organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-[(E)-Furan-2-yl­methyl­­idene]pyridine-3-carbohydrazide

aDepartment of Applied Chemistry, Cochin University of Science and Technology, Kochi 682 022, India, and bDepartment of Chemistry, Faculty of Science, Eastern University, Sri Lanka, Chenkalady, Sri Lanka
*Correspondence e-mail: eesans@yahoo.com

(Received 2 November 2011; accepted 3 November 2011; online 12 November 2011)

The title compound, C11H9N3O2, exists in the E conformation with respect to the azomethane C=N bond, and has the keto form. There are two independent mol­ecules in the asymmetric unit and each of these features a slight slanting of the pyridine and furan rings, which form a dihedral angle of 14.96 (10)° in one of the mol­ecules and 5.53 (10)° in the other. The crystal structure is stabilized by N—H⋯O and N—H⋯N hydrogen bonds, weak C—H⋯O and C—H⋯N hydrogen bonds and C—H⋯π inter­actions and ππ inter­actions [shortest centroid–centroid distance = 3.7864 (15) Å].

Related literature

For applications of carbohydrazide in non-linear optics and mol­ecular sensing, see: Bakir & Brown (2002[Bakir, M. & Brown, O. (2002). J. Mol. Struct. 609, 129-136.]). For the synthesis of related compounds, see: Fun et al. (2008[Fun, H.-K., Patil, P. S., Rao, J. N., Kalluraya, B. & Chantrapromma, S. (2008). Acta Cryst. E64, o1707.]); Neema & Kurup (2011[Neema, A. M. & Kurup, M. R. P. (2011). Spectrochim. Acta Part A, 76, 22-28.]). For similar structures, see: Nancy et al. (2011[Nancy, M., Sithambaresan, M. & Kurup, M. R. P. (2011). Spectrochim. Acta Part A, 79, 1154-1161.]). For standard bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C11H9N3O2

  • Mr = 215.21

  • Triclinic, [P \overline 1]

  • a = 9.441 (2) Å

  • b = 10.237 (3) Å

  • c = 11.023 (2) Å

  • α = 75.10 (2)°

  • β = 85.413 (19)°

  • γ = 84.11 (2)°

  • V = 1022.5 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 150 K

  • 0.26 × 0.21 × 0.18 mm

Data collection
  • Bruker P4 diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.975, Tmax = 0.982

  • 9430 measured reflections

  • 3589 independent reflections

  • 2702 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.117

  • S = 1.09

  • 3589 reflections

  • 298 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the O4/C19–C22 and O2/C8–C11 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H5N⋯N1i 0.86 (2) 2.10 (2) 2.944 (2) 169 (2)
N2—H2N⋯O3 0.89 (1) 2.08 (2) 2.9017 (19) 154 (2)
C21—H21⋯N3ii 0.93 2.58 3.410 (3) 149
C16—H16⋯N1i 0.93 2.53 3.370 (3) 150
C11—H11⋯O1iii 0.93 2.51 3.365 (2) 153
C2—H2⋯O3iv 0.93 2.49 3.116 (2) 125
C10—H10⋯Cg1v 0.93 2.78 3.594 (2) 146
C12—H12⋯Cg2vi 0.93 2.75 3.520 (2) 141
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) -x+1, -y+1, -z+1; (iii) -x+2, -y, -z+1; (iv) -x+1, -y, -z+2; (v) -x+2, -y+1, -z+1; (vi) x, y, z+1.

Data collection: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Derivatives of pyridine-3-carbohydrazide and their metal complexes possess pronounced biological activities. They also contain versatile binding properties and the presence of the carbonyl-O atom promotes the the formation of a chelate binding center (Neema & Kurup, 2011). Derivatives of pyridine-3-carbohydrazide and their metal complexes have received considerable attention during the last decade because of their versatile applications in nonlinear optics and molecular sensing (Bakir & Brown, 2002). The present report is an extension of earlier studies in this area (Nancy et al., 2011).

The title compound, (I), crystallizes in triclinic space group P1.There are two independent molecules (Fig. 1) in the asymmetric unit with almost the same bond length and bond angle, and therefore the detailed description can be limited to one of these molecules. The molecule adopts an E configuration with respect to C7N3 bond and it exists in the keto form with C6O1 bond length of 1.226 (2) Å which is very close to a formal CO bond length [1.21 Å] (Allen et al., 1987). The dihedral angle between pyridine and furan rings is 14.96 (10)°. The O1 and N3 atoms are syn with respect to the C6—N2 bond having a torsion angle of -2.0 (3)°. The molecule is almost planar with maximum deviation of 0.265 (2) Å for atom C2; the other molecule has the maximum deviation of 0.212 (1) Å for the atom O3 from its least-squares plane.

Conventional N—H···O,N hydrogen bonds are present, Table 1, Moreover, there are non-conventional intermolecular interactions present in the crystal structure, Table 1, which contribute to the formation of a 3-D network.

Fig. 2 shows a partial packing diagram. The molecules shown participate in C–H···π interactions formed between the H atoms attached at the C10 and C12 atoms and the furan rings, Table 1. The presence of ππ interactions, with centroid-centroid distances of 3.7864 (15), 3.7864 (15), 3.7274 (15) and 3.7273 (15) Å between the rings, is also noted.

Related literature top

For applications of carbohydrazide in non-linear optics and molecular sensing, see: Bakir & Brown (2002). For the synthesis of related compounds, see: Fun et al. (2008); Neema & Kurup (2011). For similar structures, see: Nancy et al. (2011). For standard bond-length data, see: Allen et al. (1987).

Experimental top

The title compound, (I), was prepared by adapting a reported procedure (Fun et al., 2008) by refluxing a mixture of a methanol solutions of furan-2-carboxaldehyde (0.960 g, 10 mmol) and pyridine-3-carbohydrazide (1.370 g, 10 mmol) for 3 h. The formed crystals were collected and recrystallized from a mixture of ethanol and dimethylformamide (1:1 v/v). Light-green crystals were obtained.

Refinement top

All C-bound H atoms were placed in calculated positions with C—H = 0.93 Å, and with Uiso=1.2Ueq(C). The N-bound H atoms were refined with N—H = 0.88±0.1 Å and free Uiso.

Structure description top

Derivatives of pyridine-3-carbohydrazide and their metal complexes possess pronounced biological activities. They also contain versatile binding properties and the presence of the carbonyl-O atom promotes the the formation of a chelate binding center (Neema & Kurup, 2011). Derivatives of pyridine-3-carbohydrazide and their metal complexes have received considerable attention during the last decade because of their versatile applications in nonlinear optics and molecular sensing (Bakir & Brown, 2002). The present report is an extension of earlier studies in this area (Nancy et al., 2011).

The title compound, (I), crystallizes in triclinic space group P1.There are two independent molecules (Fig. 1) in the asymmetric unit with almost the same bond length and bond angle, and therefore the detailed description can be limited to one of these molecules. The molecule adopts an E configuration with respect to C7N3 bond and it exists in the keto form with C6O1 bond length of 1.226 (2) Å which is very close to a formal CO bond length [1.21 Å] (Allen et al., 1987). The dihedral angle between pyridine and furan rings is 14.96 (10)°. The O1 and N3 atoms are syn with respect to the C6—N2 bond having a torsion angle of -2.0 (3)°. The molecule is almost planar with maximum deviation of 0.265 (2) Å for atom C2; the other molecule has the maximum deviation of 0.212 (1) Å for the atom O3 from its least-squares plane.

Conventional N—H···O,N hydrogen bonds are present, Table 1, Moreover, there are non-conventional intermolecular interactions present in the crystal structure, Table 1, which contribute to the formation of a 3-D network.

Fig. 2 shows a partial packing diagram. The molecules shown participate in C–H···π interactions formed between the H atoms attached at the C10 and C12 atoms and the furan rings, Table 1. The presence of ππ interactions, with centroid-centroid distances of 3.7864 (15), 3.7864 (15), 3.7274 (15) and 3.7273 (15) Å between the rings, is also noted.

For applications of carbohydrazide in non-linear optics and molecular sensing, see: Bakir & Brown (2002). For the synthesis of related compounds, see: Fun et al. (2008); Neema & Kurup (2011). For similar structures, see: Nancy et al. (2011). For standard bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view of the unit cell for (I).
N'-[(E)-Furan-2-ylmethylidene]pyridine-3-carbohydrazide top
Crystal data top
C11H9N3O2Z = 4
Mr = 215.21F(000) = 448
Triclinic, P1Dx = 1.398 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.441 (2) ÅCell parameters from 2702 reflections
b = 10.237 (3) Åθ = 3.0–25.0°
c = 11.023 (2) ŵ = 0.10 mm1
α = 75.10 (2)°T = 150 K
β = 85.413 (19)°Block, light-green
γ = 84.11 (2)°0.26 × 0.21 × 0.18 mm
V = 1022.5 (4) Å3
Data collection top
Bruker P4
diffractometer
3589 independent reflections
Radiation source: Enhance (Mo) X-ray Source2702 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 8.33 pixels mm-1θmax = 25.0°, θmin = 3.0°
ω scansh = 1111
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
k = 1211
Tmin = 0.975, Tmax = 0.982l = 1213
9430 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.117 w = 1/[σ2(Fo2) + (0.0674P)2 + 0.0667P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
3589 reflectionsΔρmax = 0.22 e Å3
298 parametersΔρmin = 0.29 e Å3
2 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.008 (2)
Crystal data top
C11H9N3O2γ = 84.11 (2)°
Mr = 215.21V = 1022.5 (4) Å3
Triclinic, P1Z = 4
a = 9.441 (2) ÅMo Kα radiation
b = 10.237 (3) ŵ = 0.10 mm1
c = 11.023 (2) ÅT = 150 K
α = 75.10 (2)°0.26 × 0.21 × 0.18 mm
β = 85.413 (19)°
Data collection top
Bruker P4
diffractometer
3589 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
2702 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 0.982Rint = 0.023
9430 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0402 restraints
wR(F2) = 0.117H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.22 e Å3
3589 reflectionsΔρmin = 0.29 e Å3
298 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.61774 (13)0.01358 (13)0.71738 (12)0.0408 (4)
O21.11415 (15)0.10175 (14)0.58530 (13)0.0488 (4)
O30.76963 (14)0.26997 (12)0.97572 (11)0.0373 (3)
O40.43780 (16)0.54591 (14)0.67271 (14)0.0557 (4)
N10.32366 (15)0.25812 (14)0.94601 (14)0.0331 (4)
N20.71582 (15)0.15648 (15)0.76984 (13)0.0293 (4)
N30.84450 (15)0.13134 (15)0.70761 (13)0.0306 (4)
N41.00763 (16)0.47023 (16)1.23845 (14)0.0368 (4)
N50.70930 (14)0.49236 (15)0.96475 (13)0.0268 (3)
N60.62315 (15)0.50278 (15)0.86641 (13)0.0283 (3)
C10.2301 (2)0.16377 (19)0.97664 (17)0.0355 (4)
H10.14730.18081.02370.043*
C20.24961 (19)0.04281 (18)0.94233 (17)0.0329 (4)
H20.18060.01910.96400.039*
C30.37305 (18)0.01569 (17)0.87553 (16)0.0307 (4)
H30.38900.06560.85160.037*
C40.47390 (18)0.10983 (17)0.84378 (15)0.0267 (4)
C50.44343 (18)0.23048 (17)0.88037 (16)0.0300 (4)
H50.50960.29510.85810.036*
C60.60870 (18)0.07795 (17)0.77142 (16)0.0288 (4)
C70.94024 (19)0.21070 (18)0.71100 (16)0.0316 (4)
H70.91940.27760.75460.038*
C81.07818 (19)0.19826 (19)0.64918 (16)0.0337 (4)
C91.18880 (17)0.27331 (18)0.64346 (15)0.0294 (4)
H91.19060.34500.68060.035*
C101.3003 (2)0.2241 (2)0.57180 (17)0.0404 (5)
H101.38970.25710.55190.049*
C111.2542 (2)0.1210 (2)0.53733 (18)0.0458 (5)
H111.30720.06950.48860.055*
C121.0577 (2)0.3466 (2)1.30061 (17)0.0386 (5)
H121.12090.34001.36290.046*
C131.0218 (2)0.2281 (2)1.27846 (18)0.0397 (5)
H131.06020.14421.32410.048*
C140.92747 (19)0.23689 (18)1.18683 (16)0.0340 (4)
H140.90030.15851.17060.041*
C150.87333 (17)0.36337 (17)1.11913 (15)0.0262 (4)
C160.91764 (18)0.47580 (18)1.14965 (16)0.0318 (4)
H160.88190.56111.10480.038*
C170.77872 (18)0.37120 (17)1.01468 (15)0.0267 (4)
C180.57217 (18)0.62304 (18)0.81434 (16)0.0293 (4)
H180.59770.69540.84210.035*
C190.47684 (18)0.64921 (18)0.71446 (16)0.0316 (4)
C200.41102 (18)0.76644 (18)0.65139 (15)0.0302 (4)
H200.41950.85180.66360.036*
C210.32700 (19)0.7377 (2)0.56365 (17)0.0369 (5)
H210.26970.79940.50680.044*
C220.3457 (2)0.6057 (2)0.5781 (2)0.0546 (6)
H220.30280.55860.53120.066*
H2N0.7125 (19)0.2127 (17)0.8202 (16)0.035 (5)*
H5N0.713 (2)0.5638 (17)0.9912 (18)0.043 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0418 (8)0.0409 (8)0.0502 (8)0.0061 (6)0.0002 (6)0.0300 (7)
O20.0606 (9)0.0428 (9)0.0435 (8)0.0036 (7)0.0011 (7)0.0126 (7)
O30.0526 (8)0.0267 (7)0.0372 (7)0.0020 (6)0.0121 (6)0.0139 (6)
O40.0671 (10)0.0386 (9)0.0648 (10)0.0073 (7)0.0282 (8)0.0108 (7)
N10.0369 (9)0.0286 (9)0.0363 (9)0.0003 (7)0.0034 (7)0.0137 (7)
N20.0332 (8)0.0302 (9)0.0293 (8)0.0044 (7)0.0002 (6)0.0158 (7)
N30.0342 (8)0.0318 (9)0.0273 (8)0.0021 (7)0.0019 (6)0.0105 (6)
N40.0373 (9)0.0377 (10)0.0394 (9)0.0021 (7)0.0085 (7)0.0152 (8)
N50.0296 (8)0.0256 (9)0.0286 (8)0.0016 (6)0.0047 (6)0.0126 (7)
N60.0290 (8)0.0300 (9)0.0282 (8)0.0037 (6)0.0042 (6)0.0105 (6)
C10.0370 (10)0.0353 (11)0.0354 (10)0.0026 (9)0.0004 (8)0.0118 (9)
C20.0356 (10)0.0267 (10)0.0360 (10)0.0059 (8)0.0032 (8)0.0057 (8)
C30.0394 (10)0.0224 (10)0.0327 (10)0.0017 (8)0.0051 (8)0.0107 (8)
C40.0340 (10)0.0250 (9)0.0230 (9)0.0010 (7)0.0075 (7)0.0081 (7)
C50.0325 (10)0.0282 (10)0.0317 (10)0.0041 (8)0.0060 (8)0.0102 (8)
C60.0351 (10)0.0265 (10)0.0272 (9)0.0011 (8)0.0061 (7)0.0102 (8)
C70.0375 (10)0.0317 (10)0.0282 (10)0.0046 (8)0.0023 (8)0.0110 (8)
C80.0403 (11)0.0367 (11)0.0250 (9)0.0016 (8)0.0045 (8)0.0090 (8)
C90.0281 (9)0.0377 (11)0.0271 (9)0.0072 (8)0.0001 (7)0.0151 (8)
C100.0329 (10)0.0528 (13)0.0329 (10)0.0011 (9)0.0028 (8)0.0065 (9)
C110.0503 (13)0.0470 (13)0.0343 (11)0.0125 (10)0.0017 (9)0.0076 (10)
C120.0370 (11)0.0459 (13)0.0347 (11)0.0010 (9)0.0094 (8)0.0132 (9)
C130.0501 (12)0.0345 (11)0.0344 (10)0.0041 (9)0.0126 (9)0.0084 (8)
C140.0433 (11)0.0295 (11)0.0319 (10)0.0020 (8)0.0030 (8)0.0127 (8)
C150.0268 (9)0.0270 (10)0.0262 (9)0.0006 (7)0.0017 (7)0.0105 (7)
C160.0348 (10)0.0290 (10)0.0329 (10)0.0011 (8)0.0060 (8)0.0098 (8)
C170.0309 (9)0.0252 (10)0.0256 (9)0.0040 (7)0.0025 (7)0.0101 (7)
C180.0313 (9)0.0289 (11)0.0292 (10)0.0036 (8)0.0001 (7)0.0103 (8)
C190.0312 (10)0.0342 (11)0.0302 (10)0.0073 (8)0.0014 (7)0.0086 (8)
C200.0329 (10)0.0320 (10)0.0276 (9)0.0022 (8)0.0036 (7)0.0125 (8)
C210.0351 (11)0.0438 (13)0.0311 (10)0.0036 (9)0.0056 (8)0.0067 (9)
C220.0612 (15)0.0515 (15)0.0581 (14)0.0118 (11)0.0262 (11)0.0167 (11)
Geometric parameters (Å, º) top
O1—C61.2258 (19)C5—H50.9300
O2—C81.356 (2)C7—C81.430 (2)
O2—C111.398 (2)C7—H70.9300
O3—C171.2325 (19)C8—C91.347 (2)
O4—C191.350 (2)C9—C101.396 (2)
O4—C221.388 (3)C9—H90.9300
N1—C11.337 (2)C10—C111.333 (3)
N1—C51.338 (2)C10—H100.9300
N2—C61.351 (2)C11—H110.9300
N2—N31.381 (2)C12—C131.377 (3)
N2—H2N0.893 (14)C12—H120.9300
N3—C71.285 (2)C13—C141.379 (3)
N4—C121.333 (2)C13—H130.9300
N4—C161.333 (2)C14—C151.387 (2)
N5—C171.346 (2)C14—H140.9300
N5—N61.383 (2)C15—C161.390 (2)
N5—H5N0.858 (15)C15—C171.494 (2)
N6—C181.279 (2)C16—H160.9300
C1—C21.376 (2)C18—C191.432 (3)
C1—H10.9300C18—H180.9300
C2—C31.371 (2)C19—C201.340 (2)
C2—H20.9300C20—C211.403 (2)
C3—C41.385 (2)C20—H200.9300
C3—H30.9300C21—C221.314 (3)
C4—C51.391 (2)C21—H210.9300
C4—C61.499 (2)C22—H220.9300
C8—O2—C11105.59 (15)C11—C10—C9106.90 (17)
C19—O4—C22105.42 (15)C11—C10—H10126.6
C1—N1—C5117.26 (15)C9—C10—H10126.6
C6—N2—N3119.18 (14)C10—C11—O2109.84 (16)
C6—N2—H2N121.8 (12)C10—C11—H11125.1
N3—N2—H2N117.9 (12)O2—C11—H11125.1
C7—N3—N2114.99 (14)N4—C12—C13124.17 (18)
C12—N4—C16116.25 (16)N4—C12—H12117.9
C17—N5—N6118.33 (14)C13—C12—H12117.9
C17—N5—H5N124.5 (14)C12—C13—C14118.32 (18)
N6—N5—H5N117.2 (14)C12—C13—H13120.8
C18—N6—N5115.34 (14)C14—C13—H13120.8
N1—C1—C2123.62 (17)C13—C14—C15119.56 (17)
N1—C1—H1118.2C13—C14—H14120.2
C2—C1—H1118.2C15—C14—H14120.2
C3—C2—C1118.45 (17)C14—C15—C16116.92 (16)
C3—C2—H2120.8C14—C15—C17118.80 (15)
C1—C2—H2120.8C16—C15—C17124.18 (16)
C2—C3—C4119.73 (15)N4—C16—C15124.78 (17)
C2—C3—H3120.1N4—C16—H16117.6
C4—C3—H3120.1C15—C16—H16117.6
C3—C4—C5117.67 (15)O3—C17—N5122.79 (16)
C3—C4—C6118.95 (14)O3—C17—C15119.94 (15)
C5—C4—C6123.37 (15)N5—C17—C15117.25 (14)
N1—C5—C4123.25 (16)N6—C18—C19121.73 (16)
N1—C5—H5118.4N6—C18—H18119.1
C4—C5—H5118.4C19—C18—H18119.1
O1—C6—N2123.49 (16)C20—C19—O4109.62 (16)
O1—C6—C4120.77 (15)C20—C19—C18130.05 (17)
N2—C6—C4115.74 (14)O4—C19—C18120.31 (16)
N3—C7—C8121.36 (16)C19—C20—C21107.93 (17)
N3—C7—H7119.3C19—C20—H20126.0
C8—C7—H7119.3C21—C20—H20126.0
C9—C8—O2109.95 (15)C22—C21—C20106.02 (18)
C9—C8—C7128.47 (17)C22—C21—H21127.0
O2—C8—C7121.59 (16)C20—C21—H21127.0
C8—C9—C10107.72 (16)C21—C22—O4111.01 (18)
C8—C9—H9126.1C21—C22—H22124.5
C10—C9—H9126.1O4—C22—H22124.5
C6—N2—N3—C7179.93 (16)C8—O2—C11—C100.4 (2)
C17—N5—N6—C18172.91 (14)C16—N4—C12—C130.2 (3)
C5—N1—C1—C21.3 (3)N4—C12—C13—C140.4 (3)
N1—C1—C2—C31.6 (3)C12—C13—C14—C150.8 (3)
C1—C2—C3—C40.4 (3)C13—C14—C15—C160.7 (2)
C2—C3—C4—C50.9 (2)C13—C14—C15—C17176.09 (15)
C2—C3—C4—C6179.60 (16)C12—N4—C16—C150.4 (3)
C1—N1—C5—C40.1 (3)C14—C15—C16—N40.1 (3)
C3—C4—C5—N11.2 (3)C17—C15—C16—N4176.49 (15)
C6—C4—C5—N1179.32 (16)N6—N5—C17—O30.7 (2)
N3—N2—C6—O12.0 (3)N6—N5—C17—C15178.83 (13)
N3—N2—C6—C4178.51 (14)C14—C15—C17—O312.5 (2)
C3—C4—C6—O115.9 (2)C16—C15—C17—O3163.98 (16)
C5—C4—C6—O1163.54 (17)C14—C15—C17—N5169.29 (15)
C3—C4—C6—N2164.56 (15)C16—C15—C17—N514.2 (2)
C5—C4—C6—N216.0 (2)N5—N6—C18—C19177.59 (14)
N2—N3—C7—C8179.07 (15)C22—O4—C19—C201.1 (2)
C11—O2—C8—C90.6 (2)C22—O4—C19—C18179.52 (16)
C11—O2—C8—C7179.48 (16)N6—C18—C19—C20178.28 (17)
N3—C7—C8—C9179.63 (18)N6—C18—C19—O40.2 (2)
N3—C7—C8—O20.5 (3)O4—C19—C20—C210.8 (2)
O2—C8—C9—C100.6 (2)C18—C19—C20—C21179.05 (17)
C7—C8—C9—C10179.48 (18)C19—C20—C21—C220.2 (2)
C8—C9—C10—C110.4 (2)C20—C21—C22—O40.5 (2)
C9—C10—C11—O20.0 (2)C19—O4—C22—C211.0 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the O4/C19–C22 and O2/C8–C11 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N5—H5N···N1i0.86 (2)2.10 (2)2.944 (2)169 (2)
N2—H2N···O30.89 (1)2.08 (2)2.9017 (19)154 (2)
C21—H21···N3ii0.932.583.410 (3)149
C16—H16···N1i0.932.533.370 (3)150
C11—H11···O1iii0.932.513.365 (2)153
C2—H2···O3iv0.932.493.116 (2)125
C10—H10···Cg1v0.932.783.594 (2)146
C12—H12···Cg2vi0.932.753.520 (2)141
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y+1, z+1; (iii) x+2, y, z+1; (iv) x+1, y, z+2; (v) x+2, y+1, z+1; (vi) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC11H9N3O2
Mr215.21
Crystal system, space groupTriclinic, P1
Temperature (K)150
a, b, c (Å)9.441 (2), 10.237 (3), 11.023 (2)
α, β, γ (°)75.10 (2), 85.413 (19), 84.11 (2)
V3)1022.5 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.26 × 0.21 × 0.18
Data collection
DiffractometerBruker P4
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2006)
Tmin, Tmax0.975, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
9430, 3589, 2702
Rint0.023
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.117, 1.09
No. of reflections3589
No. of parameters298
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.29

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the O4/C19–C22 and O2/C8–C11 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N5—H5N···N1i0.858 (15)2.099 (15)2.944 (2)168.5 (18)
N2—H2N···O30.893 (14)2.075 (16)2.9017 (19)153.5 (16)
C21—H21···N3ii0.932.583.410 (3)149.3
C16—H16···N1i0.932.533.370 (3)150.1
C11—H11···O1iii0.932.513.365 (2)152.5
C2—H2···O3iv0.932.493.116 (2)125.1
C10—H10···Cg1v0.932.783.594 (2)146
C12—H12···Cg2vi0.932.753.520 (2)141
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y+1, z+1; (iii) x+2, y, z+1; (iv) x+1, y, z+2; (v) x+2, y+1, z+1; (vi) x, y, z+1.
 

Acknowledgements

The authors are thankful to the National Single Crystal X-ray Diffraction Facility, IIT, Bombay, for providing the single-crystal XRD data. KJ is thankful to the UGC, New Delhi, for the award of a Teacher Fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBakir, M. & Brown, O. (2002). J. Mol. Struct. 609, 129–136.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Patil, P. S., Rao, J. N., Kalluraya, B. & Chantrapromma, S. (2008). Acta Cryst. E64, o1707.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNancy, M., Sithambaresan, M. & Kurup, M. R. P. (2011). Spectrochim. Acta Part A, 79, 1154–1161.  Google Scholar
First citationNeema, A. M. & Kurup, M. R. P. (2011). Spectrochim. Acta Part A, 76, 22–28.  Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds