organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Hy­dr­oxy-2-methyl-1-phenyl­indolin-3-one

aFaculty of Chemistry and Chemical Technology, University of Ljubljana, SI-1000 Ljubljana, Slovenia, and bDepartment of Chemistry, Faculty of Technology, Tomas Bata University in Zlin, Zlin 76272, Czech Republic
*Correspondence e-mail: andrej.pevec@fkkt.uni-lj.si

(Received 25 October 2011; accepted 28 October 2011; online 9 November 2011)

In the title compound, C15H13NO2, the indole and benzene rings make a dihedral angle of 60.61 (4)°. In the crystal, dimeric pairs (twofold symmetry) are formed via O—H⋯O hydrogen bonds.

Related literature

For naturally occurring 2-hy­droxy­indol-3-ones, see: Bhakuni et al. (1991[Bhakuni, R. S., Shukla, Y. N. & Thakur, R. S. (1991). Phytochemistry, 30, 3159-3160.]). For inter­mediates of the 2-hy­droxy­indol-3-one substructure in the total syntheses of some natural products including (+)-isatisine A, (±)-mersicarpine, hinckdentine A, mitomycin and others, see: Karadeolian & Kerr (2010[Karadeolian, A. & Kerr, M. A. (2010). J. Org. Chem. 75, 6830-6841.]); Magolan et al. (2008[Magolan, J., Carson, C. A. & Kerr, M. A. (2008). Org. Lett. 10, 1437-1440.]); Higuchi et al. (2009[Higuchi, K., Sato, Y., Tsuchimochi, M., Sugiura, K., Hatori, M. & Kawasaki, T. (2009). Org. Lett. 11, 197-199.]); Colandrea et al. (2003[Colandrea, V. J., Rajaraman, S. & Jimenez, L. S. (2003). Org. Lett. 5, 785-787.]); Kawasaki et al. (2004[Kawasaki, T., Nagaoka, M., Satoh, T., Okamoto, A., Ukon, R. & Ogawa, A. (2004). Tetrahedron, 60, 3493-3503.]). For recent syntheses of 2-hy­droxy­indol-3-ones, see: Coldham et al. (2010[Coldham, I., Adams, H., Ashweek, N. J., Barker, T. A., Reeder, A. T. & Skilbeck, M. C. (2010). Tetrahedron Lett. 51, 2457-2460.]); Higuchi et al. (2010[Higuchi, K., Sato, Y., Kojima, S., Tsuchimochi, M., Sugiura, K., Hatori, M. & Kawasaki, T. (2010). Tetrahedron, 66, 1236-1243.]); Cariou et al. (2007[Cariou, K., Ronan, B., Mignani, S., Fensterbank, L. & Malacria, M. (2007). Angew. Chem. Int. Ed. 46, 1881-1884.]); Hewitt & Shao (2006[Hewitt, M. C. & Shao, L. (2006). ARKIVOC, xi, 37-46.]); Altinis Kiraz et al. (2004[Altinis Kiraz, C. I., Emge, T. J. & Jimenez, L. S. (2004). J. Org. Chem. 69, 2200-2202.]). For the synthesis of the title compound, see: Kafka et al. (2001[Kafka, S., Klásek, A. & Košmrlj, J. (2001). J. Org. Chem. 66, 6394-6399.]).

[Scheme 1]

Experimental

Crystal data
  • C15H13NO2

  • Mr = 239.26

  • Orthorhombic, P b c n

  • a = 17.0146 (4) Å

  • b = 9.2193 (2) Å

  • c = 15.3843 (4) Å

  • V = 2413.22 (10) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 295 K

  • 0.55 × 0.40 × 0.30 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter & R. M. Sweet, pp. 307-326. London: Academic Press.]) Tmin = 0.953, Tmax = 0.974

  • 5144 measured reflections

  • 2745 independent reflections

  • 1890 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.116

  • S = 1.04

  • 2745 reflections

  • 165 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1i 0.82 2.12 2.9014 (15) 159
Symmetry code: (i) [-x+1, y, -z+{\script{1\over 2}}].

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter & R. M. Sweet, pp. 307-326. London: Academic Press.]); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The title compound, (I) (Fig. 1), was prepared as a part of a project focusing on molecular rearrangements of 3-hydroxyquinoline-2,4(1H,3H)-diones by the action of aqueous potassium hydroxide on 3-hydroxy-3-methyl-1-phenylquinoline-2,4(1H,3H)-dione in the presence of air (Kafka et al., 2001). Compounds containing the 2-hydroxyindol-3-one substructure are important intermediates in the total syntheses of some natural products including (+)-isatisine A, (±)-mersicarpine, hinckdentine A, mitomycin and others (Karadeolian & Kerr, 2010; Magolan et al., 2008; Higuchi et al., 2009; Colandrea et al., 2003; Kawasaki et al., 2004). New synthetic approaches towards 2-hydroxyindol-3-ones have been reported recently (Coldham et al., 2010; Higuchi et al., 2010; Cariou et al., 2007; Hewitt & Shao, 2006; Altinis Kiraz et al., 2004). A related 2-hydroxyindol-3-one compound, alkaloid melochicorine, was found in the plant Melochicoria corchorifolia (Bhakuni et al., 1991)

In the crystal structure of (I) two molecules are connected by two intermolecular O—H···O hydrogen bonds (Fig. 2 & Table 1). The indole and benzene units make a dihedral angle of 60.61 (4)°. The aromatic rings have normal hydrophobic contacts with each other without any stacking interactions.

Related literature top

For naturally occurring 2-hydroxyindol-3-ones, see: Bhakuni et al. (1991). For intermediates of the 2-hydroxyindol-3-one substructure in the total syntheses of some natural products including (+)-isatisine A, (±)-mersicarpine, hinckdentine A, mitomycin and others, see: Karadeolian & Kerr (2010); Magolan et al. (2008); Higuchi et al. (2009); Colandrea et al. (2003); Kawasaki et al. (2004). For recent syntheses of 2-hydroxyindol-3-ones, see: Coldham et al. (2010); Higuchi et al. (2010); Cariou et al. (2007); Hewitt & Shao (2006); Altinis Kiraz et al. (2004). For the synthesis of the title compound, see: Kafka et al. (2001).

Experimental top

A mixture of 3-hydroxy-3-methyl-1-phenylquinoline-2,4(1H,3H)-dione (1.34 g, 5.0 mmol) in 1.3 M aqueous potassium hydroxide (30 ml) and benzene (120 ml) was vigorously stirred in the presence of air at room temperature for 30 min. Layers were separated, and the aqueous phase was extracted with benzene (5 x 20 ml). The combined organic layer was dried over K2CO3. The solvent was evaporated to dryness and the residue was crystallized from a mixture of benzene and cyclohexane to give crystals of the title compound (0.62 g, 2.6 mmol, 52%).

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H bond lengths constrained to 0.93 (aromatic-C—H) or 0.96 Å (methyl-C—H), and O—H = 0.82 Å, and with Uiso(H) values of 1.2Ueq(C) [for aromatic-H] or 1.5Ueq(C) [for OH and methyl-H].

Structure description top

The title compound, (I) (Fig. 1), was prepared as a part of a project focusing on molecular rearrangements of 3-hydroxyquinoline-2,4(1H,3H)-diones by the action of aqueous potassium hydroxide on 3-hydroxy-3-methyl-1-phenylquinoline-2,4(1H,3H)-dione in the presence of air (Kafka et al., 2001). Compounds containing the 2-hydroxyindol-3-one substructure are important intermediates in the total syntheses of some natural products including (+)-isatisine A, (±)-mersicarpine, hinckdentine A, mitomycin and others (Karadeolian & Kerr, 2010; Magolan et al., 2008; Higuchi et al., 2009; Colandrea et al., 2003; Kawasaki et al., 2004). New synthetic approaches towards 2-hydroxyindol-3-ones have been reported recently (Coldham et al., 2010; Higuchi et al., 2010; Cariou et al., 2007; Hewitt & Shao, 2006; Altinis Kiraz et al., 2004). A related 2-hydroxyindol-3-one compound, alkaloid melochicorine, was found in the plant Melochicoria corchorifolia (Bhakuni et al., 1991)

