metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Undeca­carbonyl-μ2-methane­thiol­ato-μ2-[(pyridin-2-yl)methane­thiol­ato]-μ4-sulfido-tetra­iron(II)(2 FeFe)

aCollege of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, People's Republic of China, bAnalytical Center, China Pharmaceutical University, Nanjin 210009, People's Republic of China, and cTesting Center, Yangzhou University, Yangzhou 225009, People's Republic of China
*Correspondence e-mail: ycshi@yzu.edu.cn

(Received 30 October 2011; accepted 10 November 2011; online 16 November 2011)

The title compound, [Fe4(C6H6NS)(CH3S)S(CO)11], com­prises two butterfly-shaped sub-cluster cores, Fe2S2N and Fe2S2, joined together by a spiro-type μ4-S atom. The (pyridin-2-yl)methane­thiol­ate ligand is attached to the Fe2(CO)5 unit in a μ-κN:κ2S mode, and the methane­thiol­ate ligand is coordinated to the Fe2(CO)6 unit in a μ-κ2S fashion.

Related literature

For general background to iron–carbonyl clusters, see: Capon et al. (2009[Capon, J. F., Gloaguen, F., Pétillon, F. Y., Schollhammer, P. & Talarmin, J. (2009). Coord. Chem. Rev. 253, 1476-1494.]); Tard & Pickett (2009[Tard, C. & Pickett, C. J. (2009). Chem. Rev. 109, 2245-2274.]); Gloaguen & Rauchfuss (2009[Gloaguen, F. & Rauchfuss, T. B. (2009). Chem. Soc. Rev. 38, 100-108.]); DuBois & DuBois (2009[DuBois, M. R. & DuBois, D. L. (2009). Chem. Soc. Rev. 38, 62-72.]). For the syntheses of μ4-S atom-containing Fe2(CO)6 butterfly-shaped complexes, see: Song (2005[Song, L.-C. (2005). Acc. Chem. Res. 38, 21-28.]); Wang et al. (2000[Wang, Z.-X., Zhao, H., Zhou, Z.-Y. & Zhou, X.-G. (2000). J. Organomet. Chem. 599, 256-260.]). For related structures, see: Song et al. (2000[Song, L.-C., Hu, Q.-M., Fan, H.-T., Sun, B.-W., Tang, M.-Y., Chen, Y., Sun, Y., Sun, C.-X. & Wu, Q.-J. (2000). Organometallics, 19, 3909-3915.], 2002[Song, L.-C., Fan, H.-T. & Hu, Q.-M. (2002). J. Am. Chem. Soc. 124, 4566-4567.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe4(C6H6NS)(CH3S)S(CO)11]

  • Mr = 734.87

  • Monoclinic, P 21 /n

  • a = 9.1253 (3) Å

  • b = 28.9515 (15) Å

  • c = 10.0376 (11) Å

  • β = 98.3238 (12)°

  • V = 2623.9 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.46 mm−1

  • T = 296 K

  • 0.19 × 0.16 × 0.15 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.628, Tmax = 0.684

  • 22650 measured reflections

  • 6151 independent reflections

  • 4914 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.093

  • S = 1.19

  • 6151 reflections

  • 335 parameters

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.50 e Å−3

Table 1
Selected bond lengths (Å)

Fe1—Fe2 2.5394 (9)
Fe1—S1 2.2968 (14)
Fe1—S2 2.2525 (11)
Fe2—S1 2.2401 (13)
Fe2—N1 2.022 (3)
Fe2—S2 2.2148 (11)
Fe3—Fe4 2.5473 (9)
Fe3—S2 2.2485 (12)
Fe3—S3 2.2801 (13)
Fe4—S2 2.2428 (11)
Fe4—S3 2.2761 (13)

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2003[Bruker (2003). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Recently, Fe/S cluster complexes have attracted considerable attention, because of their interesting chemistry and particularly their close relevance to the modeling study of the active site of [Fe—Fe] hydrogenases. Moreover, until now, few efficient electrocatalysts have been obtained and the mechanism of the natural production/uptake of hydrogen remains unclear. Therefore, novel structural and chemical models are still necessary to gain a better understanding of the protonation mechanisms implied at the molecular level (Capon et al., 2009; Tard & Pickett, 2009; Gloaguen & Rauchfuss, 2009; DuBois & DuBois, 2009). The reaction sequence 2–C5H4NCH2SH/Fe3(CO)12/Et3N/CS2/MeI in THF leads to the formation of the title compound (Song, 2005; Wang et al., 2000). Its molecular structure consists of the two butterfly sub-cluster cores Fe1Fe2S1N1S2 and Fe3Fe4S2S3 joined together to a spiro type of µ4-S atom, i.e., S2 (Fig. 1 and Table 1). The ligand 2–C5H4NCH2S- is attached to Fe2(CO)5 unit in a µ–kN:k2S mode while the ligand CH3S- is coordinated to Fe2(CO)6 unit in a µ–k2S fashion. Interestingly, as seen from Table 1, the S3 atom is symmetrically coordinated to the Fe3—Fe4 bond while the S1 atom is asymmetrically to the Fe1—Fe2 bond. As in the related complex (µ–MeS)Fe2(CO)64–S)Fe2(CO)6(µ–SCSMe) (Song et al., 2000, 2002), the CH3 group is bonded to the S3 atom by an equatorial type of bond. The IR spectrum displays four absorption bands due to terminal carbonyl ligands. As expected, because of a chiral butterfly core, its 1H NMR spectrum shows for the CH2 group an AB quartet characteristic of nonequivalent hydrogen atoms. Also, its 13H NMR spectrum exhibits the corresponding absorption peaks which are in agreement with the aforementioned X-ray diffraction analysis.

Related literature top

For general background to iron–carbonyl clusters, see: Capon et al. (2009); Tard & Pickett (2009); Gloaguen & Rauchfuss (2009); DuBois & DuBois (2009). For the syntheses of µ4-S atom-containing Fe2(CO)6 butterfly complexes, see: Song (2005); Wang et al. (2000). For related structures, see: Song et al. (2000, 2002).

Experimental top

A solution of Fe3(CO)12 (1.00 g, 2 mmol) and 2–pyridinemethanethiol (0.25 g, 2 mmol) in 15 mL of THF was stirred under inert atmosphere for 30 min. Then CS2 (0.30 g, 4 mmol) was added and the solution stirred for 5 h. The solution was cooled to 0 °C and MeI (0.57 g, 4 mmol) added. After being stirred overnight at room temperature, the solvent was removed and the resulting residue was purified by chromatography on silica gel with petroleum ether as eluant to give the brown-red solid. Single crystals were grown from its dichloromethane-petroleum ether solution. IR (KBr): ν(CO) 2071 (m), 2030 (vs), 1997 (s), 1952 (s) cm-1. 1H NMR (500 MHz, CDCl3, δ, p.p.m.): 8.71, 7.48-6.98 (s, 1H, m, 3H, C5H4N), 4.26, 3.93 (AB quartet, 2J = 15 Hz, 1H, 1H, CH2), 2.10 (s, 3H, CH3). 13C NMR (125 MHz, CDCl3, δ, p.p.m.): 21.6 (CH3), 43.4 (CH2), 122.9, 136.1, 155.5, 166.1 (C5H4N), 207.9, 208.2, 210.8, 211.6, 213.4, 216.1 (CO).

Refinement top

The H atoms were geometrically placed (C—H = 0.93–0.97 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.5Ueq(methyl-C).

Structure description top

Recently, Fe/S cluster complexes have attracted considerable attention, because of their interesting chemistry and particularly their close relevance to the modeling study of the active site of [Fe—Fe] hydrogenases. Moreover, until now, few efficient electrocatalysts have been obtained and the mechanism of the natural production/uptake of hydrogen remains unclear. Therefore, novel structural and chemical models are still necessary to gain a better understanding of the protonation mechanisms implied at the molecular level (Capon et al., 2009; Tard & Pickett, 2009; Gloaguen & Rauchfuss, 2009; DuBois & DuBois, 2009). The reaction sequence 2–C5H4NCH2SH/Fe3(CO)12/Et3N/CS2/MeI in THF leads to the formation of the title compound (Song, 2005; Wang et al., 2000). Its molecular structure consists of the two butterfly sub-cluster cores Fe1Fe2S1N1S2 and Fe3Fe4S2S3 joined together to a spiro type of µ4-S atom, i.e., S2 (Fig. 1 and Table 1). The ligand 2–C5H4NCH2S- is attached to Fe2(CO)5 unit in a µ–kN:k2S mode while the ligand CH3S- is coordinated to Fe2(CO)6 unit in a µ–k2S fashion. Interestingly, as seen from Table 1, the S3 atom is symmetrically coordinated to the Fe3—Fe4 bond while the S1 atom is asymmetrically to the Fe1—Fe2 bond. As in the related complex (µ–MeS)Fe2(CO)64–S)Fe2(CO)6(µ–SCSMe) (Song et al., 2000, 2002), the CH3 group is bonded to the S3 atom by an equatorial type of bond. The IR spectrum displays four absorption bands due to terminal carbonyl ligands. As expected, because of a chiral butterfly core, its 1H NMR spectrum shows for the CH2 group an AB quartet characteristic of nonequivalent hydrogen atoms. Also, its 13H NMR spectrum exhibits the corresponding absorption peaks which are in agreement with the aforementioned X-ray diffraction analysis.

For general background to iron–carbonyl clusters, see: Capon et al. (2009); Tard & Pickett (2009); Gloaguen & Rauchfuss (2009); DuBois & DuBois (2009). For the syntheses of µ4-S atom-containing Fe2(CO)6 butterfly complexes, see: Song (2005); Wang et al. (2000). For related structures, see: Song et al. (2000, 2002).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT-Plus (Bruker, 2003); data reduction: SAINT-Plus (Bruker, 2003); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and WinGX (Farrugia, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecule of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 20% probability level.
Undecacarbonyl-µ2-methanethiolato-µ2-[(pyridin-2-yl)methanethiolato]- µ4-sulfido-tetrairon(II)(2 FeFe) top
Crystal data top
[Fe4(C6H6NS)(CH3S)S(CO)11]F(000) = 1456
Mr = 734.87Dx = 1.860 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4914 reflections
a = 9.1253 (3) Åθ = 2.2–27.9°
b = 28.9515 (15) ŵ = 2.46 mm1
c = 10.0376 (11) ÅT = 296 K
β = 98.3238 (12)°Block, red
V = 2623.9 (3) Å30.19 × 0.16 × 0.15 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
6151 independent reflections
Radiation source: fine-focus sealed tube4914 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ω and φ scansθmax = 27.8°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1111
Tmin = 0.628, Tmax = 0.684k = 3637
22650 measured reflectionsl = 1213
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093H-atom parameters constrained
S = 1.19 w = 1/[σ2(Fo2) + (0.P)2 + 7.4281P]
where P = (Fo2 + 2Fc2)/3
6151 reflections(Δ/σ)max < 0.001
335 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.50 e Å3
Crystal data top
[Fe4(C6H6NS)(CH3S)S(CO)11]V = 2623.9 (3) Å3
Mr = 734.87Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.1253 (3) ŵ = 2.46 mm1
b = 28.9515 (15) ÅT = 296 K
c = 10.0376 (11) Å0.19 × 0.16 × 0.15 mm
β = 98.3238 (12)°
Data collection top
Bruker SMART APEX CCD
diffractometer
6151 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
4914 reflections with I > 2σ(I)
Tmin = 0.628, Tmax = 0.684Rint = 0.032
22650 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.093H-atom parameters constrained
S = 1.19Δρmax = 0.45 e Å3
6151 reflectionsΔρmin = 0.50 e Å3
335 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3087 (6)0.1314 (2)0.0125 (5)0.0612 (15)
C20.1355 (7)0.1881 (2)0.1127 (5)0.0654 (16)
C30.1362 (6)0.0911 (2)0.1218 (5)0.0624 (15)
C40.6043 (5)0.09347 (17)0.4471 (5)0.0459 (11)
C50.3874 (5)0.04298 (17)0.3159 (5)0.0454 (11)
C60.2725 (5)0.23874 (17)0.4290 (5)0.0473 (11)
C70.4244 (6)0.17741 (18)0.6064 (5)0.0492 (12)
C80.1887 (6)0.20957 (17)0.6739 (5)0.0522 (12)
C90.0277 (5)0.1125 (2)0.6643 (5)0.0543 (13)
C100.2578 (6)0.07232 (18)0.5986 (5)0.0492 (12)
C110.0013 (6)0.06344 (19)0.4274 (6)0.0553 (13)
C120.1349 (6)0.1994 (2)0.5184 (6)0.0664 (16)
H12A0.23170.18810.48370.100*
H12B0.13300.23240.50890.100*
H12C0.11160.19140.61190.100*
C130.6172 (6)0.16550 (17)0.1184 (6)0.0591 (15)
H13A0.58470.18280.03680.071*
H13B0.71060.17850.16010.071*
C140.6407 (5)0.11606 (17)0.0822 (5)0.0463 (11)
C150.7145 (6)0.1058 (2)0.0263 (5)0.0627 (15)
H150.74580.12940.07820.075*
C160.7408 (6)0.0605 (2)0.0560 (6)0.0666 (16)
H160.78930.05300.12840.080*
C170.6937 (6)0.0267 (2)0.0236 (6)0.0659 (16)
H170.71090.00430.00620.079*
C180.6214 (5)0.03872 (17)0.1287 (5)0.0510 (12)
H180.59200.01530.18230.061*
Fe10.25779 (7)0.13887 (2)0.14905 (6)0.04061 (16)
Fe20.46539 (6)0.09889 (2)0.30222 (6)0.03290 (14)
Fe30.24023 (7)0.18660 (2)0.52126 (6)0.03460 (15)
Fe40.11363 (7)0.10806 (2)0.51490 (6)0.03607 (15)
N10.5907 (4)0.08240 (13)0.1587 (4)0.0406 (9)
O10.3419 (5)0.1255 (2)0.1178 (4)0.1053 (19)
O20.0599 (6)0.21896 (19)0.0902 (5)0.114 (2)
O30.0630 (6)0.05878 (19)0.1038 (5)0.1026 (17)
O40.6892 (4)0.08923 (15)0.5427 (4)0.0741 (12)
O50.3306 (5)0.00851 (13)0.3287 (5)0.0763 (12)
O60.2891 (5)0.27134 (13)0.3701 (4)0.0717 (12)
O70.5400 (4)0.17148 (16)0.6638 (4)0.0743 (12)
O80.1601 (5)0.22297 (15)0.7736 (4)0.0820 (13)
O90.0211 (5)0.11492 (18)0.7626 (4)0.0858 (14)
O100.3524 (5)0.05028 (16)0.6518 (4)0.0795 (13)
O110.0745 (5)0.03477 (16)0.3740 (5)0.0909 (15)
S10.48087 (14)0.17202 (4)0.23270 (12)0.0434 (3)
S20.26921 (11)0.13019 (3)0.37332 (9)0.0301 (2)
S30.00216 (12)0.17347 (4)0.42431 (12)0.0420 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.048 (3)0.090 (4)0.045 (3)0.015 (3)0.005 (2)0.003 (3)
C20.072 (4)0.078 (4)0.046 (3)0.029 (3)0.011 (3)0.010 (3)
C30.056 (3)0.082 (4)0.046 (3)0.003 (3)0.002 (2)0.012 (3)
C40.038 (2)0.048 (3)0.054 (3)0.002 (2)0.014 (2)0.006 (2)
C50.046 (3)0.042 (3)0.052 (3)0.006 (2)0.017 (2)0.002 (2)
C60.051 (3)0.044 (3)0.049 (3)0.000 (2)0.015 (2)0.005 (2)
C70.046 (3)0.055 (3)0.047 (3)0.008 (2)0.009 (2)0.010 (2)
C80.066 (3)0.043 (3)0.047 (3)0.009 (2)0.007 (2)0.004 (2)
C90.043 (3)0.071 (4)0.051 (3)0.004 (3)0.016 (2)0.008 (3)
C100.051 (3)0.051 (3)0.049 (3)0.000 (2)0.019 (2)0.011 (2)
C110.049 (3)0.057 (3)0.060 (3)0.005 (3)0.009 (2)0.007 (3)
C120.046 (3)0.077 (4)0.082 (4)0.021 (3)0.026 (3)0.002 (3)
C130.070 (4)0.046 (3)0.073 (4)0.000 (3)0.048 (3)0.009 (3)
C140.041 (2)0.052 (3)0.050 (3)0.002 (2)0.020 (2)0.001 (2)
C150.068 (4)0.072 (4)0.057 (3)0.010 (3)0.040 (3)0.002 (3)
C160.064 (4)0.084 (4)0.060 (3)0.011 (3)0.035 (3)0.017 (3)
C170.060 (3)0.061 (4)0.084 (4)0.002 (3)0.035 (3)0.023 (3)
C180.050 (3)0.045 (3)0.062 (3)0.012 (2)0.020 (2)0.002 (2)
Fe10.0455 (4)0.0488 (4)0.0281 (3)0.0108 (3)0.0070 (3)0.0025 (3)
Fe20.0319 (3)0.0332 (3)0.0354 (3)0.0025 (3)0.0108 (2)0.0028 (2)
Fe30.0368 (3)0.0362 (3)0.0321 (3)0.0000 (3)0.0092 (2)0.0026 (3)
Fe40.0322 (3)0.0404 (4)0.0369 (3)0.0024 (3)0.0095 (2)0.0050 (3)
N10.0370 (19)0.044 (2)0.043 (2)0.0056 (17)0.0139 (16)0.0025 (17)
O10.092 (3)0.195 (6)0.031 (2)0.030 (4)0.017 (2)0.013 (3)
O20.141 (5)0.116 (4)0.082 (3)0.084 (4)0.005 (3)0.023 (3)
O30.099 (4)0.106 (4)0.097 (4)0.039 (3)0.005 (3)0.024 (3)
O40.050 (2)0.095 (3)0.071 (3)0.008 (2)0.015 (2)0.015 (2)
O50.089 (3)0.041 (2)0.106 (3)0.012 (2)0.038 (3)0.003 (2)
O60.100 (3)0.048 (2)0.072 (3)0.001 (2)0.027 (2)0.014 (2)
O70.043 (2)0.100 (3)0.074 (3)0.002 (2)0.0098 (19)0.012 (2)
O80.118 (4)0.085 (3)0.046 (2)0.024 (3)0.024 (2)0.017 (2)
O90.075 (3)0.133 (4)0.058 (2)0.004 (3)0.038 (2)0.008 (3)
O100.067 (3)0.093 (3)0.077 (3)0.027 (2)0.009 (2)0.041 (2)
O110.086 (3)0.078 (3)0.103 (4)0.035 (3)0.005 (3)0.014 (3)
S10.0511 (7)0.0349 (6)0.0489 (7)0.0006 (5)0.0225 (5)0.0025 (5)
S20.0304 (5)0.0326 (5)0.0282 (5)0.0010 (4)0.0069 (4)0.0013 (4)
S30.0349 (6)0.0500 (7)0.0420 (6)0.0060 (5)0.0083 (5)0.0020 (5)
Geometric parameters (Å, º) top
C1—O11.153 (6)C13—C141.500 (7)
C1—Fe11.764 (5)C13—S11.820 (5)
C2—O21.132 (6)C13—H13A0.9700
C2—Fe11.814 (6)C13—H13B0.9700
C3—O31.150 (7)C14—N11.360 (6)
C3—Fe11.768 (6)C14—C151.393 (6)
C4—O41.150 (6)C15—C161.372 (8)
C4—Fe21.792 (5)C15—H150.9300
C5—O51.140 (6)C16—C171.372 (8)
C5—Fe21.781 (5)C16—H160.9300
C6—O61.135 (6)C17—C181.368 (7)
C6—Fe31.817 (5)C17—H170.9300
C7—O71.140 (6)C18—N11.339 (6)
C7—Fe31.791 (5)C18—H180.9300
C8—O81.138 (6)Fe1—Fe22.5394 (9)
C8—Fe31.795 (5)Fe1—S12.2968 (14)
C9—O91.142 (6)Fe1—S22.2525 (11)
C9—Fe41.794 (5)Fe2—S12.2401 (13)
C10—O101.142 (6)Fe2—N12.022 (3)
C10—Fe41.785 (5)Fe2—S22.2148 (11)
C11—O111.148 (6)Fe3—Fe42.5473 (9)
C11—Fe41.809 (6)Fe3—S22.2485 (12)
C12—S31.834 (5)Fe3—S32.2801 (13)
C12—H12A0.9600Fe4—S22.2428 (11)
C12—H12B0.9600Fe4—S32.2761 (13)
C12—H12C0.9600
O1—C1—Fe1178.5 (6)C4—Fe2—S2106.51 (15)
O2—C2—Fe1179.6 (7)N1—Fe2—S2153.28 (11)
O3—C3—Fe1176.7 (6)C5—Fe2—S1157.93 (16)
O4—C4—Fe2177.3 (5)C4—Fe2—S1105.45 (16)
O5—C5—Fe2175.5 (4)N1—Fe2—S186.20 (11)
O6—C6—Fe3178.3 (5)S2—Fe2—S178.70 (4)
O7—C7—Fe3178.1 (5)C5—Fe2—Fe1100.93 (16)
O8—C8—Fe3177.2 (5)C4—Fe2—Fe1155.39 (16)
O9—C9—Fe4177.0 (5)N1—Fe2—Fe197.22 (11)
O10—C10—Fe4178.4 (5)S2—Fe2—Fe156.06 (3)
O11—C11—Fe4178.7 (5)S1—Fe2—Fe157.03 (4)
S3—C12—H12A109.5C7—Fe3—C889.5 (2)
S3—C12—H12B109.5C7—Fe3—C699.0 (2)
H12A—C12—H12B109.5C8—Fe3—C6102.1 (2)
S3—C12—H12C109.5C7—Fe3—S290.87 (16)
H12A—C12—H12C109.5C8—Fe3—S2154.62 (17)
H12B—C12—H12C109.5C6—Fe3—S2102.91 (15)
C14—C13—S1112.8 (3)C7—Fe3—S3161.59 (17)
C14—C13—H13A109.0C8—Fe3—S394.30 (18)
S1—C13—H13A109.0C6—Fe3—S397.79 (16)
C14—C13—H13B109.0S2—Fe3—S378.05 (4)
S1—C13—H13B109.0C7—Fe3—Fe4105.66 (17)
H13A—C13—H13B107.8C8—Fe3—Fe4100.27 (17)
N1—C14—C15121.9 (5)C6—Fe3—Fe4146.63 (16)
N1—C14—C13118.4 (4)S2—Fe3—Fe455.34 (3)
C15—C14—C13119.7 (4)S3—Fe3—Fe455.93 (4)
C16—C15—C14119.6 (5)C10—Fe4—C991.7 (2)
C16—C15—H15120.2C10—Fe4—C1198.7 (2)
C14—C15—H15120.2C9—Fe4—C1199.4 (2)
C15—C16—C17118.4 (5)C10—Fe4—S288.43 (15)
C15—C16—H16120.8C9—Fe4—S2154.46 (19)
C17—C16—H16120.8C11—Fe4—S2105.78 (17)
C18—C17—C16119.5 (5)C10—Fe4—S3157.89 (17)
C18—C17—H17120.2C9—Fe4—S392.88 (18)
C16—C17—H17120.2C11—Fe4—S3101.88 (17)
N1—C18—C17123.7 (5)S2—Fe4—S378.25 (4)
N1—C18—H18118.2C10—Fe4—Fe3101.82 (17)
C17—C18—H18118.2C9—Fe4—Fe399.59 (18)
C1—Fe1—C390.3 (3)C11—Fe4—Fe3151.45 (17)
C1—Fe1—C298.5 (2)S2—Fe4—Fe355.55 (3)
C3—Fe1—C2103.2 (3)S3—Fe4—Fe356.08 (4)
C1—Fe1—S2157.68 (18)C18—N1—C14116.8 (4)
C3—Fe1—S290.26 (18)C18—N1—Fe2122.8 (3)
C2—Fe1—S2103.12 (17)C14—N1—Fe2120.3 (3)
C1—Fe1—S192.86 (19)C13—S1—Fe2100.25 (17)
C3—Fe1—S1152.38 (19)C13—S1—Fe1112.1 (2)
C2—Fe1—S1103.4 (2)Fe2—S1—Fe168.06 (4)
S2—Fe1—S176.76 (4)Fe2—S2—Fe4134.64 (5)
C1—Fe1—Fe2103.19 (17)Fe2—S2—Fe3133.46 (5)
C3—Fe1—Fe297.69 (19)Fe2—S2—Fe169.28 (4)
C2—Fe1—Fe2149.67 (19)Fe4—S2—Fe369.11 (4)
S2—Fe1—Fe254.66 (3)Fe4—S2—Fe1136.32 (5)
S1—Fe1—Fe254.91 (4)Fe3—S2—Fe1125.89 (5)
C5—Fe2—C495.8 (2)C12—S3—Fe4115.7 (2)
C5—Fe2—N196.52 (18)C12—S3—Fe3113.0 (2)
C4—Fe2—N198.67 (18)Fe4—S3—Fe367.98 (4)
C5—Fe2—S289.81 (15)

Experimental details

Crystal data
Chemical formula[Fe4(C6H6NS)(CH3S)S(CO)11]
Mr734.87
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)9.1253 (3), 28.9515 (15), 10.0376 (11)
β (°) 98.3238 (12)
V3)2623.9 (3)
Z4
Radiation typeMo Kα
µ (mm1)2.46
Crystal size (mm)0.19 × 0.16 × 0.15
Data collection
DiffractometerBruker SMART APEX CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.628, 0.684
No. of measured, independent and
observed [I > 2σ(I)] reflections
22650, 6151, 4914
Rint0.032
(sin θ/λ)max1)0.657
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.093, 1.19
No. of reflections6151
No. of parameters335
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.45, 0.50

Computer programs: SMART (Bruker, 2002), SAINT-Plus (Bruker, 2003), SIR2004 (Burla et al., 2005), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009) and WinGX (Farrugia, 1999), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Fe1—Fe22.5394 (9)Fe3—Fe42.5473 (9)
Fe1—S12.2968 (14)Fe3—S22.2485 (12)
Fe1—S22.2525 (11)Fe3—S32.2801 (13)
Fe2—S12.2401 (13)Fe4—S22.2428 (11)
Fe2—N12.022 (3)Fe4—S32.2761 (13)
Fe2—S22.2148 (11)
 

Acknowledgements

The authors thank the Natural Science Foundation of China (grant No. 20572091) and the Natural Science Foundation of Jiangsu Province (grant No. 05KJB150151) for financial support of this work.

References

First citationBruker (2002). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCapon, J. F., Gloaguen, F., Pétillon, F. Y., Schollhammer, P. & Talarmin, J. (2009). Coord. Chem. Rev. 253, 1476–1494.  Web of Science CrossRef CAS Google Scholar
First citationDuBois, M. R. & DuBois, D. L. (2009). Chem. Soc. Rev. 38, 62–72.  PubMed Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGloaguen, F. & Rauchfuss, T. B. (2009). Chem. Soc. Rev. 38, 100–108.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, L.-C. (2005). Acc. Chem. Res. 38, 21–28.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSong, L.-C., Fan, H.-T. & Hu, Q.-M. (2002). J. Am. Chem. Soc. 124, 4566–4567.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSong, L.-C., Hu, Q.-M., Fan, H.-T., Sun, B.-W., Tang, M.-Y., Chen, Y., Sun, Y., Sun, C.-X. & Wu, Q.-J. (2000). Organometallics, 19, 3909–3915.  Web of Science CSD CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTard, C. & Pickett, C. J. (2009). Chem. Rev. 109, 2245–2274.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWang, Z.-X., Zhao, H., Zhou, Z.-Y. & Zhou, X.-G. (2000). J. Organomet. Chem. 599, 256–260.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds