metal-organic compounds
μ-Oxido-bis[chlorido(4,4′-di-tert-butyl-2,2′-bipyridine-κ2N,N′)dioxidomolybdenum(VI)] 0.2-hydrate
aDepartment of Chemistry, University of Aveiro, CICECO, 3810-193 Aveiro, Portugal, and bEscola Superior de Tecnologia, Instituto Politécnico de Setúbal, 2910-761 Setúbal, Portugal
*Correspondence e-mail: filipe.paz@ua.pt
The title hydrate, [Mo2Cl2O5(C18H24N2)2]·0.2H2O, has been isolated as the oxidation product of [Mo(η3-C3H5)Cl(CO)2(di-t-Bu-bipy)] (where di-t-Bu-bipy is 4,4′-di-tert-butyl-2,2′-bipyridine). A μ-oxide ligand bridges two similar MoCl(di-t-Bu-bipy)O2 units, having the terminal oxide ligands mutually cis, and the chloride and μ-oxide trans to each other. In the binuclear complex, the coordination geometries of the metal atoms can be described as highly distorted octahedra. Individual complexes co-crystallize with a partially occupied water molecule of crystallization (occupancy factor = 0.20; H atoms not located), with the crystal packing being mediated by the need to effectively fill the available space. A number of weak C—H⋯O and C—H⋯Cl interactions are present.
Related literature
For general background to dioxidomolybdenum(VI) complexes, see: Arzoumanian et al. (2006); Jeyakumar & Chand (2009); Kühn et al. (2002); Rodrigues et al. (2004). For studies on molybdenum complexes from our research groups, see: Coelho et al. (2011); Fernandes et al. (2011a,b, 2011); Gago et al. (2009); Nunes et al. (2003); Pereira et al. (2007).
Experimental
Crystal data
|
Refinement
|
|
Data collection: APEX2 (Bruker, 2006); cell SAINT-Plus (Bruker, 2005); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg, 2009); software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S1600536811046952/tk5013sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536811046952/tk5013Isup2.hkl
Chemicals were purchased from commercial sources and used as received. The compound [Mo(η3-C3H5)Cl(CO)2(di-t-Bu-bipy)] (1) was prepared following a literature method (Rodrigues et al., 2004). Thus, 70% aqueous tert-butylhydroperoxide (TBHP) (0.64 mL, 4.60 mmol) was added dropwise to a stirred solution of 1 (0.23 g, 0.46 mmol) in CH3CN (20 mL). After stirring at ambient temperature for 15 h, the resultant yellow solution was filtered off, concentrated, and a very pale yellow solid precipitated after the addition of n-hexane and diethyl ether. The precipitate was filtered, washed with n-hexane and diethyl ether, and vacuum-dried. Yield: 0.14 g, 69%.
The same product (as confirmed by a comparison of FT–IR and 1H NMR spectra, and microanalysis data) was obtained by using a decane solution of TBHP (5–6 M, 10 equiv.) instead of the aqueous solution, with 1 dissolved in CH2Cl2 under otherwise similar conditions (the excess of TBHP was destroyed with MnO2).
Anal. Calcd. for C36H48N4Cl2Mo2O5.0.2H2O (in %): C, 48.96; H, 5.52; N, 6.34. Found (in %): C, 49.47; H, 5.52; N, 6.28. The FT–IR and 1H NMR spectral data were in agreement with published data (Arzoumanian et al., 2006).
Suitable crystals were obtained by the slow diffusion of diethyl ether into a concentrated solution of the compound in CH2Cl2 with a small layer of n-hexane.
Hydrogen atoms bound to carbon were placed in idealized positions and were included in the final structural model in riding-motion approximation with C—H = 0.95 Å (aromatic C—H) and 0.98 Å (—CH3). The isotropic thermal displacement parameters for these atoms were fixed at 1.2×Ueq (aromatic C—H) or 1.5×Ueq (—CH3) of the respective parent carbon atoms.
One water molecule of crystallization was found to be partially occupied and was included in the final structural model with fixed rate of occupancy of 20% (calculated from unrestrained
for the site occupancy). Hydrogen atoms associated with this water molecule could not be located from difference Fourier maps and attempts to include these in calculated positions did not lead stable structural refinements. Nevertheless, the hydrogen atoms associated with this chemical entity have been included in the of the title compound.Dioxomolybdenum(VI) complexes are known to be highly active catalysts in the epoxidation of ═O) or as a bridging µ-oxo (Mo—O—Mo). Compounds with the latter type of bridging group are significantly less studied but have been shown to be intermediates in a handful of interesting catalytic systems (Nunes et al., 2003). Following our on-going interest in the study of this type of family of compounds (Fernandes et al., 2010a,b, 2011) we have recently described the synthesis and structural details of the oxo-µ-oxo complexes [Mo2O4(µ-O)Cl2(DMF)4] (Gago et al., 2009), [Mo2O4(µ-O)Cl2(pyrazole)4] (Pereira et al., 2007), and [Mo2O4(µ-O)Cl2(PzPy)2] (where PzPy stands for 2-(3-pyrazolyl)pyridine) (Coelho et al., 2011). Noteworthy, these complexes were found to be highly active in epoxidation catalysis with tert-butylhydroperoxide. The title compound, a µ-oxo dimer with [Mo2O4(µ-O)Cl2(di-t-Bu-bipy)2] (where di-t-Bu-bipy stands for 4,4'-di-tert-butyl-2,2'-bipyridine) which simultaneously contains terminal Mo═O oxo groups and a bridging µ-oxo one, has been recently synthesized by Arzoumanian et al. (2006) and we now wish to report its at the low temperature of 150 K.
(Kühn et al., 2002; Jeyakumar & Chand, 2009). In these complexes the active metal-oxo may appear with two distinct structural motifs: as a terminal oxo (MoThe ═O groups: while the Mo—Obridge distances are 1.8920 (19) and 1.9274 (19) Å, the Mo—Oterminal distances range from 1.694 (2) to 1.6975 (19) Å; the Mo—Cl distances are 2.4895 (8) and 2.4283 (8) Å and the Mo—N bonds range from 2.304 (2) to 2.330 (2) Å. The cis and trans octahedral angles are in the ranges of 68.95 (8) to 107.35 (10)° and 157.51 (6) to 160.69 (9)°, respectively. The Mo1—O1—Mo2 kink angle through the µ-oxo bridge is 143.50 (10)° which, to the best of our knowledge, constitutes the smallest reported to date for related binuclear dioxomolybdenum(VI) complexes: the analogous value for [Mo2O4(µ-O)Cl2(DMF)4] is ca 175° and that for [Mo2O4(µ-O)Cl2(pyrazole)4] is ca 151°, and those for the two conformers of [Mo2O4(µ-O)Cl2(PzPy)2] are ca 156 and 180°. We attribute this structural feature to the considerable associated with the di-t-Bu-bipy moieties, mostly due to the pendant —CH3 groups. In this context, the two average planes containing the aromatic rings of the two crystallographically independent di-t-Bu-bipy molecules subtend an angle of ca 34°, which contrasts with the parallel nature observed for the two conformers of [Mo2O4(µ-O)Cl2(PzPy)2]. Noteworthy, the torsion angles N1—Mo1···Mo2—N4 and N2—Mo1···Mo2—N3 are -18.40 (7) and -157.03 (9)°, respectively.
of the title compound comprises a whole binuclear C36H48Cl2Mo2N4O5, and a partially occupied (20%) water molecule of crystallization. The binuclear complex is formed by two crystallographically independent Mo(VI) centres bridged via a µ-oxo group imposing a Mo···Mo distance of 3.6273 (4) Å. The chemical environment of these metallic centers is very similar, being composed of a pair of cis-positioned terminal oxo ligands, a chlorido and a N,N-chelating 4,4'-di-tert-butyl-2,2'-bipyridine (di-t-Bu-bipy) molecule as depicted in Fig. 1. The coordination environments around the metal centers can be described as highly distorted octahedra due to, on the one hand, the existence of chlorido ligands (trans-positioned with respect to the µ-oxo ligand) and, on the other, to the typical trans effect of the MoThe crystal packing is mainly driven by the need to effectively fill the available space (van de Waals contacts) in conjunction with several weak supramolecular interactions, namely weak C—H···O and C—H···Cl hydrogen bonding interactions (light blue dashed lines in Fig. 2; see Table 2 for geometric details). The water molecule of crystallization (O1W), which is only statistically present in 1/5 of the asymmetric units, accepts the hydrogen donation from adjacent C—H groups and also acts as hydrogen bond donor to Cl2 and O5 of neighboring molecules (violet dashed lines in Figure 2; see Table 2 for geometrical details). Even though the location of the water molecule permits its full site occupancy, we postulate that the absence of suitable hydrogen bonding partners in the binuclear complexes contributes significantly for its partial occupancy in the crystal structure.
For general background to dioxomolybdenum(VI) complexes, see: Arzoumanian et al. (2006); Jeyakumar & Chand (2009); Kühn et al. (2002); Rodrigues et al. (2004). For studies on molybdenum complexes from our research groups, see: Coelho et al. (2011); Fernandes et al. (2010a,b, 2011); Gago et al. (2009); Nunes et al. (2003); Pereira et al. (2007).
Data collection: APEX2 (Bruker, 2006); cell
SAINT-Plus (Bruker, 2006); data reduction: SAINT-Plus (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. Asymmetric unit of the title compound showing all non-hydrogen atoms represented as thermal ellipsoids drawn at the 50% probability level. The water molecule has a site occupancy factor = 0.20. Hydrogen atoms are represented as small spheres with arbitrary radii and the atomic labeling is provided for all non-hydrogen atoms. | |
Fig. 2. Crystal packing of the title compound viewed in perspective along [010] direction. The highly distorted {MoCl2N2O2} coordination polyhedra are represented as translucent octahedra for clarity. Supramolecular contacts interconnecting adjacent chemical moieties are represented as dashed lines: C—H···O and C—H···Cl in light blue; Owater···O and Owater···Cl in violet. |
[Mo2Cl2O5(C18H24N2)2]·0.2H2O | F(000) = 1808 |
Mr = 883.17 | Dx = 1.487 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 9903 reflections |
a = 16.9997 (7) Å | θ = 2.8–29.1° |
b = 12.7444 (6) Å | µ = 0.82 mm−1 |
c = 18.4609 (8) Å | T = 150 K |
β = 99.582 (2)° | Block, yellow |
V = 3943.8 (3) Å3 | 0.08 × 0.06 × 0.03 mm |
Z = 4 |
Bruker X8 KappaCCD APEXII diffractometer | 10578 independent reflections |
Radiation source: fine-focus sealed tube | 7469 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.050 |
ω and φ scans | θmax = 29.1°, θmin = 3.5° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1997) | h = −23→23 |
Tmin = 0.938, Tmax = 0.976 | k = −16→17 |
54239 measured reflections | l = −24→25 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.040 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.086 | H-atom parameters constrained |
S = 1.02 | w = 1/[σ2(Fo2) + (0.0315P)2 + 3.406P] where P = (Fo2 + 2Fc2)/3 |
10578 reflections | (Δ/σ)max = 0.001 |
463 parameters | Δρmax = 0.96 e Å−3 |
18 restraints | Δρmin = −0.67 e Å−3 |
[Mo2Cl2O5(C18H24N2)2]·0.2H2O | V = 3943.8 (3) Å3 |
Mr = 883.17 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 16.9997 (7) Å | µ = 0.82 mm−1 |
b = 12.7444 (6) Å | T = 150 K |
c = 18.4609 (8) Å | 0.08 × 0.06 × 0.03 mm |
β = 99.582 (2)° |
Bruker X8 KappaCCD APEXII diffractometer | 10578 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1997) | 7469 reflections with I > 2σ(I) |
Tmin = 0.938, Tmax = 0.976 | Rint = 0.050 |
54239 measured reflections |
R[F2 > 2σ(F2)] = 0.040 | 18 restraints |
wR(F2) = 0.086 | H-atom parameters constrained |
S = 1.02 | Δρmax = 0.96 e Å−3 |
10578 reflections | Δρmin = −0.67 e Å−3 |
463 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Mo1 | 0.161140 (13) | 0.78289 (2) | 0.101763 (13) | 0.02009 (7) | |
Mo2 | 0.153567 (14) | 0.63578 (2) | −0.067460 (14) | 0.02215 (7) | |
Cl1 | 0.16494 (4) | 0.87386 (6) | 0.22163 (4) | 0.02652 (16) | |
Cl2 | 0.21012 (5) | 0.51282 (7) | −0.14517 (4) | 0.03473 (19) | |
N1 | 0.11178 (12) | 0.65491 (18) | 0.17242 (13) | 0.0210 (5) | |
N2 | 0.02749 (13) | 0.81233 (19) | 0.10764 (13) | 0.0213 (5) | |
N3 | 0.27507 (13) | 0.59963 (19) | 0.00696 (13) | 0.0223 (5) | |
N4 | 0.14638 (12) | 0.48235 (19) | −0.00290 (12) | 0.0211 (5) | |
O1 | 0.12571 (10) | 0.69242 (15) | 0.02171 (10) | 0.0224 (4) | |
O2 | 0.25605 (11) | 0.73982 (17) | 0.12818 (11) | 0.0276 (5) | |
O3 | 0.16755 (12) | 0.89784 (16) | 0.05679 (12) | 0.0311 (5) | |
O4 | 0.06091 (11) | 0.61851 (17) | −0.11680 (11) | 0.0297 (5) | |
O5 | 0.19330 (13) | 0.74344 (18) | −0.10133 (12) | 0.0360 (5) | |
C1 | 0.15948 (16) | 0.5835 (2) | 0.21063 (16) | 0.0238 (6) | |
H1 | 0.2115 | 0.5743 | 0.1992 | 0.029* | |
C2 | 0.13739 (16) | 0.5228 (2) | 0.26543 (17) | 0.0245 (6) | |
H2 | 0.1739 | 0.4736 | 0.2910 | 0.029* | |
C3 | 0.06192 (16) | 0.5334 (2) | 0.28335 (16) | 0.0263 (7) | |
C4 | 0.01067 (16) | 0.6030 (3) | 0.23986 (17) | 0.0297 (7) | |
H4 | −0.0432 | 0.6088 | 0.2472 | 0.036* | |
C5 | 0.03666 (15) | 0.6629 (2) | 0.18700 (16) | 0.0235 (6) | |
C6 | −0.01214 (16) | 0.7471 (2) | 0.14631 (16) | 0.0232 (6) | |
C7 | −0.09241 (16) | 0.7619 (3) | 0.14974 (17) | 0.0292 (7) | |
H7 | −0.1198 | 0.7126 | 0.1751 | 0.035* | |
C8 | −0.13296 (16) | 0.8487 (3) | 0.11624 (17) | 0.0298 (7) | |
C9 | −0.09027 (17) | 0.9162 (3) | 0.07927 (17) | 0.0295 (7) | |
H9 | −0.1152 | 0.9770 | 0.0561 | 0.035* | |
C10 | −0.01101 (17) | 0.8954 (2) | 0.07589 (16) | 0.0245 (6) | |
H10 | 0.0171 | 0.9427 | 0.0497 | 0.029* | |
C11 | 0.03393 (19) | 0.4783 (3) | 0.34808 (19) | 0.0385 (8) | |
C12 | 0.0029 (3) | 0.5616 (4) | 0.3962 (2) | 0.0777 (16) | |
H12A | 0.0464 | 0.6095 | 0.4158 | 0.117* | |
H12B | −0.0172 | 0.5273 | 0.4370 | 0.117* | |
H12C | −0.0403 | 0.6013 | 0.3666 | 0.117* | |
C13 | −0.0336 (2) | 0.4023 (4) | 0.3180 (2) | 0.0666 (14) | |
H13A | −0.0763 | 0.4408 | 0.2868 | 0.100* | |
H13B | −0.0547 | 0.3701 | 0.3590 | 0.100* | |
H13C | −0.0129 | 0.3474 | 0.2890 | 0.100* | |
C14 | 0.1016 (2) | 0.4186 (3) | 0.3952 (2) | 0.0461 (10) | |
H14A | 0.1204 | 0.3627 | 0.3659 | 0.069* | |
H14B | 0.0822 | 0.3878 | 0.4376 | 0.069* | |
H14C | 0.1456 | 0.4669 | 0.4123 | 0.069* | |
C15 | −0.22161 (17) | 0.8645 (3) | 0.1206 (2) | 0.0397 (9) | |
C16 | −0.2495 (2) | 0.9713 (4) | 0.0924 (4) | 0.0971 (19) | |
H16A | −0.3076 | 0.9757 | 0.0886 | 0.146* | |
H16B | −0.2348 | 0.9824 | 0.0438 | 0.146* | |
H16C | −0.2243 | 1.0252 | 0.1264 | 0.146* | |
C17 | −0.2693 (2) | 0.7825 (4) | 0.0698 (3) | 0.0681 (13) | |
H17A | −0.2527 | 0.7118 | 0.0870 | 0.102* | |
H17B | −0.2590 | 0.7920 | 0.0195 | 0.102* | |
H17C | −0.3264 | 0.7914 | 0.0706 | 0.102* | |
C18 | −0.2369 (3) | 0.8407 (6) | 0.1960 (3) | 0.106 (2) | |
H18A | −0.2121 | 0.8948 | 0.2301 | 0.159* | |
H18B | −0.2142 | 0.7720 | 0.2115 | 0.159* | |
H18C | −0.2946 | 0.8397 | 0.1960 | 0.159* | |
C19 | 0.33976 (16) | 0.6593 (2) | 0.00679 (17) | 0.0274 (7) | |
H19 | 0.3352 | 0.7203 | −0.0232 | 0.033* | |
C20 | 0.41289 (16) | 0.6358 (3) | 0.04836 (17) | 0.0279 (7) | |
H20 | 0.4572 | 0.6806 | 0.0465 | 0.033* | |
C21 | 0.42233 (15) | 0.5476 (2) | 0.09269 (16) | 0.0241 (6) | |
C22 | 0.35406 (15) | 0.4888 (2) | 0.09491 (16) | 0.0243 (6) | |
H22 | 0.3568 | 0.4295 | 0.1265 | 0.029* | |
C23 | 0.28184 (15) | 0.5150 (2) | 0.05182 (15) | 0.0206 (6) | |
C24 | 0.20800 (15) | 0.4519 (2) | 0.04866 (15) | 0.0209 (6) | |
C25 | 0.20205 (15) | 0.3673 (2) | 0.09379 (15) | 0.0213 (6) | |
H25 | 0.2459 | 0.3494 | 0.1307 | 0.026* | |
C26 | 0.13233 (16) | 0.3073 (2) | 0.08606 (15) | 0.0211 (6) | |
C27 | 0.07065 (16) | 0.3385 (2) | 0.03097 (16) | 0.0234 (6) | |
H27 | 0.0223 | 0.2995 | 0.0223 | 0.028* | |
C28 | 0.07950 (15) | 0.4252 (2) | −0.01084 (16) | 0.0232 (6) | |
H28 | 0.0360 | 0.4457 | −0.0473 | 0.028* | |
C29 | 0.50289 (16) | 0.5150 (3) | 0.13790 (18) | 0.0304 (7) | |
C30 | 0.50366 (18) | 0.5490 (3) | 0.21771 (19) | 0.0435 (9) | |
H30A | 0.5534 | 0.5256 | 0.2481 | 0.065* | |
H30B | 0.4582 | 0.5174 | 0.2359 | 0.065* | |
H30C | 0.4999 | 0.6256 | 0.2201 | 0.065* | |
C31 | 0.57226 (17) | 0.5677 (3) | 0.1089 (2) | 0.0420 (9) | |
H31A | 0.5688 | 0.6439 | 0.1147 | 0.063* | |
H31B | 0.5696 | 0.5505 | 0.0568 | 0.063* | |
H31C | 0.6229 | 0.5423 | 0.1367 | 0.063* | |
C32 | 0.51307 (18) | 0.3958 (3) | 0.1352 (2) | 0.0428 (9) | |
H32A | 0.5029 | 0.3722 | 0.0840 | 0.064* | |
H32B | 0.4752 | 0.3619 | 0.1624 | 0.064* | |
H32C | 0.5676 | 0.3770 | 0.1575 | 0.064* | |
C33 | 0.12703 (17) | 0.2135 (2) | 0.13614 (16) | 0.0260 (6) | |
C34 | 0.1347 (2) | 0.2522 (3) | 0.21501 (17) | 0.0394 (9) | |
H34A | 0.1857 | 0.2888 | 0.2288 | 0.059* | |
H34B | 0.1325 | 0.1923 | 0.2479 | 0.059* | |
H34C | 0.0908 | 0.3006 | 0.2192 | 0.059* | |
C35 | 0.04774 (18) | 0.1555 (3) | 0.11683 (17) | 0.0319 (7) | |
H35A | 0.0043 | 0.2012 | 0.1265 | 0.048* | |
H35B | 0.0490 | 0.0919 | 0.1469 | 0.048* | |
H35C | 0.0391 | 0.1362 | 0.0647 | 0.048* | |
C36 | 0.1950 (2) | 0.1374 (3) | 0.1283 (2) | 0.0459 (9) | |
H36A | 0.1899 | 0.1143 | 0.0771 | 0.069* | |
H36B | 0.1922 | 0.0763 | 0.1601 | 0.069* | |
H36C | 0.2464 | 0.1729 | 0.1428 | 0.069* | |
O1W | −0.1847 (9) | 0.6639 (13) | 0.2975 (10) | 0.078 (5) | 0.20 |
U11 | U22 | U33 | U12 | U13 | U23 | |
Mo1 | 0.01580 (10) | 0.02716 (14) | 0.01656 (13) | −0.00222 (10) | 0.00054 (8) | −0.00064 (11) |
Mo2 | 0.02064 (11) | 0.02864 (15) | 0.01613 (13) | 0.00094 (10) | 0.00001 (9) | 0.00249 (11) |
Cl1 | 0.0231 (3) | 0.0348 (4) | 0.0201 (4) | −0.0005 (3) | −0.0010 (3) | −0.0053 (3) |
Cl2 | 0.0354 (4) | 0.0461 (5) | 0.0232 (4) | 0.0068 (4) | 0.0064 (3) | −0.0019 (4) |
N1 | 0.0157 (10) | 0.0261 (14) | 0.0201 (13) | −0.0015 (9) | 0.0001 (9) | −0.0008 (10) |
N2 | 0.0193 (11) | 0.0258 (14) | 0.0169 (13) | 0.0015 (9) | −0.0026 (9) | −0.0009 (10) |
N3 | 0.0197 (11) | 0.0278 (14) | 0.0197 (13) | −0.0008 (10) | 0.0042 (9) | −0.0008 (10) |
N4 | 0.0175 (10) | 0.0289 (14) | 0.0150 (12) | −0.0024 (9) | −0.0030 (9) | 0.0006 (10) |
O1 | 0.0183 (9) | 0.0286 (12) | 0.0188 (11) | 0.0011 (8) | −0.0015 (8) | −0.0022 (8) |
O2 | 0.0177 (9) | 0.0421 (13) | 0.0222 (11) | −0.0017 (9) | 0.0009 (8) | −0.0067 (9) |
O3 | 0.0377 (12) | 0.0301 (12) | 0.0259 (12) | −0.0038 (9) | 0.0067 (10) | 0.0005 (9) |
O4 | 0.0260 (10) | 0.0400 (13) | 0.0199 (11) | 0.0023 (9) | −0.0052 (8) | −0.0001 (9) |
O5 | 0.0374 (12) | 0.0373 (14) | 0.0332 (13) | −0.0015 (10) | 0.0059 (10) | 0.0100 (11) |
C1 | 0.0184 (12) | 0.0276 (17) | 0.0244 (16) | 0.0005 (11) | 0.0008 (11) | −0.0013 (13) |
C2 | 0.0202 (13) | 0.0260 (16) | 0.0257 (17) | 0.0038 (11) | −0.0011 (12) | 0.0026 (13) |
C3 | 0.0223 (13) | 0.0332 (18) | 0.0221 (16) | 0.0011 (12) | 0.0001 (12) | 0.0064 (13) |
C4 | 0.0164 (13) | 0.043 (2) | 0.0296 (18) | 0.0021 (12) | 0.0049 (12) | 0.0090 (14) |
C5 | 0.0167 (12) | 0.0327 (17) | 0.0204 (15) | −0.0003 (11) | 0.0008 (11) | 0.0024 (13) |
C6 | 0.0195 (13) | 0.0300 (17) | 0.0189 (15) | 0.0008 (11) | −0.0007 (11) | 0.0022 (12) |
C7 | 0.0168 (13) | 0.044 (2) | 0.0259 (17) | 0.0010 (13) | 0.0016 (12) | 0.0048 (14) |
C8 | 0.0201 (13) | 0.043 (2) | 0.0248 (17) | 0.0051 (13) | −0.0012 (12) | −0.0036 (14) |
C9 | 0.0282 (15) | 0.0311 (18) | 0.0256 (17) | 0.0071 (13) | −0.0059 (13) | 0.0003 (14) |
C10 | 0.0277 (14) | 0.0245 (16) | 0.0189 (16) | −0.0003 (12) | −0.0032 (12) | −0.0014 (12) |
C11 | 0.0338 (17) | 0.051 (2) | 0.033 (2) | 0.0093 (16) | 0.0107 (14) | 0.0173 (17) |
C12 | 0.107 (4) | 0.090 (4) | 0.047 (3) | 0.053 (3) | 0.043 (3) | 0.033 (3) |
C13 | 0.0322 (19) | 0.099 (4) | 0.070 (3) | −0.011 (2) | 0.0104 (19) | 0.048 (3) |
C14 | 0.0408 (19) | 0.058 (3) | 0.040 (2) | 0.0081 (17) | 0.0077 (16) | 0.0235 (19) |
C15 | 0.0185 (14) | 0.059 (2) | 0.040 (2) | 0.0117 (15) | 0.0008 (13) | 0.0013 (18) |
C16 | 0.037 (2) | 0.072 (3) | 0.186 (6) | 0.021 (2) | 0.029 (3) | 0.006 (4) |
C17 | 0.0261 (17) | 0.096 (4) | 0.083 (3) | −0.005 (2) | 0.0089 (19) | −0.006 (3) |
C18 | 0.048 (2) | 0.219 (6) | 0.056 (3) | 0.055 (3) | 0.023 (2) | 0.010 (4) |
C19 | 0.0246 (14) | 0.0271 (17) | 0.0318 (18) | 0.0008 (12) | 0.0084 (13) | 0.0010 (14) |
C20 | 0.0179 (13) | 0.0360 (18) | 0.0302 (18) | −0.0029 (12) | 0.0057 (12) | −0.0050 (14) |
C21 | 0.0188 (13) | 0.0330 (18) | 0.0198 (16) | 0.0008 (12) | 0.0013 (11) | −0.0062 (13) |
C22 | 0.0201 (13) | 0.0294 (17) | 0.0230 (16) | 0.0016 (12) | 0.0025 (11) | −0.0003 (13) |
C23 | 0.0175 (12) | 0.0281 (16) | 0.0160 (15) | 0.0000 (11) | 0.0020 (10) | −0.0008 (12) |
C24 | 0.0186 (12) | 0.0260 (16) | 0.0163 (15) | −0.0006 (11) | −0.0024 (10) | −0.0034 (12) |
C25 | 0.0201 (12) | 0.0250 (16) | 0.0166 (14) | −0.0008 (11) | −0.0033 (11) | 0.0003 (12) |
C26 | 0.0221 (13) | 0.0240 (16) | 0.0161 (15) | −0.0014 (11) | 0.0000 (11) | −0.0022 (12) |
C27 | 0.0204 (13) | 0.0268 (17) | 0.0212 (16) | −0.0040 (11) | −0.0018 (11) | −0.0022 (12) |
C28 | 0.0189 (12) | 0.0306 (17) | 0.0178 (15) | −0.0008 (11) | −0.0039 (11) | −0.0023 (13) |
C29 | 0.0168 (13) | 0.045 (2) | 0.0282 (18) | 0.0030 (13) | 0.0011 (12) | −0.0047 (15) |
C30 | 0.0240 (15) | 0.072 (3) | 0.031 (2) | 0.0066 (16) | −0.0046 (14) | −0.0089 (18) |
C31 | 0.0182 (14) | 0.064 (3) | 0.043 (2) | 0.0004 (15) | 0.0031 (14) | 0.0020 (19) |
C32 | 0.0232 (15) | 0.052 (2) | 0.051 (2) | 0.0094 (15) | −0.0012 (15) | −0.0005 (18) |
C33 | 0.0273 (14) | 0.0306 (17) | 0.0182 (15) | −0.0062 (13) | −0.0013 (11) | 0.0023 (13) |
C34 | 0.0481 (19) | 0.046 (2) | 0.0210 (18) | −0.0263 (16) | −0.0025 (15) | −0.0002 (15) |
C35 | 0.0388 (17) | 0.0327 (19) | 0.0199 (17) | −0.0130 (14) | −0.0075 (13) | 0.0037 (14) |
C36 | 0.0426 (19) | 0.034 (2) | 0.060 (3) | 0.0063 (16) | 0.0040 (18) | 0.0164 (18) |
O1W | 0.055 (9) | 0.079 (12) | 0.105 (14) | −0.006 (8) | 0.029 (9) | 0.015 (10) |
Mo1—O1 | 1.8920 (19) | C15—C17 | 1.541 (5) |
Mo1—O2 | 1.6972 (19) | C16—H16A | 0.9800 |
Mo1—O3 | 1.696 (2) | C16—H16B | 0.9800 |
Mo1—N1 | 2.330 (2) | C16—H16C | 0.9800 |
Mo1—N2 | 2.323 (2) | C17—H17A | 0.9800 |
Mo1—Cl1 | 2.4895 (8) | C17—H17B | 0.9800 |
Mo2—O1 | 1.9274 (19) | C17—H17C | 0.9800 |
Mo2—O4 | 1.6975 (19) | C18—H18A | 0.9800 |
Mo2—O5 | 1.694 (2) | C18—H18B | 0.9800 |
Mo2—N3 | 2.328 (2) | C18—H18C | 0.9800 |
Mo2—N4 | 2.304 (2) | C19—C20 | 1.381 (4) |
Mo2—Cl2 | 2.4283 (8) | C19—H19 | 0.9500 |
N1—C1 | 1.339 (3) | C20—C21 | 1.384 (4) |
N1—C5 | 1.352 (3) | C20—H20 | 0.9500 |
N2—C10 | 1.329 (4) | C21—C22 | 1.388 (4) |
N2—C6 | 1.347 (4) | C21—C29 | 1.537 (4) |
N3—C19 | 1.337 (4) | C22—C23 | 1.388 (4) |
N3—C23 | 1.353 (4) | C22—H22 | 0.9500 |
N4—C28 | 1.338 (3) | C23—C24 | 1.484 (4) |
N4—C24 | 1.350 (3) | C24—C25 | 1.377 (4) |
C1—C2 | 1.375 (4) | C25—C26 | 1.397 (4) |
C1—H1 | 0.9500 | C25—H25 | 0.9500 |
C2—C3 | 1.384 (4) | C26—C27 | 1.391 (4) |
C2—H2 | 0.9500 | C26—C33 | 1.523 (4) |
C3—C4 | 1.399 (4) | C27—C28 | 1.371 (4) |
C3—C11 | 1.529 (4) | C27—H27 | 0.9500 |
C4—C5 | 1.369 (4) | C28—H28 | 0.9500 |
C4—H4 | 0.9500 | C29—C31 | 1.529 (4) |
C5—C6 | 1.482 (4) | C29—C32 | 1.531 (5) |
C6—C7 | 1.389 (4) | C29—C30 | 1.534 (5) |
C7—C8 | 1.393 (4) | C30—H30A | 0.9800 |
C7—H7 | 0.9500 | C30—H30B | 0.9800 |
C8—C9 | 1.378 (4) | C30—H30C | 0.9800 |
C8—C15 | 1.536 (4) | C31—H31A | 0.9800 |
C9—C10 | 1.385 (4) | C31—H31B | 0.9800 |
C9—H9 | 0.9500 | C31—H31C | 0.9800 |
C10—H10 | 0.9500 | C32—H32A | 0.9800 |
C11—C14 | 1.524 (4) | C32—H32B | 0.9800 |
C11—C13 | 1.533 (5) | C32—H32C | 0.9800 |
C11—C12 | 1.534 (6) | C33—C34 | 1.522 (4) |
C12—H12A | 0.9800 | C33—C35 | 1.526 (4) |
C12—H12B | 0.9800 | C33—C36 | 1.534 (4) |
C12—H12C | 0.9800 | C34—H34A | 0.9800 |
C13—H13A | 0.9800 | C34—H34B | 0.9800 |
C13—H13B | 0.9800 | C34—H34C | 0.9800 |
C13—H13C | 0.9800 | C35—H35A | 0.9800 |
C14—H14A | 0.9800 | C35—H35B | 0.9800 |
C14—H14B | 0.9800 | C35—H35C | 0.9800 |
C14—H14C | 0.9800 | C36—H36A | 0.9800 |
C15—C18 | 1.490 (6) | C36—H36B | 0.9800 |
C15—C16 | 1.504 (6) | C36—H36C | 0.9800 |
O3—Mo1—O2 | 106.53 (10) | C18—C15—C17 | 105.9 (4) |
O3—Mo1—O1 | 100.49 (9) | C16—C15—C17 | 107.4 (4) |
O2—Mo1—O1 | 101.02 (9) | C8—C15—C17 | 107.5 (3) |
O3—Mo1—N2 | 91.51 (9) | C15—C16—H16A | 109.5 |
O2—Mo1—N2 | 158.31 (9) | C15—C16—H16B | 109.5 |
O1—Mo1—N2 | 87.03 (8) | H16A—C16—H16B | 109.5 |
O3—Mo1—N1 | 159.54 (9) | C15—C16—H16C | 109.5 |
O2—Mo1—N1 | 91.52 (9) | H16A—C16—H16C | 109.5 |
O1—Mo1—N1 | 85.02 (8) | H16B—C16—H16C | 109.5 |
N2—Mo1—N1 | 68.95 (8) | C15—C17—H17A | 109.5 |
O3—Mo1—Cl1 | 92.21 (8) | C15—C17—H17B | 109.5 |
O2—Mo1—Cl1 | 90.71 (7) | H17A—C17—H17B | 109.5 |
O1—Mo1—Cl1 | 159.37 (6) | C15—C17—H17C | 109.5 |
N2—Mo1—Cl1 | 76.36 (6) | H17A—C17—H17C | 109.5 |
N1—Mo1—Cl1 | 77.70 (6) | H17B—C17—H17C | 109.5 |
O5—Mo2—O4 | 107.35 (10) | C15—C18—H18A | 109.5 |
O5—Mo2—O1 | 100.46 (10) | C15—C18—H18B | 109.5 |
O4—Mo2—O1 | 99.73 (9) | H18A—C18—H18B | 109.5 |
O5—Mo2—N4 | 159.56 (9) | C15—C18—H18C | 109.5 |
O4—Mo2—N4 | 92.48 (9) | H18A—C18—H18C | 109.5 |
O1—Mo2—N4 | 80.46 (8) | H18B—C18—H18C | 109.5 |
O5—Mo2—N3 | 90.52 (9) | N3—C19—C20 | 122.7 (3) |
O4—Mo2—N3 | 160.69 (9) | N3—C19—H19 | 118.7 |
O1—Mo2—N3 | 83.69 (8) | C20—C19—H19 | 118.7 |
N4—Mo2—N3 | 69.21 (8) | C19—C20—C21 | 120.7 (3) |
O5—Mo2—Cl2 | 94.77 (8) | C19—C20—H20 | 119.7 |
O4—Mo2—Cl2 | 91.29 (7) | C21—C20—H20 | 119.7 |
O1—Mo2—Cl2 | 157.51 (6) | C20—C21—C22 | 116.2 (3) |
N4—Mo2—Cl2 | 79.53 (6) | C20—C21—C29 | 123.0 (3) |
N3—Mo2—Cl2 | 79.71 (6) | C22—C21—C29 | 120.8 (3) |
C1—N1—C5 | 117.1 (2) | C21—C22—C23 | 121.1 (3) |
C1—N1—Mo1 | 121.85 (18) | C21—C22—H22 | 119.4 |
C5—N1—Mo1 | 119.91 (18) | C23—C22—H22 | 119.4 |
C10—N2—C6 | 118.2 (2) | N3—C23—C22 | 121.3 (3) |
C10—N2—Mo1 | 121.46 (19) | N3—C23—C24 | 115.0 (2) |
C6—N2—Mo1 | 120.28 (18) | C22—C23—C24 | 123.6 (3) |
C19—N3—C23 | 117.9 (2) | N4—C24—C25 | 121.7 (2) |
C19—N3—Mo2 | 122.4 (2) | N4—C24—C23 | 115.1 (2) |
C23—N3—Mo2 | 119.71 (17) | C25—C24—C23 | 123.2 (2) |
C28—N4—C24 | 117.8 (2) | C24—C25—C26 | 120.9 (2) |
C28—N4—Mo2 | 121.53 (18) | C24—C25—H25 | 119.6 |
C24—N4—Mo2 | 120.46 (18) | C26—C25—H25 | 119.6 |
Mo1—O1—Mo2 | 143.50 (10) | C27—C26—C25 | 116.2 (3) |
N1—C1—C2 | 123.7 (3) | C27—C26—C33 | 123.6 (2) |
N1—C1—H1 | 118.2 | C25—C26—C33 | 120.1 (2) |
C2—C1—H1 | 118.2 | C28—C27—C26 | 120.1 (3) |
C1—C2—C3 | 119.9 (3) | C28—C27—H27 | 119.9 |
C1—C2—H2 | 120.0 | C26—C27—H27 | 119.9 |
C3—C2—H2 | 120.0 | N4—C28—C27 | 123.3 (3) |
C2—C3—C4 | 116.0 (3) | N4—C28—H28 | 118.4 |
C2—C3—C11 | 124.3 (3) | C27—C28—H28 | 118.4 |
C4—C3—C11 | 119.6 (3) | C31—C29—C32 | 109.0 (3) |
C5—C4—C3 | 121.2 (3) | C31—C29—C30 | 109.2 (3) |
C5—C4—H4 | 119.4 | C32—C29—C30 | 109.2 (3) |
C3—C4—H4 | 119.4 | C31—C29—C21 | 111.2 (3) |
N1—C5—C4 | 121.8 (3) | C32—C29—C21 | 110.2 (3) |
N1—C5—C6 | 114.9 (2) | C30—C29—C21 | 108.1 (2) |
C4—C5—C6 | 123.0 (3) | C29—C30—H30A | 109.5 |
N2—C6—C7 | 121.4 (3) | C29—C30—H30B | 109.5 |
N2—C6—C5 | 115.4 (2) | H30A—C30—H30B | 109.5 |
C7—C6—C5 | 123.1 (3) | C29—C30—H30C | 109.5 |
C6—C7—C8 | 120.3 (3) | H30A—C30—H30C | 109.5 |
C6—C7—H7 | 119.8 | H30B—C30—H30C | 109.5 |
C8—C7—H7 | 119.8 | C29—C31—H31A | 109.5 |
C9—C8—C7 | 117.0 (3) | C29—C31—H31B | 109.5 |
C9—C8—C15 | 123.1 (3) | H31A—C31—H31B | 109.5 |
C7—C8—C15 | 119.9 (3) | C29—C31—H31C | 109.5 |
C8—C9—C10 | 120.0 (3) | H31A—C31—H31C | 109.5 |
C8—C9—H9 | 120.0 | H31B—C31—H31C | 109.5 |
C10—C9—H9 | 120.0 | C29—C32—H32A | 109.5 |
N2—C10—C9 | 123.0 (3) | C29—C32—H32B | 109.5 |
N2—C10—H10 | 118.5 | H32A—C32—H32B | 109.5 |
C9—C10—H10 | 118.5 | C29—C32—H32C | 109.5 |
C14—C11—C3 | 111.8 (3) | H32A—C32—H32C | 109.5 |
C14—C11—C13 | 109.9 (3) | H32B—C32—H32C | 109.5 |
C3—C11—C13 | 108.6 (3) | C34—C33—C26 | 108.7 (3) |
C14—C11—C12 | 108.4 (3) | C34—C33—C35 | 108.2 (3) |
C3—C11—C12 | 108.5 (3) | C26—C33—C35 | 112.2 (2) |
C13—C11—C12 | 109.8 (3) | C34—C33—C36 | 110.4 (3) |
C11—C12—H12A | 109.5 | C26—C33—C36 | 108.5 (3) |
C11—C12—H12B | 109.5 | C35—C33—C36 | 108.8 (3) |
H12A—C12—H12B | 109.5 | C33—C34—H34A | 109.5 |
C11—C12—H12C | 109.5 | C33—C34—H34B | 109.5 |
H12A—C12—H12C | 109.5 | H34A—C34—H34B | 109.5 |
H12B—C12—H12C | 109.5 | C33—C34—H34C | 109.5 |
C11—C13—H13A | 109.5 | H34A—C34—H34C | 109.5 |
C11—C13—H13B | 109.5 | H34B—C34—H34C | 109.5 |
H13A—C13—H13B | 109.5 | C33—C35—H35A | 109.5 |
C11—C13—H13C | 109.5 | C33—C35—H35B | 109.5 |
H13A—C13—H13C | 109.5 | H35A—C35—H35B | 109.5 |
H13B—C13—H13C | 109.5 | C33—C35—H35C | 109.5 |
C11—C14—H14A | 109.5 | H35A—C35—H35C | 109.5 |
C11—C14—H14B | 109.5 | H35B—C35—H35C | 109.5 |
H14A—C14—H14B | 109.5 | C33—C36—H36A | 109.5 |
C11—C14—H14C | 109.5 | C33—C36—H36B | 109.5 |
H14A—C14—H14C | 109.5 | H36A—C36—H36B | 109.5 |
H14B—C14—H14C | 109.5 | C33—C36—H36C | 109.5 |
C18—C15—C16 | 114.4 (4) | H36A—C36—H36C | 109.5 |
C18—C15—C8 | 110.3 (3) | H36B—C36—H36C | 109.5 |
C16—C15—C8 | 110.9 (3) | ||
O3—Mo1—N1—C1 | −154.4 (3) | N1—C5—C6—N2 | −8.0 (4) |
O2—Mo1—N1—C1 | −2.2 (2) | C4—C5—C6—N2 | 166.9 (3) |
O1—Mo1—N1—C1 | 98.8 (2) | N1—C5—C6—C7 | 174.8 (3) |
N2—Mo1—N1—C1 | −172.5 (2) | C4—C5—C6—C7 | −10.3 (5) |
Cl1—Mo1—N1—C1 | −92.6 (2) | N2—C6—C7—C8 | −3.5 (5) |
O3—Mo1—N1—C5 | 13.1 (4) | C5—C6—C7—C8 | 173.5 (3) |
O2—Mo1—N1—C5 | 165.3 (2) | C6—C7—C8—C9 | 1.2 (5) |
O1—Mo1—N1—C5 | −93.7 (2) | C6—C7—C8—C15 | −179.8 (3) |
N2—Mo1—N1—C5 | −5.0 (2) | C7—C8—C9—C10 | 0.8 (5) |
Cl1—Mo1—N1—C5 | 74.9 (2) | C15—C8—C9—C10 | −178.2 (3) |
O3—Mo1—N2—C10 | 3.8 (2) | C6—N2—C10—C9 | −1.7 (4) |
O2—Mo1—N2—C10 | 150.5 (3) | Mo1—N2—C10—C9 | −179.0 (2) |
O1—Mo1—N2—C10 | −96.7 (2) | C8—C9—C10—N2 | −0.6 (5) |
N1—Mo1—N2—C10 | 177.5 (2) | C2—C3—C11—C14 | 5.6 (5) |
Cl1—Mo1—N2—C10 | 95.7 (2) | C4—C3—C11—C14 | −171.7 (3) |
O3—Mo1—N2—C6 | −173.5 (2) | C2—C3—C11—C13 | −115.8 (4) |
O2—Mo1—N2—C6 | −26.7 (4) | C4—C3—C11—C13 | 67.0 (4) |
O1—Mo1—N2—C6 | 86.1 (2) | C2—C3—C11—C12 | 125.0 (4) |
N1—Mo1—N2—C6 | 0.3 (2) | C4—C3—C11—C12 | −52.2 (4) |
Cl1—Mo1—N2—C6 | −81.6 (2) | C9—C8—C15—C18 | −138.6 (4) |
O5—Mo2—N3—C19 | −1.0 (2) | C7—C8—C15—C18 | 42.5 (5) |
O4—Mo2—N3—C19 | 157.1 (3) | C9—C8—C15—C16 | −10.8 (5) |
O1—Mo2—N3—C19 | −101.5 (2) | C7—C8—C15—C16 | 170.3 (4) |
N4—Mo2—N3—C19 | 176.4 (2) | C9—C8—C15—C17 | 106.4 (4) |
Cl2—Mo2—N3—C19 | 93.7 (2) | C7—C8—C15—C17 | −72.6 (4) |
O5—Mo2—N3—C23 | 179.7 (2) | C23—N3—C19—C20 | 2.2 (4) |
O4—Mo2—N3—C23 | −22.2 (4) | Mo2—N3—C19—C20 | −177.1 (2) |
O1—Mo2—N3—C23 | 79.2 (2) | N3—C19—C20—C21 | 0.1 (5) |
N4—Mo2—N3—C23 | −3.0 (2) | C19—C20—C21—C22 | −2.8 (4) |
Cl2—Mo2—N3—C23 | −85.6 (2) | C19—C20—C21—C29 | 177.6 (3) |
O5—Mo2—N4—C28 | −171.6 (3) | C20—C21—C22—C23 | 3.2 (4) |
O4—Mo2—N4—C28 | −5.4 (2) | C29—C21—C22—C23 | −177.2 (3) |
O1—Mo2—N4—C28 | 94.0 (2) | C19—N3—C23—C22 | −1.8 (4) |
N3—Mo2—N4—C28 | −179.2 (2) | Mo2—N3—C23—C22 | 177.6 (2) |
Cl2—Mo2—N4—C28 | −96.3 (2) | C19—N3—C23—C24 | −179.5 (3) |
O5—Mo2—N4—C24 | 13.8 (4) | Mo2—N3—C23—C24 | −0.1 (3) |
O4—Mo2—N4—C24 | 179.9 (2) | C21—C22—C23—N3 | −1.0 (4) |
O1—Mo2—N4—C24 | −80.6 (2) | C21—C22—C23—C24 | 176.5 (3) |
N3—Mo2—N4—C24 | 6.2 (2) | C28—N4—C24—C25 | −2.3 (4) |
Cl2—Mo2—N4—C24 | 89.1 (2) | Mo2—N4—C24—C25 | 172.5 (2) |
O3—Mo1—O1—Mo2 | 60.75 (19) | C28—N4—C24—C23 | 176.7 (2) |
O2—Mo1—O1—Mo2 | −48.57 (19) | Mo2—N4—C24—C23 | −8.5 (3) |
N2—Mo1—O1—Mo2 | 151.74 (18) | N3—C23—C24—N4 | 5.4 (4) |
N1—Mo1—O1—Mo2 | −139.15 (18) | C22—C23—C24—N4 | −172.2 (3) |
Cl1—Mo1—O1—Mo2 | −172.16 (6) | N3—C23—C24—C25 | −175.6 (3) |
O5—Mo2—O1—Mo1 | −40.34 (19) | C22—C23—C24—C25 | 6.8 (4) |
O4—Mo2—O1—Mo1 | −150.18 (18) | N4—C24—C25—C26 | 2.1 (4) |
N4—Mo2—O1—Mo1 | 118.93 (18) | C23—C24—C25—C26 | −176.8 (3) |
N3—Mo2—O1—Mo1 | 49.02 (18) | C24—C25—C26—C27 | −0.1 (4) |
Cl2—Mo2—O1—Mo1 | 91.5 (2) | C24—C25—C26—C33 | 179.6 (3) |
C5—N1—C1—C2 | −3.3 (4) | C25—C26—C27—C28 | −1.7 (4) |
Mo1—N1—C1—C2 | 164.5 (2) | C33—C26—C27—C28 | 178.7 (3) |
N1—C1—C2—C3 | 0.4 (5) | C24—N4—C28—C27 | 0.5 (4) |
C1—C2—C3—C4 | 3.8 (4) | Mo2—N4—C28—C27 | −174.3 (2) |
C1—C2—C3—C11 | −173.6 (3) | C26—C27—C28—N4 | 1.5 (5) |
C2—C3—C4—C5 | −5.2 (5) | C20—C21—C29—C31 | −18.8 (4) |
C11—C3—C4—C5 | 172.3 (3) | C22—C21—C29—C31 | 161.6 (3) |
C1—N1—C5—C4 | 1.8 (4) | C20—C21—C29—C32 | −139.8 (3) |
Mo1—N1—C5—C4 | −166.3 (2) | C22—C21—C29—C32 | 40.6 (4) |
C1—N1—C5—C6 | 176.7 (2) | C20—C21—C29—C30 | 101.0 (4) |
Mo1—N1—C5—C6 | 8.6 (3) | C22—C21—C29—C30 | −78.6 (4) |
C3—C4—C5—N1 | 2.6 (5) | C27—C26—C33—C34 | −117.4 (3) |
C3—C4—C5—C6 | −172.0 (3) | C25—C26—C33—C34 | 62.9 (3) |
C10—N2—C6—C7 | 3.7 (4) | C27—C26—C33—C35 | 2.2 (4) |
Mo1—N2—C6—C7 | −178.9 (2) | C25—C26—C33—C35 | −177.4 (3) |
C10—N2—C6—C5 | −173.5 (2) | C27—C26—C33—C36 | 122.4 (3) |
Mo1—N2—C6—C5 | 3.8 (3) | C25—C26—C33—C36 | −57.2 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
C27—H27···O1i | 0.95 | 2.52 | 3.341 (3) | 145 |
C34—H34A···Cl1ii | 0.98 | 2.77 | 3.748 (4) | 174 |
C35—H35A···O4i | 0.98 | 2.54 | 3.421 (4) | 149 |
C12—H12C···O1W | 0.98 | 2.69 | 3.641 (16) | 163 |
C18—H18B···O1W | 0.98 | 2.10 | 2.970 (18) | 147 |
O1W···Cl2i | 3.573 (18) | |||
O1W···O5iii | 3.236 (17) |
Symmetry codes: (i) −x, −y+1, −z; (ii) −x+1/2, y−1/2, −z+1/2; (iii) x−1/2, −y+3/2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [Mo2Cl2O5(C18H24N2)2]·0.2H2O |
Mr | 883.17 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 150 |
a, b, c (Å) | 16.9997 (7), 12.7444 (6), 18.4609 (8) |
β (°) | 99.582 (2) |
V (Å3) | 3943.8 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.82 |
Crystal size (mm) | 0.08 × 0.06 × 0.03 |
Data collection | |
Diffractometer | Bruker X8 KappaCCD APEXII |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1997) |
Tmin, Tmax | 0.938, 0.976 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 54239, 10578, 7469 |
Rint | 0.050 |
(sin θ/λ)max (Å−1) | 0.685 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.040, 0.086, 1.02 |
No. of reflections | 10578 |
No. of parameters | 463 |
No. of restraints | 18 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.96, −0.67 |
Computer programs: APEX2 (Bruker, 2006), SAINT-Plus (Bruker, 2006), SAINT-Plus (Bruker, 2005), SHELXTL (Sheldrick, 2008), DIAMOND (Brandenburg, 2009).
Mo1—O1 | 1.8920 (19) | Mo2—O1 | 1.9274 (19) |
Mo1—O2 | 1.6972 (19) | Mo2—O4 | 1.6975 (19) |
Mo1—O3 | 1.696 (2) | Mo2—O5 | 1.694 (2) |
Mo1—N1 | 2.330 (2) | Mo2—N3 | 2.328 (2) |
Mo1—N2 | 2.323 (2) | Mo2—N4 | 2.304 (2) |
Mo1—Cl1 | 2.4895 (8) | Mo2—Cl2 | 2.4283 (8) |
D—H···A | D—H | H···A | D···A | D—H···A |
C27—H27···O1i | 0.95 | 2.52 | 3.341 (3) | 145 |
C34—H34A···Cl1ii | 0.98 | 2.77 | 3.748 (4) | 174 |
C35—H35A···O4i | 0.98 | 2.54 | 3.421 (4) | 149 |
C12—H12C···O1W | 0.98 | 2.69 | 3.641 (16) | 163 |
C18—H18B···O1W | 0.98 | 2.10 | 2.970 (18) | 147 |
O1W···Cl2i | . | . | 3.573 (18) | . |
O1W···O5iii | . | . | 3.236 (17) | . |
Symmetry codes: (i) −x, −y+1, −z; (ii) −x+1/2, y−1/2, −z+1/2; (iii) x−1/2, −y+3/2, z+1/2. |
Acknowledgements
We are grateful to the Fundação para a Ciência e a Tecnologia (FCT/FEDER and POCI, Portugal) for their general financial support to CICECO, and for the post-doctoral research grant No. SFRH/BPD/63736/2009 (to JAF). Thanks are also due to the FCT for specific funding toward the purchase of the single-crystal diffractometer.
References
Arzoumanian, H., Bakhtchadjian, R., Agrifoglio, G., Atencio, R. & Briceno, A. (2006). Transition Met. Chem. 31, 681–689. Web of Science CSD CrossRef CAS Google Scholar
Brandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2005). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Coelho, A. C., Nolasco, M., Balula, S. S., Antunes, M. M., Pereira, C. C. L., Paz, F. A. A., Valente, A. A., Pillinger, M., Ribeiro-Claro, P., Klinowski, J. & Gonçalves, I. S. (2011). Inorg. Chem. 50, 525–538. Web of Science CSD CrossRef CAS PubMed Google Scholar
Fernandes, J. A., Almeida Paz, F. A. & Romão, C. C. (2011). Acta Cryst. E67, m288–m289. Web of Science CSD CrossRef IUCr Journals Google Scholar
Fernandes, J. A., Gomes, A. C., Figueiredo, S., Gago, S., Lopes, A. D., Pillinger, M., Ribeiro-Claro, P. J. A., Gonçalves, I. S. & Almeida Paz, F. A. (2010a). Acta Cryst. E66, m1005–m1006. Web of Science CSD CrossRef IUCr Journals Google Scholar
Fernandes, J. A., Gomes, A. C., Figueiredo, S., Gago, S., Ribeiro-Claro, P. J. A., Gonçalves, I. S. & Almeida Paz, F. A. (2010b). Acta Cryst. E66, m862–m863. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gago, S., Neves, P., Monteiro, B., Pessêgo, M., Lopes, A. D., Valente, A. A., Paz, F. A. A., Pillinger, M., Moreira, J., Silva, C. M. & Gonçalves, I. S. (2009). Eur. J. Inorg. Chem. pp. 4528–4537. Web of Science CSD CrossRef Google Scholar
Jeyakumar, K. & Chand, D. K. (2009). J. Chem. Sci. 121, 111–123. CrossRef CAS Google Scholar
Kühn, F. E., Groarke, M., Bencze, E., Herdtweck, E., Prazeres, A., Santos, A. M., Calhorda, M. J., Romão, C. C., Gonçalves, I. S., Lopes, A. D. & Pillinger, M. (2002). Chem. Eur. J. 8, 2370–2383. Web of Science PubMed Google Scholar
Nunes, C. D., Valente, A. A., Pillinger, M., Rocha, J. & Gonçalves, I. S. (2003). Chem. Eur. J. 9, 4380–4390. Web of Science CrossRef PubMed CAS Google Scholar
Pereira, C. C. L., Balula, S. S., Paz, F. A. A., Valente, A. A., Pillinger, M., Klinowski, J. & Gonçalves, I. S. (2007). Inorg. Chem. 46, 8508–8510. Web of Science CSD CrossRef PubMed CAS Google Scholar
Rodrigues, C. W., Limberg, C. & Pritzkow, H. (2004). Chem. Commun. pp. 2734–2735. Web of Science CSD CrossRef Google Scholar
Sheldrick, G. M. (1997). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Dioxomolybdenum(VI) complexes are known to be highly active catalysts in the epoxidation of olefins (Kühn et al., 2002; Jeyakumar & Chand, 2009). In these complexes the active metal-oxo functional group may appear with two distinct structural motifs: as a terminal oxo (Mo═O) or as a bridging µ-oxo (Mo—O—Mo). Compounds with the latter type of bridging group are significantly less studied but have been shown to be intermediates in a handful of interesting catalytic systems (Nunes et al., 2003). Following our on-going interest in the study of this type of family of compounds (Fernandes et al., 2010a,b, 2011) we have recently described the synthesis and structural details of the oxo-µ-oxo complexes [Mo2O4(µ-O)Cl2(DMF)4] (Gago et al., 2009), [Mo2O4(µ-O)Cl2(pyrazole)4] (Pereira et al., 2007), and [Mo2O4(µ-O)Cl2(PzPy)2] (where PzPy stands for 2-(3-pyrazolyl)pyridine) (Coelho et al., 2011). Noteworthy, these complexes were found to be highly active in epoxidation catalysis with tert-butylhydroperoxide. The title compound, a µ-oxo dimer with empirical formula [Mo2O4(µ-O)Cl2(di-t-Bu-bipy)2] (where di-t-Bu-bipy stands for 4,4'-di-tert-butyl-2,2'-bipyridine) which simultaneously contains terminal Mo═O oxo groups and a bridging µ-oxo one, has been recently synthesized by Arzoumanian et al. (2006) and we now wish to report its crystal structure at the low temperature of 150 K.
The asymmetric unit of the title compound comprises a whole binuclear molecular entity, C36H48Cl2Mo2N4O5, and a partially occupied (20%) water molecule of crystallization. The binuclear complex is formed by two crystallographically independent Mo(VI) centres bridged via a µ-oxo group imposing a Mo···Mo distance of 3.6273 (4) Å. The chemical environment of these metallic centers is very similar, being composed of a pair of cis-positioned terminal oxo ligands, a chlorido and a N,N-chelating 4,4'-di-tert-butyl-2,2'-bipyridine (di-t-Bu-bipy) molecule as depicted in Fig. 1. The coordination environments around the metal centers can be described as highly distorted octahedra due to, on the one hand, the existence of chlorido ligands (trans-positioned with respect to the µ-oxo ligand) and, on the other, to the typical trans effect of the Mo═O groups: while the Mo—Obridge distances are 1.8920 (19) and 1.9274 (19) Å, the Mo—Oterminal distances range from 1.694 (2) to 1.6975 (19) Å; the Mo—Cl distances are 2.4895 (8) and 2.4283 (8) Å and the Mo—N bonds range from 2.304 (2) to 2.330 (2) Å. The cis and trans octahedral angles are in the ranges of 68.95 (8) to 107.35 (10)° and 157.51 (6) to 160.69 (9)°, respectively. The Mo1—O1—Mo2 kink angle through the µ-oxo bridge is 143.50 (10)° which, to the best of our knowledge, constitutes the smallest reported to date for related binuclear dioxomolybdenum(VI) complexes: the analogous value for [Mo2O4(µ-O)Cl2(DMF)4] is ca 175° and that for [Mo2O4(µ-O)Cl2(pyrazole)4] is ca 151°, and those for the two conformers of [Mo2O4(µ-O)Cl2(PzPy)2] are ca 156 and 180°. We attribute this structural feature to the considerable steric hindrance associated with the di-t-Bu-bipy moieties, mostly due to the pendant —CH3 groups. In this context, the two average planes containing the aromatic rings of the two crystallographically independent di-t-Bu-bipy molecules subtend an angle of ca 34°, which contrasts with the parallel nature observed for the two conformers of [Mo2O4(µ-O)Cl2(PzPy)2]. Noteworthy, the torsion angles N1—Mo1···Mo2—N4 and N2—Mo1···Mo2—N3 are -18.40 (7) and -157.03 (9)°, respectively.
The crystal packing is mainly driven by the need to effectively fill the available space (van de Waals contacts) in conjunction with several weak supramolecular interactions, namely weak C—H···O and C—H···Cl hydrogen bonding interactions (light blue dashed lines in Fig. 2; see Table 2 for geometric details). The water molecule of crystallization (O1W), which is only statistically present in 1/5 of the asymmetric units, accepts the hydrogen donation from adjacent C—H groups and also acts as hydrogen bond donor to Cl2 and O5 of neighboring molecules (violet dashed lines in Figure 2; see Table 2 for geometrical details). Even though the location of the water molecule permits its full site occupancy, we postulate that the absence of suitable hydrogen bonding partners in the binuclear complexes contributes significantly for its partial occupancy in the crystal structure.