In the crystal structure of (I) two molecules are connected by two intermolecular O—H···O hydrogen bonds (Fig. 2 & Table 1). The indole and benzene units make a dihedral angle of 60.61 (4)°. The aromatic rings have normal hydrophobic contacts with each other without any stacking interactions.

For naturally occurring 2-hydroxyindol-3-ones, see: Bhakuni et al. (1991). For intermediates of the 2-hydroxyindol-3-one substructure in the total syntheses of some natural products including (+)-isatisine A, (±)-mersicarpine, hinckdentine A, mitomycin and others, see: Karadeolian & Kerr (2010); Magolan et al. (2008); Higuchi et al. (2009); Colandrea et al. (2003); Kawasaki et al. (2004). For recent syntheses of 2-hydroxyindol-3-ones, see: Coldham et al. (2010); Higuchi et al. (2010); Cariou et al. (2007); Hewitt & Shao (2006); Altinis Kiraz et al. (2004). For the synthesis of the title compound, see: Kafka et al. (2001).

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A view of (I) showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Association betweem two molecules of (I) via O—H···O hydrogen bonds denoted by dashed lines. Symmetry code: (i) -x + 1, y, -z + 1/2.
2-Hydroxy-2-methyl-1-phenylindolin-3-one top
Crystal data top
C15H13NO2Dx = 1.317 Mg m3
Mr = 239.26Melting point = 397–399 K
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 3116 reflections
a = 17.0146 (4) Åθ = 1.0–27.5°
b = 9.2193 (2) ŵ = 0.09 mm1
c = 15.3843 (4) ÅT = 295 K
V = 2413.22 (10) Å3Prism, green
Z = 80.55 × 0.40 × 0.30 mm
F(000) = 1008
Data collection top
Nonius KappaCCD area-detector
diffractometer
2745 independent reflections
Radiation source: fine-focus sealed tube1890 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
φ and ω scansθmax = 27.5°, θmin = 3.5°
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
h = 2221
Tmin = 0.953, Tmax = 0.974k = 1111
5144 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0545P)2 + 0.3729P]
where P = (Fo2 + 2Fc2)/3
2745 reflections(Δ/σ)max = 0.0001
165 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C15H13NO2V = 2413.22 (10) Å3
Mr = 239.26Z = 8
Orthorhombic, PbcnMo Kα radiation
a = 17.0146 (4) ŵ = 0.09 mm1
b = 9.2193 (2) ÅT = 295 K
c = 15.3843 (4) Å0.55 × 0.40 × 0.30 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
2745 independent reflections
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
1890 reflections with I > 2σ(I)
Tmin = 0.953, Tmax = 0.974Rint = 0.022
5144 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.116H-atom parameters constrained
S = 1.04Δρmax = 0.15 e Å3
2745 reflectionsΔρmin = 0.16 e Å3
165 parameters
Special details top

Experimental. 210 frames in 4 sets of φ scans + ω scans. Rotation/frame = 2 °. Crystal-detector distance = 31 mm. Measuring time = 20 s/°.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.58436 (6)0.68168 (12)0.29672 (6)0.0524 (3)
O20.54290 (7)0.87398 (11)0.15350 (7)0.0562 (3)
H20.50020.83340.15840.084*
N10.59892 (7)0.68372 (12)0.06732 (7)0.0406 (3)
C10.59694 (8)0.51234 (15)0.17738 (9)0.0416 (3)
C20.60064 (8)0.53713 (15)0.08779 (9)0.0404 (3)
C30.60139 (9)0.42005 (16)0.03007 (11)0.0524 (4)
H30.60430.43390.02970.063*
C40.59754 (10)0.28280 (17)0.06584 (12)0.0614 (5)
H40.59810.20330.02860.074*
C50.59282 (10)0.25788 (18)0.15492 (13)0.0620 (5)
H50.59000.16350.17600.074*
C60.59237 (9)0.37246 (16)0.21147 (11)0.0526 (4)
H60.58910.35740.27110.063*
C70.59389 (8)0.65226 (15)0.22002 (9)0.0405 (3)
C80.60272 (8)0.76939 (15)0.14873 (9)0.0407 (3)
C90.68031 (10)0.84809 (18)0.15897 (11)0.0580 (4)
H9A0.68330.88990.21600.087*
H9B0.68400.92350.11610.087*
H9C0.72280.78080.15120.087*
C100.63405 (8)0.74129 (14)0.00952 (8)0.0392 (3)
C110.59874 (9)0.85663 (15)0.05174 (10)0.0472 (4)
H110.55050.89150.03260.057*
C120.63529 (10)0.92009 (17)0.12243 (11)0.0561 (4)
H120.61150.99790.15050.067*
C130.70639 (10)0.86900 (16)0.15140 (10)0.0534 (4)
H130.73100.91280.19860.064*
C140.74101 (9)0.75336 (16)0.11069 (10)0.0519 (4)
H140.78890.71810.13070.062*
C150.70513 (9)0.68883 (16)0.03994 (9)0.0473 (4)
H150.72880.61000.01270.057*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0523 (6)0.0653 (7)0.0397 (6)0.0011 (5)0.0016 (4)0.0021 (5)
O20.0597 (7)0.0457 (6)0.0633 (7)0.0129 (5)0.0195 (6)0.0033 (5)
N10.0443 (6)0.0384 (6)0.0389 (6)0.0010 (5)0.0037 (5)0.0020 (5)
C10.0358 (7)0.0431 (8)0.0459 (8)0.0021 (6)0.0026 (6)0.0025 (6)
C20.0351 (7)0.0387 (7)0.0475 (8)0.0014 (6)0.0029 (6)0.0022 (6)
C30.0548 (9)0.0483 (9)0.0542 (9)0.0052 (7)0.0057 (7)0.0088 (7)
C40.0595 (10)0.0419 (9)0.0829 (13)0.0044 (7)0.0082 (9)0.0142 (8)
C50.0594 (10)0.0403 (8)0.0862 (13)0.0010 (7)0.0092 (9)0.0071 (8)
C60.0465 (8)0.0496 (9)0.0618 (9)0.0053 (7)0.0063 (7)0.0127 (8)
C70.0314 (7)0.0499 (8)0.0401 (7)0.0013 (6)0.0018 (6)0.0006 (6)
C80.0405 (7)0.0397 (7)0.0419 (7)0.0012 (6)0.0065 (6)0.0058 (6)
C90.0580 (10)0.0628 (10)0.0532 (9)0.0181 (8)0.0073 (7)0.0130 (8)
C100.0424 (7)0.0395 (7)0.0357 (7)0.0021 (6)0.0003 (6)0.0035 (6)
C110.0444 (8)0.0436 (8)0.0536 (9)0.0038 (6)0.0024 (7)0.0017 (7)
C120.0632 (10)0.0459 (9)0.0592 (10)0.0057 (8)0.0005 (8)0.0119 (7)
C130.0637 (10)0.0485 (9)0.0479 (9)0.0026 (7)0.0105 (7)0.0064 (7)
C140.0497 (9)0.0532 (9)0.0530 (9)0.0035 (7)0.0121 (7)0.0001 (7)
C150.0485 (8)0.0476 (8)0.0457 (8)0.0077 (7)0.0031 (6)0.0058 (6)
Geometric parameters (Å, º) top
O1—C71.2216 (16)C7—C81.5464 (19)
O2—C81.4040 (16)C8—C91.515 (2)
O2—H20.8200C9—H9A0.9600
N1—C21.3880 (17)C9—H9B0.9600
N1—C101.4271 (17)C9—H9C0.9600
N1—C81.4821 (17)C10—C111.3833 (19)
C1—C61.3943 (19)C10—C151.3840 (19)
C1—C21.398 (2)C11—C121.383 (2)
C1—C71.4481 (19)C11—H110.9300
C2—C31.398 (2)C12—C131.373 (2)
C3—C41.381 (2)C12—H120.9300
C3—H30.9300C13—C141.370 (2)
C4—C51.392 (3)C13—H130.9300
C4—H40.9300C14—C151.383 (2)
C5—C61.368 (2)C14—H140.9300
C5—H50.9300C15—H150.9300
C6—H60.9300
C8—O2—H2109.5O2—C8—C7111.84 (11)
C2—N1—C10122.77 (11)N1—C8—C7102.88 (10)
C2—N1—C8109.04 (11)C9—C8—C7110.21 (12)
C10—N1—C8118.92 (10)C8—C9—H9A109.5
C6—C1—C2121.62 (13)C8—C9—H9B109.5
C6—C1—C7130.66 (14)H9A—C9—H9B109.5
C2—C1—C7107.61 (12)C8—C9—H9C109.5
N1—C2—C3127.44 (14)H9A—C9—H9C109.5
N1—C2—C1112.44 (12)H9B—C9—H9C109.5
C3—C2—C1120.02 (13)C11—C10—C15119.30 (13)
C4—C3—C2116.99 (15)C11—C10—N1119.54 (12)
C4—C3—H3121.5C15—C10—N1121.07 (12)
C2—C3—H3121.5C12—C11—C10119.95 (14)
C3—C4—C5123.10 (16)C12—C11—H11120.0
C3—C4—H4118.4C10—C11—H11120.0
C5—C4—H4118.4C13—C12—C11120.44 (14)
C6—C5—C4119.92 (15)C13—C12—H12119.8
C6—C5—H5120.0C11—C12—H12119.8
C4—C5—H5120.0C14—C13—C12119.84 (14)
C5—C6—C1118.33 (15)C14—C13—H13120.1
C5—C6—H6120.8C12—C13—H13120.1
C1—C6—H6120.8C13—C14—C15120.34 (14)
O1—C7—C1129.80 (13)C13—C14—H14119.8
O1—C7—C8122.88 (13)C15—C14—H14119.8
C1—C7—C8107.30 (11)C14—C15—C10120.11 (14)
O2—C8—N1112.24 (11)C14—C15—H15119.9
O2—C8—C9107.31 (12)C10—C15—H15119.9
N1—C8—C9112.40 (11)
C10—N1—C2—C331.0 (2)C10—N1—C8—C937.57 (17)
C8—N1—C2—C3177.20 (14)C2—N1—C8—C78.44 (13)
C10—N1—C2—C1152.51 (12)C10—N1—C8—C7156.10 (11)
C8—N1—C2—C16.35 (15)O1—C7—C8—O250.00 (18)
C6—C1—C2—N1175.46 (12)C1—C7—C8—O2128.43 (12)
C7—C1—C2—N11.03 (15)O1—C7—C8—N1170.66 (12)
C6—C1—C2—C31.3 (2)C1—C7—C8—N17.77 (13)
C7—C1—C2—C3177.77 (13)O1—C7—C8—C969.29 (16)
N1—C2—C3—C4175.56 (13)C1—C7—C8—C9112.29 (12)
C1—C2—C3—C40.6 (2)C2—N1—C10—C11144.73 (13)
C2—C3—C4—C50.2 (2)C8—N1—C10—C1172.24 (17)
C3—C4—C5—C60.4 (3)C2—N1—C10—C1538.80 (19)
C4—C5—C6—C10.2 (2)C8—N1—C10—C15104.23 (15)
C2—C1—C6—C51.0 (2)C15—C10—C11—C121.3 (2)
C7—C1—C6—C5176.62 (14)N1—C10—C11—C12175.20 (13)
C6—C1—C7—O12.2 (3)C10—C11—C12—C130.3 (2)
C2—C1—C7—O1173.84 (14)C11—C12—C13—C140.7 (3)
C6—C1—C7—C8179.50 (14)C12—C13—C14—C150.7 (2)
C2—C1—C7—C84.44 (14)C13—C14—C15—C100.3 (2)
C2—N1—C8—O2128.83 (11)C11—C10—C15—C141.3 (2)
C10—N1—C8—O283.51 (14)N1—C10—C15—C14175.13 (13)
C2—N1—C8—C9110.09 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.822.122.9014 (15)159
Symmetry code: (i) x+1, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC15H13NO2
Mr239.26
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)295
a, b, c (Å)17.0146 (4), 9.2193 (2), 15.3843 (4)
V3)2413.22 (10)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.55 × 0.40 × 0.30
Data collection
DiffractometerNonius KappaCCD area-detector
Absorption correctionMulti-scan
(SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.953, 0.974
No. of measured, independent and
observed [I > 2σ(I)] reflections
5144, 2745, 1890
Rint0.022
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.116, 1.04
No. of reflections2745
No. of parameters165
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.16

Computer programs: COLLECT (Hooft, 1998), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and DIAMOND (Brandenburg, 1999), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.822.122.9014 (15)159
Symmetry code: (i) x+1, y, z+1/2.
 

Acknowledgements

Financial support from the Ministry of Education, Youth and Sports of the Czech Republic (project MSM7088352101) and the Slovenian Research Agency (programme P1–0230–0103, programme–0175, joint project BI–CZ/07–08–018 and joint project Nr 9–06–3 of programme KONTAKT) is gratefully acknowledged. This work was also partly supported through the infrastructure of the EN–FIST Centre of Excellence, Ljubljana.

References

First citationAltinis Kiraz, C. I., Emge, T. J. & Jimenez, L. S. (2004). J. Org. Chem. 69, 2200–2202.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBhakuni, R. S., Shukla, Y. N. & Thakur, R. S. (1991). Phytochemistry, 30, 3159–3160.  CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCariou, K., Ronan, B., Mignani, S., Fensterbank, L. & Malacria, M. (2007). Angew. Chem. Int. Ed. 46, 1881–1884.  Web of Science CSD CrossRef CAS Google Scholar
First citationColandrea, V. J., Rajaraman, S. & Jimenez, L. S. (2003). Org. Lett. 5, 785–787.  Web of Science CrossRef PubMed CAS Google Scholar
First citationColdham, I., Adams, H., Ashweek, N. J., Barker, T. A., Reeder, A. T. & Skilbeck, M. C. (2010). Tetrahedron Lett. 51, 2457–2460.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHewitt, M. C. & Shao, L. (2006). ARKIVOC, xi, 37–46.  CrossRef Google Scholar
First citationHiguchi, K., Sato, Y., Kojima, S., Tsuchimochi, M., Sugiura, K., Hatori, M. & Kawasaki, T. (2010). Tetrahedron, 66, 1236–1243.  Web of Science CrossRef CAS Google Scholar
First citationHiguchi, K., Sato, Y., Tsuchimochi, M., Sugiura, K., Hatori, M. & Kawasaki, T. (2009). Org. Lett. 11, 197–199.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationKafka, S., Klásek, A. & Košmrlj, J. (2001). J. Org. Chem. 66, 6394–6399.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKaradeolian, A. & Kerr, M. A. (2010). J. Org. Chem. 75, 6830–6841.  CSD CrossRef CAS PubMed Google Scholar
First citationKawasaki, T., Nagaoka, M., Satoh, T., Okamoto, A., Ukon, R. & Ogawa, A. (2004). Tetrahedron, 60, 3493–3503.  Web of Science CrossRef CAS Google Scholar
First citationMagolan, J., Carson, C. A. & Kerr, M. A. (2008). Org. Lett. 10, 1437–1440.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter & R. M. Sweet, pp. 307–326. London: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds