5—C6170.8 (6)C25—C26—C27—C28176.2 (6)
N1—C4—C5—C11176.9 (5)N5—C26—C27—C33172.4 (5)
C3—C4—C5—C119.0 (8)C25—C26—C27—C336.1 (8)
C9—N2—C6—C5176.4 (6)C31—N6—C28—C27177.9 (5)
C9—N2—C6—C73.0 (7)C31—N6—C28—C293.5 (6)
C4—C5—C6—N21.5 (10)C26—C27—C28—N611.1 (9)
C11—C5—C6—N2178.8 (5)C33—C27—C28—N6166.7 (5)
C4—C5—C6—C7179.3 (6)C26—C27—C28—C29167.3 (6)
C11—C5—C6—C70.5 (9)C33—C27—C28—C2914.9 (8)
N2—C6—C7—C82.3 (7)N6—C28—C29—C301.0 (6)
C5—C6—C7—C8177.1 (6)C27—C28—C29—C30179.6 (5)
C6—C7—C8—C90.7 (7)C28—C29—C30—C311.7 (6)
C6—N2—C9—C10i175.5 (6)C28—N6—C31—C32ii177.0 (5)
C6—N2—C9—C82.5 (7)C28—N6—C31—C304.5 (6)
C7—C8—C9—N21.1 (7)C29—C30—C31—N63.8 (6)
C7—C8—C9—C10i177.0 (6)C29—C30—C31—C32ii177.7 (6)
N1—C1—C10—C9i1.2 (10)N5—C23—C32—C31ii0.5 (9)
C2—C1—C10—C9i177.5 (6)C24—C23—C32—C31ii175.4 (6)
N1—C1—C10—C17170.6 (6)N5—C23—C32—C39178.4 (5)
C2—C1—C10—C175.7 (9)C24—C23—C32—C392.5 (9)
C6—C5—C11—C1565.1 (7)C28—C27—C33—C3758.3 (7)
C4—C5—C11—C15114.7 (6)C26—C27—C33—C37119.7 (6)
C6—C5—C11—C12115.8 (6)C28—C27—C33—C34122.1 (6)
C4—C5—C11—C1264.4 (7)C26—C27—C33—C3459.9 (8)
C15—C11—C12—C133.5 (8)C37—C33—C34—C352.9 (9)
C5—C11—C12—C13175.7 (5)C27—C33—C34—C35176.7 (6)
C14—N3—C13—C122.2 (8)C36—N7—C35—C341.7 (9)
C16—N3—C13—C12180.0 (5)C38—N7—C35—C34178.0 (6)
C11—C12—C13—N31.4 (9)C33—C34—C35—N71.0 (9)
C13—N3—C14—C153.7 (8)C35—N7—C36—C372.5 (9)
C16—N3—C14—C15178.6 (5)C38—N7—C36—C37178.9 (6)
C12—C11—C15—C142.1 (8)N7—C36—C37—C330.5 (9)
C5—C11—C15—C14177.1 (5)C34—C33—C37—C362.1 (9)
N3—C14—C15—C111.4 (9)C27—C33—C37—C36177.5 (5)
C9i—C10—C17—C1864.2 (8)C31ii—C32—C39—C43120.9 (6)
C1—C10—C17—C18108.5 (6)C23—C32—C39—C4357.2 (8)
C9i—C10—C17—C21116.3 (7)C31ii—C32—C39—C4058.8 (7)
C1—C10—C17—C2171.0 (8)C23—C32—C39—C40123.0 (6)
C21—C17—C18—C191.6 (9)C43—C39—C40—C410.4 (9)
C10—C17—C18—C19177.9 (6)C32—C39—C40—C41179.8 (6)
C20—N4—C19—C180.3 (10)C42—N8—C41—C400.5 (9)
C22—N4—C19—C18177.4 (7)C44—N8—C41—C40177.8 (6)
C17—C18—C19—N41.1 (10)C39—C40—C41—N80.5 (9)
C19—N4—C20—C211.2 (10)C41—N8—C42—C430.5 (9)
C22—N4—C20—C21178.2 (7)C44—N8—C42—C43176.9 (6)
N4—C20—C21—C170.6 (10)N8—C42—C43—C391.4 (9)
C18—C17—C21—C200.7 (9)C40—C39—C43—C421.3 (9)
C10—C17—C21—C20178.8 (6)C32—C39—C43—C42178.9 (6)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z+1; (iii) x, y+1, z; (iv) x+3/2, y+1/2, z+1/2; (v) x+1/2, y+1/2, z+1/2; (vi) x, y1, z; (vii) x+3/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC44H38N82+·4I·4H2O
Mr1258.49
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)24.3331 (4), 6.5209 (1), 30.5663 (5)
β (°) 95.025 (1)
V3)4831.43 (13)
Z4
Radiation typeCu Kα
µ (mm1)20.65
Crystal size (mm)0.20 × 0.15 × 0.08
Data collection
DiffractometerBruker X8 KappaCCD APEXII
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1997)
Tmin, Tmax0.104, 0.289
No. of measured, independent and
observed [I > 2σ(I)] reflections
47661, 7346, 7013
Rint0.039
(sin θ/λ)max1)0.577
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.110, 1.09
No. of reflections7346
No. of parameters563
No. of restraints6
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0481P)2 + 42.1978P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)2.73, 2.79

Computer programs: APEX2 (Bruker, 2006), SAINT-Plus (Bruker, 2005), SHELXTL (Sheldrick, 2008), DIAMOND (Brandenburg, 2009).

Selected interatomic distances (Å) top
O2W···O4Wi2.781 (15)O2W···I33.684 (9)
O2W···O6Wii2.793 (15)O6W···I4iv3.299 (18)
O3W···O5Wii2.730 (19)C13···I13.691 (6)
O3W···O6W2.56 (2)C14···I2iv3.760 (6)
O4W···O5W2.721 (19)C44···I23.844 (7)
O5W···O6Wii2.73 (2)C22···I3i3.882 (7)
O1W···I2iii3.565 (5)C36···I4v3.566 (5)
O1W···I3iii3.594 (5)
Symmetry codes: (i) x, y+1, z; (ii) x+3/2, y+1/2, z+1/2; (iii) x+1/2, y+1/2, z+1/2; (iv) x, y1, z; (v) x+3/2, y1/2, z+1/2.
 

Acknowledgements

We are grateful to Fundação para a Ciência e a Tecnologia (FCT, Portugal) for their general financial support through the R&D project PTDC/QUI/65228/2006, for the PhD and postdoctoral research grants Nos. SFRH/BD/64526/2009 (to LMOL) and SFRH/BPD/63736/2009 (to JAF), and for specific funding toward the purchase of the single-crystal diffractometer.

References

First citationAlves, E., Carvalho, C. M. B., Tomé, J. P. C., Faustino, M. A. F., Neves, M. G. P. M. S., Tomé, A. C., Cavaleiro, J. A. S., Cunha, A., Mendo, S. & Almeida, A. (2008). J. Ind. Microbiol. Biotechnol. 35, 1447–1454.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAlves, E., Costa, L., Carvalho, C. M. B., Tomé, J. P. C., Faustino, M. A., Neves, M. G. P. M. S., Tomé, A. C., Cavaleiro, J. A. S., Cunha, A. & Almeida, A. (2009). BMC Microbiol. 9, 70.  Google Scholar
First citationBanfi, S., Caruso, E., Buccafurni, L., Battini, V., Zazzaron, S., Barbieri, P. & Orlandi, V. (2006). J. Photochem. Photobiol. B, 85, 28–38.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2005). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCarvalho, C. M. B., Tomé, J. P. C., Faustino, M. A. F., Neves, M. G. P. M. S., Tomé, A. C., Cavaleiro, J. A. S., Costa, L., Alves, E., Oliveira, A., Cunha, A. & Almeida, A. (2009). J. Porphyrins Phthalocyanines, 13, 574–577.  CrossRef CAS Google Scholar
First citationGomes, M. C., Woranovicz-Barreira, S. M., Faustino, M. A. F., Fernandes, R., Neves, M. G. P. M. S., Tomé, A. C., Gomes, N. C. M., Almeida, A., Cavaleiro, J. A. S., Cunha, A. & Tomé, J. P. C. (2011). Photochem. Photobiol. Sci. doi:10.1039/c1pp05174a.  Google Scholar
First citationMerchat, M., Bertolini, G., Giacomini, P., Villanueva, A. & Jori, G. (1996). J. Photochem. Photobiol. B, 32, 153–157.  CrossRef CAS PubMed Web of Science Google Scholar
First citationPaz, F. A. A., Bond, A. D., Khimyak, Y. Z. & Klinowski, J. (2002). New J. Chem. 26, 381–383.  Google Scholar
First citationPaz, F. A. A. & Klinowski, J. (2003). CrystEngComm, 5, 238–244.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1997). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, F.-N., Cunha-Silva, L., Sá Ferreira, R. A., Mafra, L., Trindade, T., Carlos, L. D., Paz, F. A. A. & Rocha, J. (2008). J. Am. Chem. Soc. 130, 150–167.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationTomé, J. P. C., Neves, M. G. P. M. S., Tomé, A. C., Cavaleiro, J. A. S., Soncin, M., Magaraggia, M., Ferro, F. & Jori, G. (2004). J. Med. Chem. 47, 6649–6652.  Web of Science PubMed Google Scholar
First citationYu, K. G., Li, D. H., Zhou, C. H. & Diao, J. L. (2009). Chin. Chem. Lett. 20, 411–414.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds