metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Monoclinic form of (Z)-1-ferrocenyl-3-(3-hy­dr­oxy­anilino)but-2-en-1-one

aDepartment of Chemical and Biological Engineering, Nantong Vocational College, Nantong 226007, People's Republic of China, bCollege of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, People's Republic of China, cAnalytical Center, China Pharmaceutical University, Nanjin 210009, People's Republic of China, and dTesting Center, Yangzhou University, Yangzhou 225009, People's Republic of China
*Correspondence e-mail: ycshi@yzu.edu.cn

(Received 7 November 2011; accepted 10 November 2011; online 16 November 2011)

The title compound, [Fe(C5H5)(C15H14NO2)], is a monoclinic polymorph of the previously reported triclinic form [Shi et al. (2006[Shi, Y.-C., Zhang, S.-H., Cheng, H.-J. & Sun, W.-P. (2006). Acta Cryst. C62, m407-m410.]). Acta Cryst. C62, m407–m410]. The polymorphs feature the same strong intra­molecular N—H⋯O=C hydrogen bonds, but show different packing modes. The mol­ecules in the monoclinic form associate into double chains via O—H⋯O=C and (Cp)C—H⋯O—H inter­actions.

Related literature

For background to enamino­nes in coordination chemistry, supra­molecular chemistry, organometallic chemistry and organic synthesis, see: Shi et al. (2004[Shi, Y.-C., Yang, H.-M., Shen, W.-B., Yan, C.-G. & Hu, X.-Y. (2004). Polyhedron, 23, 15-21.], 2005[Shi, Y.-C., Sui, C.-X., Song, H.-B. & Jian, P.-M. (2005). J. Coord. Chem. 58, 363-371.], 2006[Shi, Y.-C., Zhang, S.-H., Cheng, H.-J. & Sun, W.-P. (2006). Acta Cryst. C62, m407-m410.], 2008[Shi, Y.-C., Cheng, H.-J. & Zhang, S.-H. (2008). Polyhedron, 27, 3331-3336.]); Shi & Hu (2009[Shi, Y.-C. & Hu, Y.-Y. (2009). J. Coord. Chem. 62, 1302-1312.]); Elassar & El-Khair (2003[Elassar, A. A. & El-Khair, A. A. (2003). Tetrahedron, 59, 8463-8480.]); Kascheres (2003[Kascheres, C. M. (2003). J. Braz. Chem. Soc. 14, 945-969.]). For related structures, see: Shi & Zhang (2007[Shi, Y.-C. & Zhang, S.-H. (2007). Acta Cryst. E63, o138-o140.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C5H5)(C15H14NO2)]

  • Mr = 361.21

  • Monoclinic, P 21 /c

  • a = 8.4123 (17) Å

  • b = 13.1124 (11) Å

  • c = 16.2327 (14) Å

  • β = 103.931 (3)°

  • V = 1737.9 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.88 mm−1

  • T = 296 K

  • 0.21 × 0.17 × 0.11 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.828, Tmax = 0.902

  • 14899 measured reflections

  • 4008 independent reflections

  • 1999 reflections with I > 2σ(I)

  • Rint = 0.086

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.106

  • S = 0.97

  • 4008 reflections

  • 227 parameters

  • 40 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1 0.85 (3) 1.94 (3) 2.632 (3) 139 (3)
O2—H2⋯O1i 0.87 (4) 1.79 (4) 2.662 (3) 178 (5)
C12—H12⋯O2ii 0.93 2.46 3.281 (4) 148
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) -x+1, -y+1, -z+1.

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2003[Bruker (2003). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Recently, enaminones and related compounds have been used as ligands in coordination chemistry (Shi et al., 2004; Shi et al., 2005; Shi et al., 2008; Shi & Hu, 2009) and have been extensively used as versatile synthetic intermediates that combine the variable nucleophilicity of enamines with the variable electrophilicity of enones for the preparation of a variety of heterocyclic systems including some natural products and analogues (Elassar & El-Khair, 2003; Kascheres, 2003). It has also been shown that primary amines, Ar'NH2, react smoothly with β–diketones, ArCOCH2COR, to give enaminones, ArCOCHC(NHAr')R, in good yields (Shi et al., 2004; Shi & Zhang, 2007). As part of an on-going investigation of the chemistry of enaminones and related compounds (Shi et al., 2005; Shi et al., 2006), the title compound has been synthesized via the reaction of 3–H2NC6H4OH and FcCOCH2COCH3 (Fig. 1).

The title compound crystallizes in two polymorphic forms I and II. The form I belongs to the space group P21/c with Z' = 1 while the form II previously reported crystallises in the triclinic space group P1 with Z' = 2 (Shi et al., 2006).

As noted for form II, having two different conformations for the molecule (IIa and IIb) in the asymmetric unit, the C—CC—N moiety in the monoclinic polymorph is planar and the bond lengths indicate electron delocalization (Shi et al., 2004), Table 1. The OC—CC—N plane is twisted with respect to the benzene and substituted cyclopentadienyl rings by 59.89 (16) and 6.21 (18)°, respectively, whereas the corresponding values in the form II are 70.5 (2) and 21.0 (3)° for IIa and 66.4 (2) and 19.5 (3)° for IIb.

Although the two polymorphs each have the strong N—H···OC intramolecular hydrogen bonds, they show different packing modes. The molecules in the form I form dimers by C—H(Cp)···O—H (1 - x, 1 - y, 1 - z) hydrogen bonds, thus resulting in [001] double-chains via O—H···O C (x, -y + 3/2, z - 1/2) hydrogen bonds, Table 2. However, the molecules in the form II associate via O—H(IIa)···O C(IIb) (x - 1, y + 1, z) hydrogen bonds to generate [110] chains which are linked by O—H(IIb)···OC(IIa) hydrogen bonds.

Related literature top

For background to enaminones in coordination chemistry, supramolecular chemistry, organometallic chemistry and organic synthesis, see: Shi et al. (2004, 2005, 2006, 2008); Shi & Hu (2009); Elassar & El-Khair (2003); Kascheres (2003). For related structures, see: Shi & Zhang (2007).

Experimental top

A solution of ferrocenoylacetone (1.35 g, 5 mmol) and 3–aminophenol (0.55 g, 5 mmol) in anhydrous ethanol (25 ml) was refluxed overnight. After removal of the solvent, the resulting solid was purified by chromatography on silica gel with dichloromethane as eluant to give a red solid. Recrystallization from ethanol solution affords bright red single crystals of the title compound. M.pt. 482.65–483.35 K. IR (KBr): 3418 (w, OH), 3047 (m, NH), 1587 (vs, OC), 1524 (m, CC) cm-1. 1H NMR (600 MHz, CDCl3, δ, p.p.m.): 12.595 (s, 1H, NH), 8.646 (s, br, 1H, OH), 7.22, 6.84, 6.79, 6.68 (t, J = 7.8 Hz, 1H, s, 1H, d, J = 9.6 Hz, 1H, d, J = 7.8 Hz, 1H, C6H4), 5.48 (s, 1H, CH), 4.82, 4.44 (s, s, 2H, 2H, C5H4), 4.20 (s, 5H, C5H5), 2.10 (s, 3H, CH3). UV (in DMF ,λmax (ε×104)): 265 (4.91), 360.00 (2.04), 550.00 (0.018) nm.

Refinement top

The H atoms attached to the N and O atoms were refined freely. The remaining H atoms were placed at geometrically idealized positions and subsequently treated as riding with C—H = 0.93–0.98 Å, and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(Cmethyl).

Structure description top

Recently, enaminones and related compounds have been used as ligands in coordination chemistry (Shi et al., 2004; Shi et al., 2005; Shi et al., 2008; Shi & Hu, 2009) and have been extensively used as versatile synthetic intermediates that combine the variable nucleophilicity of enamines with the variable electrophilicity of enones for the preparation of a variety of heterocyclic systems including some natural products and analogues (Elassar & El-Khair, 2003; Kascheres, 2003). It has also been shown that primary amines, Ar'NH2, react smoothly with β–diketones, ArCOCH2COR, to give enaminones, ArCOCHC(NHAr')R, in good yields (Shi et al., 2004; Shi & Zhang, 2007). As part of an on-going investigation of the chemistry of enaminones and related compounds (Shi et al., 2005; Shi et al., 2006), the title compound has been synthesized via the reaction of 3–H2NC6H4OH and FcCOCH2COCH3 (Fig. 1).

The title compound crystallizes in two polymorphic forms I and II. The form I belongs to the space group P21/c with Z' = 1 while the form II previously reported crystallises in the triclinic space group P1 with Z' = 2 (Shi et al., 2006).

As noted for form II, having two different conformations for the molecule (IIa and IIb) in the asymmetric unit, the C—CC—N moiety in the monoclinic polymorph is planar and the bond lengths indicate electron delocalization (Shi et al., 2004), Table 1. The OC—CC—N plane is twisted with respect to the benzene and substituted cyclopentadienyl rings by 59.89 (16) and 6.21 (18)°, respectively, whereas the corresponding values in the form II are 70.5 (2) and 21.0 (3)° for IIa and 66.4 (2) and 19.5 (3)° for IIb.

Although the two polymorphs each have the strong N—H···OC intramolecular hydrogen bonds, they show different packing modes. The molecules in the form I form dimers by C—H(Cp)···O—H (1 - x, 1 - y, 1 - z) hydrogen bonds, thus resulting in [001] double-chains via O—H···O C (x, -y + 3/2, z - 1/2) hydrogen bonds, Table 2. However, the molecules in the form II associate via O—H(IIa)···O C(IIb) (x - 1, y + 1, z) hydrogen bonds to generate [110] chains which are linked by O—H(IIb)···OC(IIa) hydrogen bonds.

For background to enaminones in coordination chemistry, supramolecular chemistry, organometallic chemistry and organic synthesis, see: Shi et al. (2004, 2005, 2006, 2008); Shi & Hu (2009); Elassar & El-Khair (2003); Kascheres (2003). For related structures, see: Shi & Zhang (2007).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT-Plus (Bruker, 2003); data reduction: SAINT-Plus (Bruker, 2003); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and WinGX (Farrugia, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecule of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
(Z)-1-ferrocenyl-3-(3-hydroxyanilino)but-2-en-1-one top
Crystal data top
[Fe(C5H5)(C15H14NO2)]F(000) = 752
Mr = 361.21Dx = 1.380 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1999 reflections
a = 8.4123 (17) Åθ = 2.5–27.7°
b = 13.1124 (11) ŵ = 0.88 mm1
c = 16.2327 (14) ÅT = 296 K
β = 103.931 (3)°Prism, red
V = 1737.9 (4) Å30.21 × 0.17 × 0.11 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
4008 independent reflections
Radiation source: fine-focus sealed tube1999 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.086
ω and φ scansθmax = 27.7°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1010
Tmin = 0.828, Tmax = 0.902k = 1716
14899 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H atoms treated by a mixture of independent and constrained refinement
S = 0.97 w = 1/[σ2(Fo2) + (0.0378P)2]
where P = (Fo2 + 2Fc2)/3
4008 reflections(Δ/σ)max = 0.001
227 parametersΔρmax = 0.32 e Å3
40 restraintsΔρmin = 0.35 e Å3
Crystal data top
[Fe(C5H5)(C15H14NO2)]V = 1737.9 (4) Å3
Mr = 361.21Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.4123 (17) ŵ = 0.88 mm1
b = 13.1124 (11) ÅT = 296 K
c = 16.2327 (14) Å0.21 × 0.17 × 0.11 mm
β = 103.931 (3)°
Data collection top
Bruker SMART APEX CCD
diffractometer
4008 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
1999 reflections with I > 2σ(I)
Tmin = 0.828, Tmax = 0.902Rint = 0.086
14899 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04840 restraints
wR(F2) = 0.106H atoms treated by a mixture of independent and constrained refinement
S = 0.97Δρmax = 0.32 e Å3
4008 reflectionsΔρmin = 0.35 e Å3
227 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7390 (4)0.6856 (2)0.49623 (19)0.0445 (8)
H10.63840.65240.48230.053*
C20.7741 (4)0.7611 (2)0.44342 (19)0.0446 (8)
C30.9248 (4)0.8081 (2)0.4627 (2)0.0548 (9)
H30.95010.85730.42660.066*
C41.0374 (4)0.7818 (3)0.5358 (2)0.0649 (10)
H41.13890.81400.54910.078*
C51.0030 (4)0.7084 (2)0.5901 (2)0.0566 (9)
H51.07990.69200.63980.068*
C60.8537 (4)0.6598 (2)0.56964 (19)0.0421 (8)
C70.7495 (5)0.4441 (2)0.5305 (2)0.0815 (13)
H7A0.85280.45460.51640.122*
H7B0.66350.47320.48690.122*
H7C0.73040.37230.53470.122*
C80.7521 (4)0.4949 (2)0.61447 (19)0.0490 (8)
C90.7000 (4)0.4432 (2)0.67679 (18)0.0479 (8)
H90.66470.37630.66550.057*
C100.6959 (4)0.4844 (2)0.75694 (18)0.0428 (8)
C110.6275 (4)0.4230 (2)0.81607 (17)0.0414 (7)
C120.5473 (4)0.3266 (2)0.79989 (19)0.0487 (8)
H120.53490.28860.75040.058*
C130.4899 (4)0.2989 (3)0.8715 (2)0.0555 (9)
H130.42890.23670.87740.067*
C140.5328 (4)0.3771 (3)0.9327 (2)0.0531 (9)
H140.50660.37850.98830.064*
C150.6166 (4)0.4536 (2)0.89952 (18)0.0471 (8)
H150.66040.51680.92840.056*
C160.1421 (5)0.4183 (4)0.7808 (4)0.1025 (15)
H160.08360.35830.78170.123*
C170.1800 (6)0.4919 (5)0.8443 (3)0.1110 (17)
H170.15100.48880.89600.133*
C180.2659 (6)0.5690 (4)0.8194 (3)0.1009 (14)
H180.30450.62710.85060.121*
C190.2856 (5)0.5455 (3)0.7395 (3)0.0854 (12)
H190.34030.58520.70760.102*
C200.2104 (5)0.4533 (4)0.7149 (3)0.0878 (13)
H200.20570.42000.66380.105*
Fe10.39001 (6)0.43521 (4)0.82226 (3)0.05174 (18)
H20.687 (5)0.832 (3)0.344 (3)0.116 (17)*
H1N0.822 (4)0.611 (2)0.6781 (19)0.052 (10)*
N10.8147 (3)0.5887 (2)0.62841 (18)0.0497 (8)
O10.7493 (3)0.57348 (16)0.77857 (12)0.0550 (6)
O20.6531 (3)0.7862 (2)0.37474 (16)0.0698 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.045 (2)0.0471 (19)0.0433 (19)0.0100 (16)0.0137 (16)0.0027 (16)
C20.058 (2)0.0401 (19)0.0356 (18)0.0031 (17)0.0112 (17)0.0010 (15)
C30.062 (2)0.050 (2)0.056 (2)0.0069 (19)0.021 (2)0.0103 (18)
C40.044 (2)0.061 (2)0.088 (3)0.0108 (19)0.013 (2)0.013 (2)
C50.047 (2)0.062 (2)0.056 (2)0.0013 (19)0.0020 (18)0.0052 (19)
C60.049 (2)0.0406 (18)0.0406 (19)0.0021 (16)0.0175 (16)0.0013 (16)
C70.145 (4)0.055 (2)0.061 (2)0.005 (2)0.059 (3)0.011 (2)
C80.062 (2)0.043 (2)0.046 (2)0.0069 (18)0.0200 (17)0.0016 (16)
C90.065 (2)0.0394 (18)0.0423 (19)0.0038 (17)0.0201 (16)0.0023 (16)
C100.044 (2)0.0466 (19)0.0385 (18)0.0041 (16)0.0108 (15)0.0023 (16)
C110.0468 (19)0.0440 (19)0.0342 (17)0.0031 (16)0.0112 (14)0.0013 (15)
C120.053 (2)0.048 (2)0.046 (2)0.0014 (17)0.0141 (17)0.0007 (16)
C130.055 (2)0.053 (2)0.062 (2)0.0012 (18)0.0206 (19)0.0153 (19)
C140.057 (2)0.064 (2)0.0436 (19)0.0107 (18)0.0209 (18)0.0125 (19)
C150.050 (2)0.052 (2)0.0399 (18)0.0072 (17)0.0113 (16)0.0026 (16)
C160.046 (3)0.109 (4)0.142 (4)0.001 (2)0.001 (3)0.042 (3)
C170.072 (3)0.166 (5)0.101 (3)0.053 (3)0.032 (3)0.025 (3)
C180.087 (3)0.097 (3)0.104 (3)0.042 (3)0.007 (3)0.012 (3)
C190.072 (3)0.085 (3)0.093 (3)0.026 (2)0.007 (2)0.034 (3)
C200.073 (3)0.100 (3)0.076 (3)0.027 (3)0.009 (2)0.001 (3)
Fe10.0456 (3)0.0622 (3)0.0485 (3)0.0088 (3)0.0135 (2)0.0096 (3)
N10.066 (2)0.0486 (19)0.0371 (16)0.0015 (14)0.0180 (15)0.0002 (15)
O10.0757 (17)0.0481 (14)0.0440 (13)0.0111 (13)0.0200 (12)0.0074 (11)
O20.0808 (19)0.0705 (18)0.0472 (15)0.0197 (15)0.0061 (14)0.0150 (14)
Geometric parameters (Å, º) top
C1—C61.383 (4)C12—H120.9300
C1—C21.387 (4)C13—C141.413 (4)
C1—H10.9300C13—Fe12.054 (3)
C2—O21.356 (4)C13—H130.9800
C2—C31.376 (4)C14—C151.405 (4)
C3—C41.372 (4)C14—Fe12.049 (3)
C3—H30.9300C14—H140.9800
C4—C51.382 (4)C15—Fe12.028 (3)
C4—H40.9300C15—H150.9800
C5—C61.376 (4)C16—C171.392 (6)
C5—H50.9300C16—C201.406 (6)
C10—O11.270 (3)C16—Fe12.043 (4)
C6—N11.428 (4)C16—H160.9300
C7—C81.513 (4)C17—C181.359 (6)
C7—H7A0.9600C17—Fe12.026 (4)
C7—H7B0.9600C17—H170.9300
C7—H7C0.9600C18—C191.381 (6)
C8—N11.336 (4)C18—Fe12.036 (4)
C8—C91.374 (4)C18—H180.9300
C9—C101.417 (4)C19—C201.378 (5)
C9—H90.9300C19—Fe12.025 (4)
C10—C111.473 (4)C19—H190.9300
C11—C121.426 (4)C20—Fe12.026 (4)
C11—C151.437 (4)C20—H200.9300
C11—Fe12.031 (3)N1—H1N0.85 (3)
C12—C131.410 (4)O2—H20.88 (4)
C12—Fe12.035 (3)
C6—C1—C2119.9 (3)C16—C17—Fe170.6 (3)
C6—C1—H1120.0C18—C17—H17125.1
C2—C1—H1120.0C16—C17—H17125.1
O2—C2—C3123.1 (3)Fe1—C17—H17125.0
O2—C2—C1116.9 (3)C17—C18—C19107.9 (5)
C3—C2—C1120.0 (3)C17—C18—Fe170.1 (3)
C4—C3—C2119.4 (3)C19—C18—Fe169.7 (2)
C4—C3—H3120.3C17—C18—H18126.1
C2—C3—H3120.3C19—C18—H18126.1
C3—C4—C5121.3 (3)Fe1—C18—H18125.7
C3—C4—H4119.4C20—C19—C18108.4 (5)
C5—C4—H4119.4C20—C19—Fe170.2 (2)
C6—C5—C4119.2 (3)C18—C19—Fe170.5 (3)
C6—C5—H5120.4C20—C19—H19125.8
C4—C5—H5120.4C18—C19—H19125.8
C5—C6—C1120.1 (3)Fe1—C19—H19125.1
C5—C6—N1119.0 (3)C19—C20—C16108.0 (4)
C1—C6—N1120.7 (3)C19—C20—Fe170.1 (2)
C8—C7—H7A109.5C16—C20—Fe170.4 (2)
C8—C7—H7B109.5C19—C20—H20126.0
H7A—C7—H7B109.5C16—C20—H20126.0
C8—C7—H7C109.5Fe1—C20—H20125.1
H7A—C7—H7C109.5C19—Fe1—C1766.3 (2)
H7B—C7—H7C109.5C19—Fe1—C2039.78 (15)
N1—C8—C9120.8 (3)C17—Fe1—C2066.9 (2)
N1—C8—C7118.5 (3)C19—Fe1—C15121.24 (17)
C9—C8—C7120.6 (3)C17—Fe1—C15125.2 (2)
C8—C9—C10124.8 (3)C20—Fe1—C15155.92 (17)
C8—C9—H9117.6C19—Fe1—C11107.37 (15)
C10—C9—H9117.6C17—Fe1—C11161.4 (2)
O1—C10—C9121.3 (3)C20—Fe1—C11120.36 (16)
O1—C10—C11119.4 (3)C15—Fe1—C1141.47 (11)
C9—C10—C11119.3 (3)C19—Fe1—C12125.32 (16)
C12—C11—C15106.6 (3)C17—Fe1—C12157.0 (2)
C12—C11—C10127.3 (3)C20—Fe1—C12108.09 (15)
C15—C11—C10125.8 (3)C15—Fe1—C1268.82 (12)
C12—C11—Fe169.63 (17)C11—Fe1—C1241.07 (11)
C15—C11—Fe169.17 (17)C19—Fe1—C1839.77 (17)
C10—C11—Fe1122.2 (2)C17—Fe1—C1839.09 (18)
C13—C12—C11108.5 (3)C20—Fe1—C1866.89 (18)
C13—C12—Fe170.56 (18)C15—Fe1—C18108.21 (17)
C11—C12—Fe169.31 (17)C11—Fe1—C18124.91 (19)
C13—C12—H12125.7C12—Fe1—C18161.90 (19)
C11—C12—H12125.7C19—Fe1—C1667.26 (18)
Fe1—C12—H12126.0C17—Fe1—C1640.01 (18)
C12—C13—C14108.1 (3)C20—Fe1—C1640.44 (17)
C12—C13—Fe169.09 (17)C15—Fe1—C16161.68 (19)
C14—C13—Fe169.67 (18)C11—Fe1—C16155.96 (19)
C12—C13—H13125.9C12—Fe1—C16121.41 (19)
C14—C13—H13125.9C18—Fe1—C1667.0 (2)
Fe1—C13—H13125.9C19—Fe1—C14156.23 (18)
C15—C14—C13108.4 (3)C17—Fe1—C14109.52 (17)
C15—C14—Fe169.04 (17)C20—Fe1—C14162.59 (18)
C13—C14—Fe170.05 (18)C15—Fe1—C1440.30 (11)
C15—C14—H14125.8C11—Fe1—C1468.73 (12)
C13—C14—H14125.8C12—Fe1—C1468.08 (12)
Fe1—C14—H14125.8C18—Fe1—C14121.98 (17)
C14—C15—C11108.3 (3)C16—Fe1—C14125.79 (17)
C14—C15—Fe170.65 (19)C19—Fe1—C13162.09 (17)
C11—C15—Fe169.37 (17)C17—Fe1—C13122.88 (19)
C14—C15—H15125.9C20—Fe1—C13125.95 (17)
C11—C15—H15125.9C15—Fe1—C1368.10 (13)
Fe1—C15—H15125.9C11—Fe1—C1368.61 (12)
C17—C16—C20105.9 (5)C12—Fe1—C1340.35 (11)
C17—C16—Fe169.3 (3)C18—Fe1—C13156.67 (19)
C20—C16—Fe169.1 (2)C16—Fe1—C13108.86 (16)
C17—C16—H16127.0C14—Fe1—C1340.28 (12)
C20—C16—H16127.0C8—N1—C6129.3 (3)
Fe1—C16—H16126.0C8—N1—H1N115 (2)
C18—C17—C16109.8 (5)C6—N1—H1N116 (2)
C18—C17—Fe170.8 (3)C2—O2—H2111 (3)
C6—C1—C2—O2176.8 (3)C11—C15—Fe1—C16166.0 (5)
C6—C1—C2—C32.0 (4)C11—C15—Fe1—C14119.2 (3)
O2—C2—C3—C4176.7 (3)C14—C15—Fe1—C1337.14 (17)
C1—C2—C3—C42.0 (5)C11—C15—Fe1—C1382.02 (18)
C2—C3—C4—C50.6 (5)C12—C11—Fe1—C19124.3 (2)
C3—C4—C5—C60.9 (5)C15—C11—Fe1—C19117.8 (2)
C4—C5—C6—C11.0 (5)C10—C11—Fe1—C192.2 (3)
C4—C5—C6—N1176.1 (3)C12—C11—Fe1—C17168.8 (5)
C2—C1—C6—C50.5 (4)C15—C11—Fe1—C1750.9 (6)
C2—C1—C6—N1174.6 (3)C10—C11—Fe1—C1769.2 (6)
N1—C8—C9—C104.6 (5)C12—C11—Fe1—C2082.9 (2)
C7—C8—C9—C10179.2 (3)C15—C11—Fe1—C20159.2 (2)
C8—C9—C10—O13.4 (5)C10—C11—Fe1—C2039.2 (3)
C8—C9—C10—C11176.2 (3)C12—C11—Fe1—C15117.9 (2)
O1—C10—C11—C12173.1 (3)C10—C11—Fe1—C15120.0 (3)
C9—C10—C11—C126.5 (5)C15—C11—Fe1—C12117.9 (2)
O1—C10—C11—C151.1 (5)C10—C11—Fe1—C12122.0 (3)
C9—C10—C11—C15179.3 (3)C12—C11—Fe1—C18164.5 (2)
O1—C10—C11—Fe185.2 (3)C15—C11—Fe1—C1877.6 (2)
C9—C10—C11—Fe194.4 (3)C10—C11—Fe1—C1842.4 (3)
C15—C11—C12—C130.3 (3)C12—C11—Fe1—C1651.3 (4)
C10—C11—C12—C13175.5 (3)C15—C11—Fe1—C16169.2 (4)
Fe1—C11—C12—C1359.9 (2)C10—C11—Fe1—C1670.7 (5)
C15—C11—C12—Fe159.5 (2)C12—C11—Fe1—C1480.61 (19)
C10—C11—C12—Fe1115.6 (3)C15—C11—Fe1—C1437.31 (18)
C11—C12—C13—C140.2 (4)C10—C11—Fe1—C14157.3 (3)
Fe1—C12—C13—C1458.9 (2)C12—C11—Fe1—C1337.22 (18)
C11—C12—C13—Fe159.1 (2)C15—C11—Fe1—C1380.69 (19)
C12—C13—C14—C150.0 (4)C10—C11—Fe1—C13159.3 (3)
Fe1—C13—C14—C1558.5 (2)C13—C12—Fe1—C19165.3 (2)
C12—C13—C14—Fe158.5 (2)C11—C12—Fe1—C1975.2 (3)
C13—C14—C15—C110.2 (4)C13—C12—Fe1—C1751.3 (5)
Fe1—C14—C15—C1159.4 (2)C11—C12—Fe1—C17170.9 (4)
C13—C14—C15—Fe159.2 (2)C13—C12—Fe1—C20124.7 (2)
C12—C11—C15—C140.4 (3)C11—C12—Fe1—C20115.8 (2)
C10—C11—C15—C14175.6 (3)C13—C12—Fe1—C1580.7 (2)
Fe1—C11—C15—C1460.2 (2)C11—C12—Fe1—C1538.87 (17)
C12—C11—C15—Fe159.8 (2)C13—C12—Fe1—C11119.6 (3)
C10—C11—C15—Fe1115.4 (3)C13—C12—Fe1—C18164.5 (5)
C20—C16—C17—C180.5 (5)C11—C12—Fe1—C1845.0 (6)
Fe1—C16—C17—C1860.3 (3)C13—C12—Fe1—C1682.3 (3)
C20—C16—C17—Fe159.8 (3)C11—C12—Fe1—C16158.1 (2)
C16—C17—C18—C190.5 (5)C13—C12—Fe1—C1437.21 (19)
Fe1—C17—C18—C1959.7 (3)C11—C12—Fe1—C1482.34 (18)
C16—C17—C18—Fe160.2 (3)C11—C12—Fe1—C13119.6 (3)
C17—C18—C19—C200.2 (5)C17—C18—Fe1—C19118.8 (5)
Fe1—C18—C19—C2060.2 (3)C19—C18—Fe1—C17118.8 (5)
C17—C18—C19—Fe159.9 (3)C17—C18—Fe1—C2081.3 (3)
C18—C19—C20—C160.1 (5)C19—C18—Fe1—C2037.5 (3)
Fe1—C19—C20—C1660.5 (3)C17—C18—Fe1—C15123.9 (3)
C18—C19—C20—Fe160.4 (3)C19—C18—Fe1—C15117.3 (3)
C17—C16—C20—C190.3 (5)C17—C18—Fe1—C11166.8 (3)
Fe1—C16—C20—C1960.2 (3)C19—C18—Fe1—C1174.4 (3)
C17—C16—C20—Fe159.9 (3)C17—C18—Fe1—C12158.7 (5)
C20—C19—Fe1—C1781.8 (3)C19—C18—Fe1—C1239.9 (7)
C18—C19—Fe1—C1737.1 (3)C17—C18—Fe1—C1637.2 (3)
C18—C19—Fe1—C20119.0 (4)C19—C18—Fe1—C1681.6 (3)
C20—C19—Fe1—C15160.1 (2)C17—C18—Fe1—C1481.7 (4)
C18—C19—Fe1—C1580.9 (3)C19—C18—Fe1—C14159.5 (3)
C20—C19—Fe1—C11116.9 (3)C17—C18—Fe1—C1347.1 (6)
C18—C19—Fe1—C11124.2 (3)C19—C18—Fe1—C13166.0 (4)
C20—C19—Fe1—C1275.2 (3)C17—C16—Fe1—C1979.7 (3)
C18—C19—Fe1—C12165.9 (3)C20—C16—Fe1—C1937.5 (3)
C20—C19—Fe1—C18119.0 (4)C20—C16—Fe1—C17117.2 (4)
C20—C19—Fe1—C1638.1 (3)C17—C16—Fe1—C20117.2 (4)
C18—C19—Fe1—C1680.8 (3)C17—C16—Fe1—C1541.9 (7)
C20—C19—Fe1—C14166.6 (3)C20—C16—Fe1—C15159.1 (4)
C18—C19—Fe1—C1447.6 (5)C17—C16—Fe1—C11161.4 (4)
C20—C19—Fe1—C1342.8 (6)C20—C16—Fe1—C1144.1 (5)
C18—C19—Fe1—C13161.8 (5)C17—C16—Fe1—C12161.7 (3)
C18—C17—Fe1—C1937.7 (3)C20—C16—Fe1—C1281.0 (3)
C16—C17—Fe1—C1982.3 (3)C17—C16—Fe1—C1836.4 (3)
C18—C17—Fe1—C2081.3 (3)C20—C16—Fe1—C1880.9 (3)
C16—C17—Fe1—C2038.8 (3)C17—C16—Fe1—C1477.4 (4)
C18—C17—Fe1—C1574.8 (4)C20—C16—Fe1—C14165.4 (3)
C16—C17—Fe1—C15165.1 (3)C17—C16—Fe1—C13119.0 (3)
C18—C17—Fe1—C1135.8 (7)C20—C16—Fe1—C13123.7 (3)
C16—C17—Fe1—C11155.9 (4)C15—C14—Fe1—C1946.5 (4)
C18—C17—Fe1—C12163.2 (3)C13—C14—Fe1—C19166.5 (4)
C16—C17—Fe1—C1243.1 (6)C15—C14—Fe1—C17121.9 (3)
C16—C17—Fe1—C18120.1 (5)C13—C14—Fe1—C17118.2 (3)
C18—C17—Fe1—C16120.1 (5)C15—C14—Fe1—C20163.2 (5)
C18—C17—Fe1—C14117.0 (3)C13—C14—Fe1—C2043.3 (6)
C16—C17—Fe1—C14122.9 (3)C13—C14—Fe1—C15119.9 (3)
C18—C17—Fe1—C13159.8 (3)C15—C14—Fe1—C1138.35 (17)
C16—C17—Fe1—C1380.1 (3)C13—C14—Fe1—C1181.59 (19)
C16—C20—Fe1—C19118.6 (4)C15—C14—Fe1—C1282.67 (19)
C19—C20—Fe1—C1780.1 (3)C13—C14—Fe1—C1237.27 (18)
C16—C20—Fe1—C1738.4 (3)C15—C14—Fe1—C1880.4 (3)
C19—C20—Fe1—C1545.5 (5)C13—C14—Fe1—C18159.7 (2)
C16—C20—Fe1—C15164.0 (3)C15—C14—Fe1—C16163.6 (2)
C19—C20—Fe1—C1180.6 (3)C13—C14—Fe1—C1676.5 (3)
C16—C20—Fe1—C11160.8 (3)C15—C14—Fe1—C13119.9 (3)
C19—C20—Fe1—C12123.9 (3)C12—C13—Fe1—C1942.4 (6)
C16—C20—Fe1—C12117.5 (3)C14—C13—Fe1—C19162.2 (5)
C19—C20—Fe1—C1837.5 (3)C12—C13—Fe1—C17158.7 (3)
C16—C20—Fe1—C1881.1 (3)C14—C13—Fe1—C1781.5 (3)
C19—C20—Fe1—C16118.6 (4)C12—C13—Fe1—C2074.9 (3)
C19—C20—Fe1—C14161.8 (4)C14—C13—Fe1—C20165.3 (2)
C16—C20—Fe1—C1443.2 (6)C12—C13—Fe1—C1582.6 (2)
C19—C20—Fe1—C13165.0 (2)C14—C13—Fe1—C1537.16 (17)
C16—C20—Fe1—C1376.4 (3)C12—C13—Fe1—C1137.86 (18)
C14—C15—Fe1—C19160.0 (2)C14—C13—Fe1—C1181.94 (19)
C11—C15—Fe1—C1980.8 (2)C14—C13—Fe1—C12119.8 (3)
C14—C15—Fe1—C1778.5 (3)C12—C13—Fe1—C18167.9 (4)
C11—C15—Fe1—C17162.4 (3)C14—C13—Fe1—C1848.1 (5)
C14—C15—Fe1—C20167.8 (4)C12—C13—Fe1—C16116.6 (3)
C11—C15—Fe1—C2048.6 (4)C14—C13—Fe1—C16123.6 (2)
C14—C15—Fe1—C11119.2 (3)C12—C13—Fe1—C14119.8 (3)
C14—C15—Fe1—C1280.67 (19)C9—C8—N1—C6170.2 (3)
C11—C15—Fe1—C1238.50 (17)C7—C8—N1—C613.5 (5)
C14—C15—Fe1—C18118.3 (2)C5—C6—N1—C8132.8 (3)
C11—C15—Fe1—C18122.5 (2)C1—C6—N1—C852.1 (5)
C14—C15—Fe1—C1646.8 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O10.85 (3)1.94 (3)2.632 (3)139 (3)
O2—H2···O1i0.87 (4)1.79 (4)2.662 (3)178 (5)
C12—H12···O2ii0.932.463.281 (4)148
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Fe(C5H5)(C15H14NO2)]
Mr361.21
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)8.4123 (17), 13.1124 (11), 16.2327 (14)
β (°) 103.931 (3)
V3)1737.9 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.88
Crystal size (mm)0.21 × 0.17 × 0.11
Data collection
DiffractometerBruker SMART APEX CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.828, 0.902
No. of measured, independent and
observed [I > 2σ(I)] reflections
14899, 4008, 1999
Rint0.086
(sin θ/λ)max1)0.654
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.106, 0.97
No. of reflections4008
No. of parameters227
No. of restraints40
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.32, 0.35

Computer programs: SMART (Bruker, 2002), SAINT-Plus (Bruker, 2003), SIR2004 (Burla et al., 2005), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009) and WinGX (Farrugia, 1999), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O10.85 (3)1.94 (3)2.632 (3)139 (3)
O2—H2···O1i0.87 (4)1.79 (4)2.662 (3)178 (5)
C12—H12···O2ii0.932.463.281 (4)148
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x+1, y+1, z+1.
 

Acknowledgements

The authors thank the Natural Science Foundation of China (No. 20572091) and Natural Science Foundation of Jiangsu Province (No. 05KJB150151) for financial support of this work.

References

First citationBruker (2002). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationElassar, A. A. & El-Khair, A. A. (2003). Tetrahedron, 59, 8463–8480.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKascheres, C. M. (2003). J. Braz. Chem. Soc. 14, 945–969.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, Y.-C., Cheng, H.-J. & Zhang, S.-H. (2008). Polyhedron, 27, 3331–3336.  Web of Science CSD CrossRef CAS Google Scholar
First citationShi, Y.-C. & Hu, Y.-Y. (2009). J. Coord. Chem. 62, 1302–1312.  Web of Science CSD CrossRef CAS Google Scholar
First citationShi, Y.-C., Sui, C.-X., Song, H.-B. & Jian, P.-M. (2005). J. Coord. Chem. 58, 363–371.  Web of Science CSD CrossRef CAS Google Scholar
First citationShi, Y.-C., Yang, H.-M., Shen, W.-B., Yan, C.-G. & Hu, X.-Y. (2004). Polyhedron, 23, 15–21.  Web of Science CSD CrossRef CAS Google Scholar
First citationShi, Y.-C. & Zhang, S.-H. (2007). Acta Cryst. E63, o138–o140.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationShi, Y.-C., Zhang, S.-H., Cheng, H.-J. & Sun, W.-P. (2006). Acta Cryst. C62, m407–m410.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds