metal-organic compounds
Undecacarbonyl-μ2-methanethiolato-μ2-[(pyridin-2-yl)methanethiolato]-μ4-sulfido-tetrairon(II)(2 Fe—Fe)
aCollege of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, People's Republic of China, bAnalytical Center, China Pharmaceutical University, Nanjin 210009, People's Republic of China, and cTesting Center, Yangzhou University, Yangzhou 225009, People's Republic of China
*Correspondence e-mail: ycshi@yzu.edu.cn
The title compound, [Fe4(C6H6NS)(CH3S)S(CO)11], comprises two butterfly-shaped sub-cluster cores, Fe2S2N and Fe2S2, joined together by a spiro-type μ4-S atom. The (pyridin-2-yl)methanethiolate ligand is attached to the Fe2(CO)5 unit in a μ-κN:κ2S mode, and the methanethiolate ligand is coordinated to the Fe2(CO)6 unit in a μ-κ2S fashion.
Related literature
For general background to iron–carbonyl clusters, see: Capon et al. (2009); Tard & Pickett (2009); Gloaguen & Rauchfuss (2009); DuBois & DuBois (2009). For the syntheses of μ4-S atom-containing Fe2(CO)6 butterfly-shaped complexes, see: Song (2005); Wang et al. (2000). For related structures, see: Song et al. (2000, 2002).
Experimental
Crystal data
|
Refinement
|
|
Data collection: SMART (Bruker, 2002); cell SAINT-Plus (Bruker, 2003); data reduction: SAINT-Plus; program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and WinGX (Farrugia, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
https://doi.org/10.1107/S1600536811047751/tk5011sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536811047751/tk5011Isup2.hkl
A solution of Fe3(CO)12 (1.00 g, 2 mmol) and 2–pyridinemethanethiol (0.25 g, 2 mmol) in 15 mL of THF was stirred under inert atmosphere for 30 min. Then CS2 (0.30 g, 4 mmol) was added and the solution stirred for 5 h. The solution was cooled to 0 °C and MeI (0.57 g, 4 mmol) added. After being stirred overnight at room temperature, the solvent was removed and the resulting residue was purified by ν(C≡O) 2071 (m), 2030 (vs), 1997 (s), 1952 (s) cm-1. 1H NMR (500 MHz, CDCl3, δ, p.p.m.): 8.71, 7.48-6.98 (s, 1H, m, 3H, C5H4N), 4.26, 3.93 (AB quartet, 2J = 15 Hz, 1H, 1H, CH2), 2.10 (s, 3H, CH3). 13C NMR (125 MHz, CDCl3, δ, p.p.m.): 21.6 (CH3), 43.4 (CH2), 122.9, 136.1, 155.5, 166.1 (C5H4N), 207.9, 208.2, 210.8, 211.6, 213.4, 216.1 (C≡O).
on silica gel with petroleum ether as eluant to give the brown-red solid. Single crystals were grown from its dichloromethane-petroleum ether solution. IR (KBr):The H atoms were geometrically placed (C—H = 0.93–0.97 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.5Ueq(methyl-C).
Recently, Fe/S cluster complexes have attracted considerable attention, because of their interesting chemistry and particularly their close relevance to the modeling study of the active site of [Fe—Fe] hydrogenases. Moreover, until now, few efficient electrocatalysts have been obtained and the mechanism of the natural production/uptake of hydrogen remains unclear. Therefore, novel structural and chemical models are still necessary to gain a better understanding of the protonation mechanisms implied at the molecular level (Capon et al., 2009; Tard & Pickett, 2009; Gloaguen & Rauchfuss, 2009; DuBois & DuBois, 2009). The reaction sequence 2–C5H4NCH2SH/Fe3(CO)12/Et3N/CS2/MeI in THF leads to the formation of the title compound (Song, 2005; Wang et al., 2000). Its molecular structure consists of the two butterfly sub-cluster cores Fe1Fe2S1N1S2 and Fe3Fe4S2S3 joined together to a spiro type of µ4-S atom, i.e., S2 (Fig. 1 and Table 1). The ligand 2–C5H4NCH2S- is attached to Fe2(CO)5 unit in a µ–kN:k2S mode while the ligand CH3S- is coordinated to Fe2(CO)6 unit in a µ–k2S fashion. Interestingly, as seen from Table 1, the S3 atom is symmetrically coordinated to the Fe3—Fe4 bond while the S1 atom is asymmetrically to the Fe1—Fe2 bond. As in the related complex (µ–MeS)Fe2(CO)6(µ4–S)Fe2(CO)6(µ–SCSMe) (Song et al., 2000, 2002), the CH3 group is bonded to the S3 atom by an equatorial type of bond. The IR spectrum displays four absorption bands due to terminal carbonyl ligands. As expected, because of a chiral butterfly core, its 1H NMR spectrum shows for the CH2 group an AB quartet characteristic of nonequivalent hydrogen atoms. Also, its 13H NMR spectrum exhibits the corresponding absorption peaks which are in agreement with the aforementioned X-ray diffraction analysis.
For general background to iron–carbonyl clusters, see: Capon et al. (2009); Tard & Pickett (2009); Gloaguen & Rauchfuss (2009); DuBois & DuBois (2009). For the syntheses of µ4-S atom-containing Fe2(CO)6 butterfly complexes, see: Song (2005); Wang et al. (2000). For related structures, see: Song et al. (2000, 2002).
Data collection: SMART (Bruker, 2002); cell
SAINT-Plus (Bruker, 2003); data reduction: SAINT-Plus (Bruker, 2003); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and WinGX (Farrugia, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).Fig. 1. The molecule of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 20% probability level. |
[Fe4(C6H6NS)(CH3S)S(CO)11] | F(000) = 1456 |
Mr = 734.87 | Dx = 1.860 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 4914 reflections |
a = 9.1253 (3) Å | θ = 2.2–27.9° |
b = 28.9515 (15) Å | µ = 2.46 mm−1 |
c = 10.0376 (11) Å | T = 296 K |
β = 98.3238 (12)° | Block, red |
V = 2623.9 (3) Å3 | 0.19 × 0.16 × 0.15 mm |
Z = 4 |
Bruker SMART APEX CCD diffractometer | 6151 independent reflections |
Radiation source: fine-focus sealed tube | 4914 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.032 |
ω and φ scans | θmax = 27.8°, θmin = 2.2° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) | h = −11→11 |
Tmin = 0.628, Tmax = 0.684 | k = −36→37 |
22650 measured reflections | l = −12→13 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.049 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.093 | H-atom parameters constrained |
S = 1.19 | w = 1/[σ2(Fo2) + (0.P)2 + 7.4281P] where P = (Fo2 + 2Fc2)/3 |
6151 reflections | (Δ/σ)max < 0.001 |
335 parameters | Δρmax = 0.45 e Å−3 |
0 restraints | Δρmin = −0.50 e Å−3 |
[Fe4(C6H6NS)(CH3S)S(CO)11] | V = 2623.9 (3) Å3 |
Mr = 734.87 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 9.1253 (3) Å | µ = 2.46 mm−1 |
b = 28.9515 (15) Å | T = 296 K |
c = 10.0376 (11) Å | 0.19 × 0.16 × 0.15 mm |
β = 98.3238 (12)° |
Bruker SMART APEX CCD diffractometer | 6151 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) | 4914 reflections with I > 2σ(I) |
Tmin = 0.628, Tmax = 0.684 | Rint = 0.032 |
22650 measured reflections |
R[F2 > 2σ(F2)] = 0.049 | 0 restraints |
wR(F2) = 0.093 | H-atom parameters constrained |
S = 1.19 | Δρmax = 0.45 e Å−3 |
6151 reflections | Δρmin = −0.50 e Å−3 |
335 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.3087 (6) | 0.1314 (2) | −0.0125 (5) | 0.0612 (15) | |
C2 | 0.1355 (7) | 0.1881 (2) | 0.1127 (5) | 0.0654 (16) | |
C3 | 0.1362 (6) | 0.0911 (2) | 0.1218 (5) | 0.0624 (15) | |
C4 | 0.6043 (5) | 0.09347 (17) | 0.4471 (5) | 0.0459 (11) | |
C5 | 0.3874 (5) | 0.04298 (17) | 0.3159 (5) | 0.0454 (11) | |
C6 | 0.2725 (5) | 0.23874 (17) | 0.4290 (5) | 0.0473 (11) | |
C7 | 0.4244 (6) | 0.17741 (18) | 0.6064 (5) | 0.0492 (12) | |
C8 | 0.1887 (6) | 0.20957 (17) | 0.6739 (5) | 0.0522 (12) | |
C9 | 0.0277 (5) | 0.1125 (2) | 0.6643 (5) | 0.0543 (13) | |
C10 | 0.2578 (6) | 0.07232 (18) | 0.5986 (5) | 0.0492 (12) | |
C11 | −0.0013 (6) | 0.06344 (19) | 0.4274 (6) | 0.0553 (13) | |
C12 | −0.1349 (6) | 0.1994 (2) | 0.5184 (6) | 0.0664 (16) | |
H12A | −0.2317 | 0.1881 | 0.4837 | 0.100* | |
H12B | −0.1330 | 0.2324 | 0.5089 | 0.100* | |
H12C | −0.1116 | 0.1914 | 0.6119 | 0.100* | |
C13 | 0.6172 (6) | 0.16550 (17) | 0.1184 (6) | 0.0591 (15) | |
H13A | 0.5847 | 0.1828 | 0.0368 | 0.071* | |
H13B | 0.7106 | 0.1785 | 0.1601 | 0.071* | |
C14 | 0.6407 (5) | 0.11606 (17) | 0.0822 (5) | 0.0463 (11) | |
C15 | 0.7145 (6) | 0.1058 (2) | −0.0263 (5) | 0.0627 (15) | |
H15 | 0.7458 | 0.1294 | −0.0782 | 0.075* | |
C16 | 0.7408 (6) | 0.0605 (2) | −0.0560 (6) | 0.0666 (16) | |
H16 | 0.7893 | 0.0530 | −0.1284 | 0.080* | |
C17 | 0.6937 (6) | 0.0267 (2) | 0.0236 (6) | 0.0659 (16) | |
H17 | 0.7109 | −0.0043 | 0.0062 | 0.079* | |
C18 | 0.6214 (5) | 0.03872 (17) | 0.1287 (5) | 0.0510 (12) | |
H18 | 0.5920 | 0.0153 | 0.1823 | 0.061* | |
Fe1 | 0.25779 (7) | 0.13887 (2) | 0.14905 (6) | 0.04061 (16) | |
Fe2 | 0.46539 (6) | 0.09889 (2) | 0.30222 (6) | 0.03290 (14) | |
Fe3 | 0.24023 (7) | 0.18660 (2) | 0.52126 (6) | 0.03460 (15) | |
Fe4 | 0.11363 (7) | 0.10806 (2) | 0.51490 (6) | 0.03607 (15) | |
N1 | 0.5907 (4) | 0.08240 (13) | 0.1587 (4) | 0.0406 (9) | |
O1 | 0.3419 (5) | 0.1255 (2) | −0.1178 (4) | 0.1053 (19) | |
O2 | 0.0599 (6) | 0.21896 (19) | 0.0902 (5) | 0.114 (2) | |
O3 | 0.0630 (6) | 0.05878 (19) | 0.1038 (5) | 0.1026 (17) | |
O4 | 0.6892 (4) | 0.08923 (15) | 0.5427 (4) | 0.0741 (12) | |
O5 | 0.3306 (5) | 0.00851 (13) | 0.3287 (5) | 0.0763 (12) | |
O6 | 0.2891 (5) | 0.27134 (13) | 0.3701 (4) | 0.0717 (12) | |
O7 | 0.5400 (4) | 0.17148 (16) | 0.6638 (4) | 0.0743 (12) | |
O8 | 0.1601 (5) | 0.22297 (15) | 0.7736 (4) | 0.0820 (13) | |
O9 | −0.0211 (5) | 0.11492 (18) | 0.7626 (4) | 0.0858 (14) | |
O10 | 0.3524 (5) | 0.05028 (16) | 0.6518 (4) | 0.0795 (13) | |
O11 | −0.0745 (5) | 0.03477 (16) | 0.3740 (5) | 0.0909 (15) | |
S1 | 0.48087 (14) | 0.17202 (4) | 0.23270 (12) | 0.0434 (3) | |
S2 | 0.26921 (11) | 0.13019 (3) | 0.37332 (9) | 0.0301 (2) | |
S3 | 0.00216 (12) | 0.17347 (4) | 0.42431 (12) | 0.0420 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.048 (3) | 0.090 (4) | 0.045 (3) | 0.015 (3) | 0.005 (2) | 0.003 (3) |
C2 | 0.072 (4) | 0.078 (4) | 0.046 (3) | 0.029 (3) | 0.011 (3) | 0.010 (3) |
C3 | 0.056 (3) | 0.082 (4) | 0.046 (3) | 0.003 (3) | −0.002 (2) | −0.012 (3) |
C4 | 0.038 (2) | 0.048 (3) | 0.054 (3) | 0.002 (2) | 0.014 (2) | 0.006 (2) |
C5 | 0.046 (3) | 0.042 (3) | 0.052 (3) | 0.006 (2) | 0.017 (2) | −0.002 (2) |
C6 | 0.051 (3) | 0.044 (3) | 0.049 (3) | 0.000 (2) | 0.015 (2) | −0.005 (2) |
C7 | 0.046 (3) | 0.055 (3) | 0.047 (3) | −0.008 (2) | 0.009 (2) | −0.010 (2) |
C8 | 0.066 (3) | 0.043 (3) | 0.047 (3) | 0.009 (2) | 0.007 (2) | −0.004 (2) |
C9 | 0.043 (3) | 0.071 (4) | 0.051 (3) | 0.004 (3) | 0.016 (2) | 0.008 (3) |
C10 | 0.051 (3) | 0.051 (3) | 0.049 (3) | 0.000 (2) | 0.019 (2) | 0.011 (2) |
C11 | 0.049 (3) | 0.057 (3) | 0.060 (3) | −0.005 (3) | 0.009 (2) | 0.007 (3) |
C12 | 0.046 (3) | 0.077 (4) | 0.082 (4) | 0.021 (3) | 0.026 (3) | 0.002 (3) |
C13 | 0.070 (4) | 0.046 (3) | 0.073 (4) | 0.000 (3) | 0.048 (3) | 0.009 (3) |
C14 | 0.041 (2) | 0.052 (3) | 0.050 (3) | −0.002 (2) | 0.020 (2) | 0.001 (2) |
C15 | 0.068 (4) | 0.072 (4) | 0.057 (3) | −0.010 (3) | 0.040 (3) | −0.002 (3) |
C16 | 0.064 (4) | 0.084 (4) | 0.060 (3) | −0.011 (3) | 0.035 (3) | −0.017 (3) |
C17 | 0.060 (3) | 0.061 (4) | 0.084 (4) | 0.002 (3) | 0.035 (3) | −0.023 (3) |
C18 | 0.050 (3) | 0.045 (3) | 0.062 (3) | 0.012 (2) | 0.020 (2) | 0.002 (2) |
Fe1 | 0.0455 (4) | 0.0488 (4) | 0.0281 (3) | 0.0108 (3) | 0.0070 (3) | 0.0025 (3) |
Fe2 | 0.0319 (3) | 0.0332 (3) | 0.0354 (3) | 0.0025 (3) | 0.0108 (2) | 0.0028 (2) |
Fe3 | 0.0368 (3) | 0.0362 (3) | 0.0321 (3) | 0.0000 (3) | 0.0092 (2) | −0.0026 (3) |
Fe4 | 0.0322 (3) | 0.0404 (4) | 0.0369 (3) | −0.0024 (3) | 0.0095 (2) | 0.0050 (3) |
N1 | 0.0370 (19) | 0.044 (2) | 0.043 (2) | 0.0056 (17) | 0.0139 (16) | 0.0025 (17) |
O1 | 0.092 (3) | 0.195 (6) | 0.031 (2) | 0.030 (4) | 0.017 (2) | −0.013 (3) |
O2 | 0.141 (5) | 0.116 (4) | 0.082 (3) | 0.084 (4) | 0.005 (3) | 0.023 (3) |
O3 | 0.099 (4) | 0.106 (4) | 0.097 (4) | −0.039 (3) | −0.005 (3) | −0.024 (3) |
O4 | 0.050 (2) | 0.095 (3) | 0.071 (3) | 0.008 (2) | −0.015 (2) | 0.015 (2) |
O5 | 0.089 (3) | 0.041 (2) | 0.106 (3) | −0.012 (2) | 0.038 (3) | −0.003 (2) |
O6 | 0.100 (3) | 0.048 (2) | 0.072 (3) | −0.001 (2) | 0.027 (2) | 0.014 (2) |
O7 | 0.043 (2) | 0.100 (3) | 0.074 (3) | −0.002 (2) | −0.0098 (19) | −0.012 (2) |
O8 | 0.118 (4) | 0.085 (3) | 0.046 (2) | 0.024 (3) | 0.024 (2) | −0.017 (2) |
O9 | 0.075 (3) | 0.133 (4) | 0.058 (2) | −0.004 (3) | 0.038 (2) | 0.008 (3) |
O10 | 0.067 (3) | 0.093 (3) | 0.077 (3) | 0.027 (2) | 0.009 (2) | 0.041 (2) |
O11 | 0.086 (3) | 0.078 (3) | 0.103 (4) | −0.035 (3) | −0.005 (3) | −0.014 (3) |
S1 | 0.0511 (7) | 0.0349 (6) | 0.0489 (7) | −0.0006 (5) | 0.0225 (5) | 0.0025 (5) |
S2 | 0.0304 (5) | 0.0326 (5) | 0.0282 (5) | 0.0010 (4) | 0.0069 (4) | 0.0013 (4) |
S3 | 0.0349 (6) | 0.0500 (7) | 0.0420 (6) | 0.0060 (5) | 0.0083 (5) | 0.0020 (5) |
C1—O1 | 1.153 (6) | C13—C14 | 1.500 (7) |
C1—Fe1 | 1.764 (5) | C13—S1 | 1.820 (5) |
C2—O2 | 1.132 (6) | C13—H13A | 0.9700 |
C2—Fe1 | 1.814 (6) | C13—H13B | 0.9700 |
C3—O3 | 1.150 (7) | C14—N1 | 1.360 (6) |
C3—Fe1 | 1.768 (6) | C14—C15 | 1.393 (6) |
C4—O4 | 1.150 (6) | C15—C16 | 1.372 (8) |
C4—Fe2 | 1.792 (5) | C15—H15 | 0.9300 |
C5—O5 | 1.140 (6) | C16—C17 | 1.372 (8) |
C5—Fe2 | 1.781 (5) | C16—H16 | 0.9300 |
C6—O6 | 1.135 (6) | C17—C18 | 1.368 (7) |
C6—Fe3 | 1.817 (5) | C17—H17 | 0.9300 |
C7—O7 | 1.140 (6) | C18—N1 | 1.339 (6) |
C7—Fe3 | 1.791 (5) | C18—H18 | 0.9300 |
C8—O8 | 1.138 (6) | Fe1—Fe2 | 2.5394 (9) |
C8—Fe3 | 1.795 (5) | Fe1—S1 | 2.2968 (14) |
C9—O9 | 1.142 (6) | Fe1—S2 | 2.2525 (11) |
C9—Fe4 | 1.794 (5) | Fe2—S1 | 2.2401 (13) |
C10—O10 | 1.142 (6) | Fe2—N1 | 2.022 (3) |
C10—Fe4 | 1.785 (5) | Fe2—S2 | 2.2148 (11) |
C11—O11 | 1.148 (6) | Fe3—Fe4 | 2.5473 (9) |
C11—Fe4 | 1.809 (6) | Fe3—S2 | 2.2485 (12) |
C12—S3 | 1.834 (5) | Fe3—S3 | 2.2801 (13) |
C12—H12A | 0.9600 | Fe4—S2 | 2.2428 (11) |
C12—H12B | 0.9600 | Fe4—S3 | 2.2761 (13) |
C12—H12C | 0.9600 | ||
O1—C1—Fe1 | 178.5 (6) | C4—Fe2—S2 | 106.51 (15) |
O2—C2—Fe1 | 179.6 (7) | N1—Fe2—S2 | 153.28 (11) |
O3—C3—Fe1 | 176.7 (6) | C5—Fe2—S1 | 157.93 (16) |
O4—C4—Fe2 | 177.3 (5) | C4—Fe2—S1 | 105.45 (16) |
O5—C5—Fe2 | 175.5 (4) | N1—Fe2—S1 | 86.20 (11) |
O6—C6—Fe3 | 178.3 (5) | S2—Fe2—S1 | 78.70 (4) |
O7—C7—Fe3 | 178.1 (5) | C5—Fe2—Fe1 | 100.93 (16) |
O8—C8—Fe3 | 177.2 (5) | C4—Fe2—Fe1 | 155.39 (16) |
O9—C9—Fe4 | 177.0 (5) | N1—Fe2—Fe1 | 97.22 (11) |
O10—C10—Fe4 | 178.4 (5) | S2—Fe2—Fe1 | 56.06 (3) |
O11—C11—Fe4 | 178.7 (5) | S1—Fe2—Fe1 | 57.03 (4) |
S3—C12—H12A | 109.5 | C7—Fe3—C8 | 89.5 (2) |
S3—C12—H12B | 109.5 | C7—Fe3—C6 | 99.0 (2) |
H12A—C12—H12B | 109.5 | C8—Fe3—C6 | 102.1 (2) |
S3—C12—H12C | 109.5 | C7—Fe3—S2 | 90.87 (16) |
H12A—C12—H12C | 109.5 | C8—Fe3—S2 | 154.62 (17) |
H12B—C12—H12C | 109.5 | C6—Fe3—S2 | 102.91 (15) |
C14—C13—S1 | 112.8 (3) | C7—Fe3—S3 | 161.59 (17) |
C14—C13—H13A | 109.0 | C8—Fe3—S3 | 94.30 (18) |
S1—C13—H13A | 109.0 | C6—Fe3—S3 | 97.79 (16) |
C14—C13—H13B | 109.0 | S2—Fe3—S3 | 78.05 (4) |
S1—C13—H13B | 109.0 | C7—Fe3—Fe4 | 105.66 (17) |
H13A—C13—H13B | 107.8 | C8—Fe3—Fe4 | 100.27 (17) |
N1—C14—C15 | 121.9 (5) | C6—Fe3—Fe4 | 146.63 (16) |
N1—C14—C13 | 118.4 (4) | S2—Fe3—Fe4 | 55.34 (3) |
C15—C14—C13 | 119.7 (4) | S3—Fe3—Fe4 | 55.93 (4) |
C16—C15—C14 | 119.6 (5) | C10—Fe4—C9 | 91.7 (2) |
C16—C15—H15 | 120.2 | C10—Fe4—C11 | 98.7 (2) |
C14—C15—H15 | 120.2 | C9—Fe4—C11 | 99.4 (2) |
C15—C16—C17 | 118.4 (5) | C10—Fe4—S2 | 88.43 (15) |
C15—C16—H16 | 120.8 | C9—Fe4—S2 | 154.46 (19) |
C17—C16—H16 | 120.8 | C11—Fe4—S2 | 105.78 (17) |
C18—C17—C16 | 119.5 (5) | C10—Fe4—S3 | 157.89 (17) |
C18—C17—H17 | 120.2 | C9—Fe4—S3 | 92.88 (18) |
C16—C17—H17 | 120.2 | C11—Fe4—S3 | 101.88 (17) |
N1—C18—C17 | 123.7 (5) | S2—Fe4—S3 | 78.25 (4) |
N1—C18—H18 | 118.2 | C10—Fe4—Fe3 | 101.82 (17) |
C17—C18—H18 | 118.2 | C9—Fe4—Fe3 | 99.59 (18) |
C1—Fe1—C3 | 90.3 (3) | C11—Fe4—Fe3 | 151.45 (17) |
C1—Fe1—C2 | 98.5 (2) | S2—Fe4—Fe3 | 55.55 (3) |
C3—Fe1—C2 | 103.2 (3) | S3—Fe4—Fe3 | 56.08 (4) |
C1—Fe1—S2 | 157.68 (18) | C18—N1—C14 | 116.8 (4) |
C3—Fe1—S2 | 90.26 (18) | C18—N1—Fe2 | 122.8 (3) |
C2—Fe1—S2 | 103.12 (17) | C14—N1—Fe2 | 120.3 (3) |
C1—Fe1—S1 | 92.86 (19) | C13—S1—Fe2 | 100.25 (17) |
C3—Fe1—S1 | 152.38 (19) | C13—S1—Fe1 | 112.1 (2) |
C2—Fe1—S1 | 103.4 (2) | Fe2—S1—Fe1 | 68.06 (4) |
S2—Fe1—S1 | 76.76 (4) | Fe2—S2—Fe4 | 134.64 (5) |
C1—Fe1—Fe2 | 103.19 (17) | Fe2—S2—Fe3 | 133.46 (5) |
C3—Fe1—Fe2 | 97.69 (19) | Fe2—S2—Fe1 | 69.28 (4) |
C2—Fe1—Fe2 | 149.67 (19) | Fe4—S2—Fe3 | 69.11 (4) |
S2—Fe1—Fe2 | 54.66 (3) | Fe4—S2—Fe1 | 136.32 (5) |
S1—Fe1—Fe2 | 54.91 (4) | Fe3—S2—Fe1 | 125.89 (5) |
C5—Fe2—C4 | 95.8 (2) | C12—S3—Fe4 | 115.7 (2) |
C5—Fe2—N1 | 96.52 (18) | C12—S3—Fe3 | 113.0 (2) |
C4—Fe2—N1 | 98.67 (18) | Fe4—S3—Fe3 | 67.98 (4) |
C5—Fe2—S2 | 89.81 (15) |
Experimental details
Crystal data | |
Chemical formula | [Fe4(C6H6NS)(CH3S)S(CO)11] |
Mr | 734.87 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 296 |
a, b, c (Å) | 9.1253 (3), 28.9515 (15), 10.0376 (11) |
β (°) | 98.3238 (12) |
V (Å3) | 2623.9 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 2.46 |
Crystal size (mm) | 0.19 × 0.16 × 0.15 |
Data collection | |
Diffractometer | Bruker SMART APEX CCD |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2004) |
Tmin, Tmax | 0.628, 0.684 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 22650, 6151, 4914 |
Rint | 0.032 |
(sin θ/λ)max (Å−1) | 0.657 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.049, 0.093, 1.19 |
No. of reflections | 6151 |
No. of parameters | 335 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.45, −0.50 |
Computer programs: SMART (Bruker, 2002), SAINT-Plus (Bruker, 2003), SIR2004 (Burla et al., 2005), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009) and WinGX (Farrugia, 1999), publCIF (Westrip, 2010).
Fe1—Fe2 | 2.5394 (9) | Fe3—Fe4 | 2.5473 (9) |
Fe1—S1 | 2.2968 (14) | Fe3—S2 | 2.2485 (12) |
Fe1—S2 | 2.2525 (11) | Fe3—S3 | 2.2801 (13) |
Fe2—S1 | 2.2401 (13) | Fe4—S2 | 2.2428 (11) |
Fe2—N1 | 2.022 (3) | Fe4—S3 | 2.2761 (13) |
Fe2—S2 | 2.2148 (11) |
Acknowledgements
The authors thank the Natural Science Foundation of China (grant No. 20572091) and the Natural Science Foundation of Jiangsu Province (grant No. 05KJB150151) for financial support of this work.
References
Bruker (2002). SMART. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2003). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Capon, J. F., Gloaguen, F., Pétillon, F. Y., Schollhammer, P. & Talarmin, J. (2009). Coord. Chem. Rev. 253, 1476–1494. Web of Science CrossRef CAS Google Scholar
DuBois, M. R. & DuBois, D. L. (2009). Chem. Soc. Rev. 38, 62–72. PubMed Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Gloaguen, F. & Rauchfuss, T. B. (2009). Chem. Soc. Rev. 38, 100–108. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Song, L.-C. (2005). Acc. Chem. Res. 38, 21–28. Web of Science CrossRef PubMed CAS Google Scholar
Song, L.-C., Fan, H.-T. & Hu, Q.-M. (2002). J. Am. Chem. Soc. 124, 4566–4567. Web of Science CSD CrossRef PubMed CAS Google Scholar
Song, L.-C., Hu, Q.-M., Fan, H.-T., Sun, B.-W., Tang, M.-Y., Chen, Y., Sun, Y., Sun, C.-X. & Wu, Q.-J. (2000). Organometallics, 19, 3909–3915. Web of Science CSD CrossRef CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tard, C. & Pickett, C. J. (2009). Chem. Rev. 109, 2245–2274. Web of Science CrossRef PubMed CAS Google Scholar
Wang, Z.-X., Zhao, H., Zhou, Z.-Y. & Zhou, X.-G. (2000). J. Organomet. Chem. 599, 256–260. Web of Science CSD CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Recently, Fe/S cluster complexes have attracted considerable attention, because of their interesting chemistry and particularly their close relevance to the modeling study of the active site of [Fe—Fe] hydrogenases. Moreover, until now, few efficient electrocatalysts have been obtained and the mechanism of the natural production/uptake of hydrogen remains unclear. Therefore, novel structural and chemical models are still necessary to gain a better understanding of the protonation mechanisms implied at the molecular level (Capon et al., 2009; Tard & Pickett, 2009; Gloaguen & Rauchfuss, 2009; DuBois & DuBois, 2009). The reaction sequence 2–C5H4NCH2SH/Fe3(CO)12/Et3N/CS2/MeI in THF leads to the formation of the title compound (Song, 2005; Wang et al., 2000). Its molecular structure consists of the two butterfly sub-cluster cores Fe1Fe2S1N1S2 and Fe3Fe4S2S3 joined together to a spiro type of µ4-S atom, i.e., S2 (Fig. 1 and Table 1). The ligand 2–C5H4NCH2S- is attached to Fe2(CO)5 unit in a µ–kN:k2S mode while the ligand CH3S- is coordinated to Fe2(CO)6 unit in a µ–k2S fashion. Interestingly, as seen from Table 1, the S3 atom is symmetrically coordinated to the Fe3—Fe4 bond while the S1 atom is asymmetrically to the Fe1—Fe2 bond. As in the related complex (µ–MeS)Fe2(CO)6(µ4–S)Fe2(CO)6(µ–SCSMe) (Song et al., 2000, 2002), the CH3 group is bonded to the S3 atom by an equatorial type of bond. The IR spectrum displays four absorption bands due to terminal carbonyl ligands. As expected, because of a chiral butterfly core, its 1H NMR spectrum shows for the CH2 group an AB quartet characteristic of nonequivalent hydrogen atoms. Also, its 13H NMR spectrum exhibits the corresponding absorption peaks which are in agreement with the aforementioned X-ray diffraction analysis.