organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5′′-(4-Meth­­oxy­benzyl­­idene)-7′-(4-meth­­oxy­phen­yl)-1′′-methyl-5′,6′,7′,7a'-tetra­hydro­di­spiro­[acenaphthene-1,5′-pyrrolo­[1,2-c][1,3]thia­zole-6′,3′′-piperidine]-2,4′′-dione

aDepartment of Physics, The Madura College, Madurai 625 011, India, bDepartment of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625 021, India, and cDepartment of Food Science and Technology, University of Ruhuna, Mapalana, Kamburupitiya 81100, Sri Lanka
*Correspondence e-mail: plakshmannilantha@ymail.com

(Received 29 October 2011; accepted 1 November 2011; online 5 November 2011)

In the title compound, C37H34N2O4S, the piperidine ring adopts a half-chair conformation. The thia­zole ring adopts a slightly twisted envelope conformation and the pyrrole ring adopts an envelope conformation; in each case, the C atom linking the rings is the flap atom. An intra­molecular C—H⋯O inter­action is noted. The crystal structure is stabilized by C—H⋯O and C—H⋯π inter­actions.

Related literature

For background to the importance of spiro compounds, see: Kobayashi et al. (1991[Kobayashi, J., Tsuda, M., Agemi, K. & Vacelet, J. (1991). Tetrahedron, 47, 6617-6622.]); James et al. (1991[James, D., Kunze, H. B. & Faulkner, D. (1991). J. Nat. Prod. 54, 1137-1140.]); Caramella & Grunanger (1984[Caramella, P. & Grunanger, P. (1984). 1,3-Dipolar Cycloaddition Chemistry, Vol. 1, edited by A. Padwa, pp. 291-312. New York: Wiley.]). For hydrogen-bond motifs, see: Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.],

[Scheme 1]

Experimental

Crystal data
  • C37H34N2O4S

  • Mr = 602.72

  • Monoclinic, P 21 /c

  • a = 14.6229 (6) Å

  • b = 15.8759 (6) Å

  • c = 15.0284 (5) Å

  • β = 115.907 (2)°

  • V = 3138.3 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.15 mm−1

  • T = 293 K

  • 0.23 × 0.21 × 0.18 mm

Data collection
  • Bruker Kappa APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS, University of Göttingen, Germany.]) Tmin = 0.967, Tmax = 0.974

  • 44023 measured reflections

  • 10327 independent reflections

  • 6691 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.154

  • S = 1.01

  • 10327 reflections

  • 400 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C17–C22 and C71–C76 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C76—H76⋯O2i 0.93 2.38 3.263 (2) 159
C34—H34⋯O1ii 0.93 2.53 3.453 (2) 171
C10—H10B⋯O2 0.97 2.53 3.173 (2) 124
C2—H2ACg1iii 0.97 2.73 3.658 (2) 160
C38—H38BCg2iv 0.96 2.93 3.730 (2) 141
Symmetry codes: (i) -x, -y+1, -z; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x, -y-{\script{1\over 2}}, z-{\script{3\over 2}}]; (iv) x, y-1, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Spiro-compounds represent an important class of naturally occurring substances, which in many cases exhibit important biological properties (Kobayashi et al., 1991; James et al., 1991). 1,3-Dipolar cycloaddition reactions are widely used for the construction of spiro-compounds (Caramella & Grunanger, 1984).

In the title compound (Fig. 1), the six-membered piperidine ring adopts a half-chair conformation with atoms N1 and C5 deviating by -0.532 (2) and -0.588 (2) Å, respectively, from the least-squares plane defined by atoms C2/C3/C4/C6. In the pyrrole thiazole fused ring system, the pyrrole ring has an envelope conformation, and the thiazole ring is in a twisted envelope conformation with C8 atoms being the flap atom in both of these envelopes. The twisted envelope conformation of the thiazole ring may be due to the intramolecular C10—H10B···O2 interaction (Table 1). Similarly the orientation of the 4-methoxyphenyl substituent with respect to the attached piperidine ring may be influenced by the intermolecular C34—H34···O1 interaction (Table 1). The dihedral angle between the methoxyphenyl rings are 86.4 (1)°, and these rings form dihedral angles of 59.1 (1) and 39.8 (1)° with the acenaphthene group.

The C72—H72···O2 hydrogen bond connect two centrosymmetrically related molecules and generate the graph set motif R22(16) (Bernstein et al., 1995), Fig. 2. These dimers are connected into a zigzag chain by C34—H34···O1 hydrogen bonds (Fig. 2). In addition, there are two weak C—H···π interactions, Table 1.

Related literature top

For background to the importance of spiro compounds, see: Kobayashi et al. (1991); James et al. (1991); Caramella & Grunanger (1984). For hydrogen-bond motifs, see: Bernstein et al., 1995,

Experimental top

1-Methyl-3,5-bis[(E)-4-methoxyphenylmethylidene]tetrahydro-4(1H)-pyridinone (1 mmol), acenaphthenequinone (0.182 g, 1 mmol) and 1,3-thiazolane-4-carboxylic acid (0.133 g, 1 mmol) were dissolved in methanol (10 ml) and refluxed for 30 min. After completion of the reaction, as evident from TLC, the mixture was poured into water (50 ml). The precipitated solid was filtered and washed with water (100 ml) to obtain the pure product as a solid. The product was recrystallized from ethyl acetate to obtain suitable crystals for the X-ray analysis. Melting point: 479 K; Yield: 89%.

Refinement top

H atoms were placed at calculated positions and allowed to ride on their carrier atoms with C—H = 0.93–0.98 Å. Uiso = 1.2Ueq(C) for CH2 and CH groups, and Uiso = 1.5Ueq(C) for CH3 groups.

Structure description top

Spiro-compounds represent an important class of naturally occurring substances, which in many cases exhibit important biological properties (Kobayashi et al., 1991; James et al., 1991). 1,3-Dipolar cycloaddition reactions are widely used for the construction of spiro-compounds (Caramella & Grunanger, 1984).

In the title compound (Fig. 1), the six-membered piperidine ring adopts a half-chair conformation with atoms N1 and C5 deviating by -0.532 (2) and -0.588 (2) Å, respectively, from the least-squares plane defined by atoms C2/C3/C4/C6. In the pyrrole thiazole fused ring system, the pyrrole ring has an envelope conformation, and the thiazole ring is in a twisted envelope conformation with C8 atoms being the flap atom in both of these envelopes. The twisted envelope conformation of the thiazole ring may be due to the intramolecular C10—H10B···O2 interaction (Table 1). Similarly the orientation of the 4-methoxyphenyl substituent with respect to the attached piperidine ring may be influenced by the intermolecular C34—H34···O1 interaction (Table 1). The dihedral angle between the methoxyphenyl rings are 86.4 (1)°, and these rings form dihedral angles of 59.1 (1) and 39.8 (1)° with the acenaphthene group.

The C72—H72···O2 hydrogen bond connect two centrosymmetrically related molecules and generate the graph set motif R22(16) (Bernstein et al., 1995), Fig. 2. These dimers are connected into a zigzag chain by C34—H34···O1 hydrogen bonds (Fig. 2). In addition, there are two weak C—H···π interactions, Table 1.

For background to the importance of spiro compounds, see: Kobayashi et al. (1991); James et al. (1991); Caramella & Grunanger (1984). For hydrogen-bond motifs, see: Bernstein et al., 1995,

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme. Hydrogen atoms have been omitted for clarity.
[Figure 2] Fig. 2. A partial packing diagram for (I). The C—H···O,π interactions are shown as dashed lines.
5''-(4-Methoxybenzylidene)-7'-(4-methoxyphenyl)-1''-methyl-5',6',7',7a'- tetrahydrodispiro[acenaphthene-1,5'-pyrrolo[1,2-c][1,3]thiazole- 6',3''-piperidine]-2,4''-dione top
Crystal data top
C37H34N2O4SF(000) = 1272
Mr = 602.72Dx = 1.276 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2000 reflections
a = 14.6229 (6) Åθ = 2–31°
b = 15.8759 (6) ŵ = 0.15 mm1
c = 15.0284 (5) ÅT = 293 K
β = 115.907 (2)°Block, colourless
V = 3138.3 (2) Å30.23 × 0.21 × 0.18 mm
Z = 4
Data collection top
Bruker Kappa APEXII
diffractometer
10327 independent reflections
Radiation source: fine-focus sealed tube6691 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
Detector resolution: 0 pixels mm-1θmax = 31.4°, θmin = 1.6°
ω and φ scansh = 2121
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 2323
Tmin = 0.967, Tmax = 0.974l = 2114
44023 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.154 w = 1/[σ2(Fo2) + (0.0699P)2 + 0.9424P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
10327 reflectionsΔρmax = 0.43 e Å3
400 parametersΔρmin = 0.33 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0015 (5)
Crystal data top
C37H34N2O4SV = 3138.3 (2) Å3
Mr = 602.72Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.6229 (6) ŵ = 0.15 mm1
b = 15.8759 (6) ÅT = 293 K
c = 15.0284 (5) Å0.23 × 0.21 × 0.18 mm
β = 115.907 (2)°
Data collection top
Bruker Kappa APEXII
diffractometer
10327 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
6691 reflections with I > 2σ(I)
Tmin = 0.967, Tmax = 0.974Rint = 0.031
44023 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.154H-atom parameters constrained
S = 1.01Δρmax = 0.43 e Å3
10327 reflectionsΔρmin = 0.33 e Å3
400 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.05702 (12)0.26172 (11)0.14785 (12)0.0458 (4)
H1A0.04600.20220.14630.069*
H1B0.06560.27530.20600.069*
H1C0.00050.29170.14900.069*
C20.23369 (10)0.23225 (9)0.04797 (11)0.0349 (3)
H2A0.24140.23260.10890.042*
H2B0.21900.17490.03610.042*
C30.33233 (10)0.25945 (9)0.03580 (10)0.0320 (3)
C40.34405 (10)0.34748 (9)0.07216 (10)0.0302 (3)
C50.24559 (10)0.39442 (8)0.05210 (10)0.0293 (3)
C60.17140 (10)0.37496 (9)0.05547 (10)0.0330 (3)
H6A0.11000.40820.07520.040*
H6B0.20230.38820.09930.040*
C70.26211 (10)0.49022 (9)0.07440 (10)0.0320 (3)
H70.32970.49740.12960.038*
C80.18394 (11)0.50890 (9)0.11325 (11)0.0338 (3)
H80.11510.50820.05900.041*
C90.19802 (13)0.58458 (10)0.17907 (13)0.0452 (4)
H9A0.16860.63460.14000.054*
H9B0.26950.59470.22110.054*
C100.13378 (13)0.44349 (11)0.22827 (13)0.0448 (4)
H10A0.16150.41170.28950.054*
H10B0.06600.42280.18640.054*
C110.19993 (10)0.36021 (9)0.12522 (10)0.0308 (3)
C120.09191 (11)0.31906 (10)0.06612 (11)0.0379 (3)
C130.09879 (12)0.22999 (11)0.09739 (13)0.0444 (4)
C140.02966 (17)0.16525 (14)0.06977 (17)0.0671 (6)
H140.03650.17290.02140.081*
C150.0619 (2)0.08708 (16)0.1169 (2)0.0831 (8)
H150.01600.04250.09800.100*
C160.1577 (2)0.07374 (14)0.18930 (19)0.0738 (7)
H160.17550.02080.21820.089*
C170.23036 (16)0.13913 (11)0.22093 (14)0.0518 (4)
C180.19704 (12)0.21657 (10)0.17185 (12)0.0390 (3)
C190.25791 (11)0.28929 (9)0.19501 (10)0.0327 (3)
C200.35303 (11)0.28621 (10)0.27196 (11)0.0394 (3)
H200.39390.33400.29110.047*
C210.38795 (14)0.20853 (12)0.32189 (13)0.0512 (4)
H210.45300.20600.37360.061*
C220.33004 (16)0.13745 (12)0.29711 (14)0.0570 (5)
H220.35660.08750.33080.068*
C310.40937 (11)0.20670 (9)0.08693 (11)0.0368 (3)
H310.46690.23150.13600.044*
C320.41493 (11)0.11611 (9)0.07593 (11)0.0375 (3)
C330.46607 (12)0.06725 (10)0.16063 (12)0.0444 (4)
H330.50130.09390.22130.053*
C340.46569 (14)0.01911 (11)0.15661 (13)0.0490 (4)
H340.49870.05030.21430.059*
C350.41601 (13)0.05974 (10)0.06629 (13)0.0450 (4)
C360.36961 (13)0.01298 (11)0.01935 (12)0.0454 (4)
H360.33880.03980.08040.055*
C370.36913 (12)0.07357 (10)0.01411 (12)0.0421 (3)
H370.33740.10450.07220.050*
C380.3592 (2)0.18946 (14)0.01891 (18)0.0799 (7)
H38A0.28980.17080.04550.120*
H38B0.36220.24880.00560.120*
H38C0.38590.17860.06590.120*
C710.25792 (11)0.54436 (9)0.01021 (11)0.0345 (3)
C720.34035 (12)0.54987 (10)0.03242 (13)0.0413 (3)
H720.39970.52100.00700.050*
C730.33715 (13)0.59696 (10)0.11150 (14)0.0459 (4)
H730.39330.59870.12520.055*
C740.25059 (14)0.64111 (11)0.16955 (13)0.0475 (4)
C750.16901 (14)0.63866 (13)0.14731 (15)0.0588 (5)
H750.11080.66940.18540.071*
C760.17252 (13)0.59095 (12)0.06887 (14)0.0511 (4)
H760.11630.59010.05520.061*
C770.3074 (2)0.68197 (18)0.28915 (19)0.0842 (8)
H77A0.37430.69660.24030.126*
H77B0.28830.71860.34530.126*
H77C0.30720.62470.30960.126*
N10.14777 (8)0.28580 (8)0.06042 (9)0.0336 (3)
N20.19908 (9)0.43700 (7)0.17839 (9)0.0341 (3)
O10.42678 (7)0.38018 (7)0.11706 (8)0.0411 (3)
O20.01535 (8)0.35883 (8)0.01723 (9)0.0493 (3)
O30.23835 (13)0.69080 (10)0.24882 (12)0.0747 (5)
O40.41766 (11)0.14553 (8)0.06995 (10)0.0630 (4)
S10.13145 (4)0.55591 (3)0.25237 (3)0.05553 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0365 (7)0.0518 (9)0.0387 (8)0.0007 (7)0.0068 (6)0.0070 (7)
C20.0350 (7)0.0359 (7)0.0325 (7)0.0051 (5)0.0136 (6)0.0014 (6)
C30.0313 (6)0.0342 (7)0.0328 (7)0.0042 (5)0.0162 (5)0.0001 (5)
C40.0293 (6)0.0335 (7)0.0290 (6)0.0048 (5)0.0140 (5)0.0025 (5)
C50.0284 (6)0.0310 (6)0.0291 (6)0.0042 (5)0.0130 (5)0.0008 (5)
C60.0330 (6)0.0357 (7)0.0290 (6)0.0054 (5)0.0123 (5)0.0014 (5)
C70.0293 (6)0.0318 (6)0.0334 (7)0.0043 (5)0.0124 (5)0.0002 (5)
C80.0337 (6)0.0356 (7)0.0319 (7)0.0069 (5)0.0142 (6)0.0002 (5)
C90.0503 (9)0.0400 (8)0.0439 (9)0.0091 (7)0.0192 (7)0.0052 (7)
C100.0494 (9)0.0528 (10)0.0387 (8)0.0081 (7)0.0253 (7)0.0010 (7)
C110.0288 (6)0.0349 (7)0.0290 (6)0.0028 (5)0.0130 (5)0.0001 (5)
C120.0309 (6)0.0492 (9)0.0357 (7)0.0009 (6)0.0166 (6)0.0049 (6)
C130.0453 (8)0.0495 (9)0.0435 (9)0.0110 (7)0.0242 (7)0.0048 (7)
C140.0651 (12)0.0733 (14)0.0624 (13)0.0302 (11)0.0275 (10)0.0103 (10)
C150.112 (2)0.0616 (14)0.0806 (17)0.0428 (14)0.0462 (16)0.0091 (12)
C160.113 (2)0.0443 (11)0.0741 (15)0.0153 (11)0.0498 (15)0.0022 (10)
C170.0792 (13)0.0378 (8)0.0513 (10)0.0007 (8)0.0404 (10)0.0045 (7)
C180.0485 (8)0.0378 (8)0.0381 (8)0.0016 (6)0.0258 (7)0.0001 (6)
C190.0369 (7)0.0349 (7)0.0308 (7)0.0048 (5)0.0191 (6)0.0023 (5)
C200.0397 (7)0.0450 (8)0.0341 (7)0.0061 (6)0.0168 (6)0.0059 (6)
C210.0552 (10)0.0584 (11)0.0413 (9)0.0192 (8)0.0223 (8)0.0169 (8)
C220.0809 (13)0.0465 (10)0.0533 (11)0.0190 (9)0.0383 (10)0.0184 (8)
C310.0330 (7)0.0368 (7)0.0387 (8)0.0053 (5)0.0138 (6)0.0009 (6)
C320.0354 (7)0.0369 (7)0.0376 (8)0.0097 (6)0.0135 (6)0.0002 (6)
C330.0446 (8)0.0419 (8)0.0353 (8)0.0121 (6)0.0068 (6)0.0036 (6)
C340.0579 (10)0.0411 (9)0.0379 (8)0.0143 (7)0.0116 (7)0.0025 (7)
C350.0469 (8)0.0376 (8)0.0467 (9)0.0087 (6)0.0168 (7)0.0031 (7)
C360.0472 (8)0.0455 (9)0.0371 (8)0.0092 (7)0.0124 (7)0.0078 (7)
C370.0442 (8)0.0456 (8)0.0332 (7)0.0126 (6)0.0140 (6)0.0010 (6)
C380.0941 (17)0.0459 (11)0.0766 (15)0.0010 (11)0.0160 (13)0.0201 (10)
C710.0343 (7)0.0306 (7)0.0400 (8)0.0024 (5)0.0175 (6)0.0016 (6)
C720.0360 (7)0.0371 (8)0.0536 (9)0.0044 (6)0.0221 (7)0.0036 (7)
C730.0481 (9)0.0406 (8)0.0614 (10)0.0004 (7)0.0354 (8)0.0018 (7)
C740.0567 (10)0.0412 (8)0.0510 (10)0.0024 (7)0.0294 (8)0.0080 (7)
C750.0494 (10)0.0685 (12)0.0613 (12)0.0204 (9)0.0268 (9)0.0293 (10)
C760.0396 (8)0.0628 (11)0.0564 (10)0.0148 (7)0.0262 (8)0.0214 (9)
C770.0949 (18)0.102 (2)0.0765 (16)0.0126 (15)0.0570 (15)0.0296 (14)
N10.0288 (5)0.0379 (6)0.0302 (6)0.0027 (4)0.0094 (4)0.0024 (5)
N20.0377 (6)0.0358 (6)0.0315 (6)0.0070 (5)0.0177 (5)0.0005 (5)
O10.0289 (5)0.0402 (6)0.0503 (6)0.0012 (4)0.0137 (4)0.0026 (5)
O20.0298 (5)0.0681 (8)0.0481 (7)0.0069 (5)0.0153 (5)0.0067 (6)
O30.0869 (11)0.0777 (10)0.0787 (10)0.0202 (8)0.0540 (9)0.0361 (8)
O40.0795 (9)0.0357 (6)0.0589 (8)0.0076 (6)0.0165 (7)0.0049 (6)
S10.0714 (3)0.0572 (3)0.0452 (2)0.0234 (2)0.0321 (2)0.00093 (19)
Geometric parameters (Å, º) top
C1—N11.4526 (18)C16—H160.9300
C1—H1A0.9600C17—C221.406 (3)
C1—H1B0.9600C17—C181.407 (2)
C1—H1C0.9600C18—C191.406 (2)
C2—N11.4598 (17)C19—C201.367 (2)
C2—C31.5050 (19)C20—C211.418 (2)
C2—H2A0.9700C20—H200.9300
C2—H2B0.9700C21—C221.361 (3)
C3—C311.3432 (19)C21—H210.9300
C3—C41.4830 (19)C22—H220.9300
C4—O11.2145 (16)C31—C321.454 (2)
C4—C51.5297 (17)C31—H310.9300
C5—C61.5340 (19)C32—C371.394 (2)
C5—C71.5534 (19)C32—C331.396 (2)
C5—C111.6091 (19)C33—C341.372 (2)
C6—N11.4512 (18)C33—H330.9300
C6—H6A0.9700C34—C351.387 (2)
C6—H6B0.9700C34—H340.9300
C7—C711.514 (2)C35—O41.363 (2)
C7—C81.5228 (19)C35—C361.380 (2)
C7—H70.9800C36—C371.376 (2)
C8—N21.4564 (18)C36—H360.9300
C8—C91.512 (2)C37—H370.9300
C8—H80.9800C38—O41.415 (2)
C9—S11.8181 (19)C38—H38A0.9600
C9—H9A0.9700C38—H38B0.9600
C9—H9B0.9700C38—H38C0.9600
C10—N21.452 (2)C71—C761.386 (2)
C10—S11.8245 (17)C71—C721.387 (2)
C10—H10A0.9700C72—C731.387 (2)
C10—H10B0.9700C72—H720.9300
C11—N21.4606 (18)C73—C741.375 (2)
C11—C191.5197 (19)C73—H730.9300
C11—C121.5764 (19)C74—C751.373 (2)
C12—O21.2137 (18)C74—O31.374 (2)
C12—C131.480 (2)C75—C761.383 (2)
C13—C141.373 (2)C75—H750.9300
C13—C181.399 (2)C76—H760.9300
C14—C151.405 (3)C77—O31.393 (3)
C14—H140.9300C77—H77A0.9600
C15—C161.363 (4)C77—H77B0.9600
C15—H150.9300C77—H77C0.9600
C16—C171.411 (3)
N1—C1—H1A109.5C18—C17—C16115.41 (19)
N1—C1—H1B109.5C13—C18—C19113.01 (14)
H1A—C1—H1B109.5C13—C18—C17123.50 (16)
N1—C1—H1C109.5C19—C18—C17123.45 (16)
H1A—C1—H1C109.5C20—C19—C18118.70 (14)
H1B—C1—H1C109.5C20—C19—C11131.68 (14)
N1—C2—C3113.38 (11)C18—C19—C11109.62 (12)
N1—C2—H2A108.9C19—C20—C21118.48 (16)
C3—C2—H2A108.9C19—C20—H20120.8
N1—C2—H2B108.9C21—C20—H20120.8
C3—C2—H2B108.9C22—C21—C20122.62 (17)
H2A—C2—H2B107.7C22—C21—H21118.7
C31—C3—C4116.34 (13)C20—C21—H21118.7
C31—C3—C2123.88 (13)C21—C22—C17120.43 (16)
C4—C3—C2119.52 (11)C21—C22—H22119.8
O1—C4—C3122.30 (12)C17—C22—H22119.8
O1—C4—C5121.64 (12)C3—C31—C32128.77 (14)
C3—C4—C5116.05 (11)C3—C31—H31115.6
C4—C5—C6106.32 (11)C32—C31—H31115.6
C4—C5—C7112.96 (11)C37—C32—C33117.03 (14)
C6—C5—C7113.35 (11)C37—C32—C31124.23 (14)
C4—C5—C11109.67 (10)C33—C32—C31118.70 (14)
C6—C5—C11109.78 (11)C34—C33—C32121.66 (15)
C7—C5—C11104.77 (10)C34—C33—H33119.2
N1—C6—C5107.06 (11)C32—C33—H33119.2
N1—C6—H6A110.3C33—C34—C35119.86 (16)
C5—C6—H6A110.3C33—C34—H34120.1
N1—C6—H6B110.3C35—C34—H34120.1
C5—C6—H6B110.3O4—C35—C36124.61 (15)
H6A—C6—H6B108.6O4—C35—C34115.64 (15)
C71—C7—C8116.73 (11)C36—C35—C34119.75 (15)
C71—C7—C5115.43 (11)C37—C36—C35119.76 (15)
C8—C7—C5101.62 (11)C37—C36—H36120.1
C71—C7—H7107.5C35—C36—H36120.1
C8—C7—H7107.5C36—C37—C32121.79 (15)
C5—C7—H7107.5C36—C37—H37119.1
N2—C8—C9104.23 (12)C32—C37—H37119.1
N2—C8—C7100.71 (10)O4—C38—H38A109.5
C9—C8—C7119.68 (13)O4—C38—H38B109.5
N2—C8—H8110.5H38A—C38—H38B109.5
C9—C8—H8110.5O4—C38—H38C109.5
C7—C8—H8110.5H38A—C38—H38C109.5
C8—C9—S1103.98 (11)H38B—C38—H38C109.5
C8—C9—H9A111.0C76—C71—C72116.71 (14)
S1—C9—H9A111.0C76—C71—C7122.12 (13)
C8—C9—H9B111.0C72—C71—C7121.16 (13)
S1—C9—H9B111.0C71—C72—C73122.17 (14)
H9A—C9—H9B109.0C71—C72—H72118.9
N2—C10—S1104.21 (11)C73—C72—H72118.9
N2—C10—H10A110.9C74—C73—C72119.70 (15)
S1—C10—H10A110.9C74—C73—H73120.1
N2—C10—H10B110.9C72—C73—H73120.1
S1—C10—H10B110.9C75—C74—O3115.43 (16)
H10A—C10—H10B108.9C75—C74—C73119.23 (16)
N2—C11—C19112.11 (11)O3—C74—C73125.32 (16)
N2—C11—C12114.09 (11)C74—C75—C76120.68 (16)
C19—C11—C12101.61 (11)C74—C75—H75119.7
N2—C11—C5101.37 (11)C76—C75—H75119.7
C19—C11—C5116.65 (10)C75—C76—C71121.46 (15)
C12—C11—C5111.58 (11)C75—C76—H76119.3
O2—C12—C13127.32 (14)C71—C76—H76119.3
O2—C12—C11123.90 (15)O3—C77—H77A109.5
C13—C12—C11107.74 (12)O3—C77—H77B109.5
C14—C13—C18119.42 (18)H77A—C77—H77B109.5
C14—C13—C12132.90 (18)O3—C77—H77C109.5
C18—C13—C12107.65 (13)H77A—C77—H77C109.5
C13—C14—C15117.9 (2)H77B—C77—H77C109.5
C13—C14—H14121.0C6—N1—C1113.95 (12)
C15—C14—H14121.0C6—N1—C2112.90 (11)
C16—C15—C14122.8 (2)C1—N1—C2110.95 (12)
C16—C15—H15118.6C10—N2—C8110.49 (11)
C14—C15—H15118.6C10—N2—C11120.41 (12)
C15—C16—C17121.0 (2)C8—N2—C11108.76 (11)
C15—C16—H16119.5C74—O3—C77118.35 (17)
C17—C16—H16119.5C35—O4—C38117.49 (16)
C22—C17—C18116.21 (16)C9—S1—C1093.62 (7)
C22—C17—C16128.34 (19)
N1—C2—C3—C31152.33 (14)C17—C18—C19—C11177.71 (14)
N1—C2—C3—C421.59 (18)N2—C11—C19—C2051.1 (2)
C31—C3—C4—O127.6 (2)C12—C11—C19—C20173.33 (15)
C2—C3—C4—O1158.01 (14)C5—C11—C19—C2065.1 (2)
C31—C3—C4—C5150.91 (13)N2—C11—C19—C18128.13 (13)
C2—C3—C4—C523.46 (18)C12—C11—C19—C185.91 (14)
O1—C4—C5—C6137.07 (14)C5—C11—C19—C18115.64 (13)
C3—C4—C5—C644.39 (15)C18—C19—C20—C213.1 (2)
O1—C4—C5—C712.15 (18)C11—C19—C20—C21177.75 (15)
C3—C4—C5—C7169.31 (11)C19—C20—C21—C220.9 (3)
O1—C4—C5—C11104.30 (15)C20—C21—C22—C171.6 (3)
C3—C4—C5—C1174.24 (14)C18—C17—C22—C211.8 (3)
C4—C5—C6—N166.56 (13)C16—C17—C22—C21175.8 (2)
C7—C5—C6—N1168.75 (10)C4—C3—C31—C32172.66 (14)
C11—C5—C6—N151.99 (13)C2—C3—C31—C321.4 (3)
C4—C5—C7—C7187.51 (14)C3—C31—C32—C3734.3 (3)
C6—C5—C7—C7133.50 (16)C3—C31—C32—C33143.31 (17)
C11—C5—C7—C71153.17 (11)C37—C32—C33—C344.3 (3)
C4—C5—C7—C8145.17 (11)C31—C32—C33—C34173.53 (16)
C6—C5—C7—C893.81 (13)C32—C33—C34—C351.9 (3)
C11—C5—C7—C825.85 (12)C33—C34—C35—O4178.46 (17)
C71—C7—C8—N2170.13 (12)C33—C34—C35—C361.8 (3)
C5—C7—C8—N243.67 (12)O4—C35—C36—C37177.43 (17)
C71—C7—C8—C976.56 (17)C34—C35—C36—C372.8 (3)
C5—C7—C8—C9156.98 (13)C35—C36—C37—C320.3 (3)
N2—C8—C9—S142.06 (13)C33—C32—C37—C363.2 (2)
C7—C8—C9—S1153.47 (11)C31—C32—C37—C36174.47 (15)
C4—C5—C11—N2120.22 (11)C8—C7—C71—C7618.4 (2)
C6—C5—C11—N2123.32 (11)C5—C7—C71—C76100.91 (17)
C7—C5—C11—N21.29 (12)C8—C7—C71—C72161.37 (14)
C4—C5—C11—C191.82 (16)C5—C7—C71—C7279.35 (17)
C6—C5—C11—C19114.64 (13)C76—C71—C72—C732.3 (2)
C7—C5—C11—C19123.33 (12)C7—C71—C72—C73177.93 (15)
C4—C5—C11—C12117.96 (12)C71—C72—C73—C741.1 (3)
C6—C5—C11—C121.50 (15)C72—C73—C74—C750.9 (3)
C7—C5—C11—C12120.53 (12)C72—C73—C74—O3179.07 (18)
N2—C11—C12—O242.7 (2)O3—C74—C75—C76179.83 (19)
C19—C11—C12—O2163.57 (14)C73—C74—C75—C761.5 (3)
C5—C11—C12—O271.42 (18)C74—C75—C76—C710.1 (3)
N2—C11—C12—C13126.34 (13)C72—C71—C76—C751.7 (3)
C19—C11—C12—C135.49 (14)C7—C71—C76—C75178.54 (18)
C5—C11—C12—C13119.52 (12)C5—C6—N1—C1162.47 (12)
O2—C12—C13—C1412.5 (3)C5—C6—N1—C269.76 (14)
C11—C12—C13—C14178.95 (19)C3—C2—N1—C645.11 (16)
O2—C12—C13—C18165.29 (15)C3—C2—N1—C1174.43 (13)
C11—C12—C13—C183.29 (17)S1—C10—N2—C836.52 (14)
C18—C13—C14—C151.2 (3)S1—C10—N2—C11164.65 (10)
C12—C13—C14—C15178.8 (2)C9—C8—N2—C1052.90 (15)
C13—C14—C15—C161.1 (4)C7—C8—N2—C10177.50 (12)
C14—C15—C16—C170.1 (4)C9—C8—N2—C11172.86 (11)
C15—C16—C17—C22176.7 (2)C7—C8—N2—C1148.26 (13)
C15—C16—C17—C180.9 (3)C19—C11—N2—C1075.52 (16)
C14—C13—C18—C19177.52 (16)C12—C11—N2—C1039.29 (18)
C12—C13—C18—C190.60 (18)C5—C11—N2—C10159.34 (12)
C14—C13—C18—C170.3 (3)C19—C11—N2—C8155.57 (11)
C12—C13—C18—C17178.46 (15)C12—C11—N2—C889.62 (14)
C22—C17—C18—C13177.17 (16)C5—C11—N2—C830.44 (13)
C16—C17—C18—C130.7 (3)C75—C74—O3—C77166.0 (2)
C22—C17—C18—C190.5 (2)C73—C74—O3—C7715.8 (3)
C16—C17—C18—C19178.39 (17)C36—C35—O4—C386.6 (3)
C13—C18—C19—C20174.93 (14)C34—C35—O4—C38173.64 (19)
C17—C18—C19—C202.9 (2)C8—C9—S1—C1019.41 (11)
C13—C18—C19—C114.42 (17)N2—C10—S1—C98.36 (12)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C17–C22 and C71–C76 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C76—H76···O2i0.932.383.263 (2)159
C34—H34···O1ii0.932.533.453 (2)171
C10—H10B···O20.972.533.173 (2)124
C2—H2A···Cg1iii0.972.733.658 (2)160
C38—H38B···Cg2iv0.962.933.730 (2)141
Symmetry codes: (i) x, y+1, z; (ii) x+1, y1/2, z+1/2; (iii) x, y1/2, z3/2; (iv) x, y1, z.

Experimental details

Crystal data
Chemical formulaC37H34N2O4S
Mr602.72
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)14.6229 (6), 15.8759 (6), 15.0284 (5)
β (°) 115.907 (2)
V3)3138.3 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.15
Crystal size (mm)0.23 × 0.21 × 0.18
Data collection
DiffractometerBruker Kappa APEXII
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.967, 0.974
No. of measured, independent and
observed [I > 2σ(I)] reflections
44023, 10327, 6691
Rint0.031
(sin θ/λ)max1)0.733
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.154, 1.01
No. of reflections10327
No. of parameters400
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.33

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C17–C22 and C71–C76 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C76—H76···O2i0.932.383.263 (2)159
C34—H34···O1ii0.932.533.453 (2)171
C10—H10B···O20.972.533.173 (2)124
C2—H2A···Cg1iii0.972.733.658 (2)160
C38—H38B···Cg2iv0.962.933.730 (2)141
Symmetry codes: (i) x, y+1, z; (ii) x+1, y1/2, z+1/2; (iii) x, y1/2, z3/2; (iv) x, y1, z.
 

Acknowledgements

JS thanks the UGC for the FIST support. JS and RV thank the management of Madura College for their encouragement and support. RRK thanks the DST, New Delhi, for funds under the Fast Track Scheme (No. SR/FT/CS-073/2009).

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCaramella, P. & Grunanger, P. (1984). 1,3-Dipolar Cycloaddition Chemistry, Vol. 1, edited by A. Padwa, pp. 291–312. New York: Wiley.  Google Scholar
First citationJames, D., Kunze, H. B. & Faulkner, D. (1991). J. Nat. Prod. 54, 1137–1140.  CrossRef PubMed CAS Web of Science Google Scholar
First citationKobayashi, J., Tsuda, M., Agemi, K. & Vacelet, J. (1991). Tetrahedron, 47, 6617–6622.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS, University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds