organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-[(4-Chloro­phen­yl)(hy­dr­oxy)methyl­­idene]isochromane-1,3-dione

aLaboratoire de Cristallographie et Physique Moléculaire, UFR SSMT, Université de Cocody 22 BP 582 Abidjan 22, Côte d'Ivoire, and bLaboratoire de Chimie Bio-organique et Phytochimie, Université de Ouagadougou 03 BP 7021 Ouagadougou 03, Burkina Faso
*Correspondence e-mail: abou_akoun@yahoo.fr

(Received 10 November 2011; accepted 14 November 2011; online 19 November 2011)

In the title compound, C16H9ClO4, the six-membered heterocyclic ring adopts a screw-boat conformation. The benzene rings are oriented to each other at a dihedral angle of 59.26 (9)°. The mol­ecular structure exhibits a ring motif, viz. S(6), owing to an intra­molecular O—H⋯O hydrogen bond. The presence of C—H⋯O contacts generates an infinite chain along [001]. Also present are ππ stacking inter­actions between neighbouring isochromanedione benzene rings [centroid–centroid distance = 3.746 (1) Å], and C—O⋯π inter­actions [O⋯centroid = 3.934 (2) Å].

Related literature

For the biological activity of isochromanones, see: Bianchi et al. (2004[Bianchi, D. A., Blanco, N. E., Carrillo, N. & Kaufnam, T. S. (2004). J. Agric. Food Chem. 52, 1923-1927.]); Buntin et al. (2008[Buntin, K., Rachid, S., Scharfe, M., Blöcker, H., Weissman, K. J. & Müller, R. (2008). Angew. Chem. Int. Ed. Engl. 47, 4595-4599.]). For ππ stacking inter­actions, see: Janiak (2000[Janiak, J. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C16H9ClO4

  • Mr = 300.68

  • Monoclinic, P 21 /c

  • a = 15.4973 (4) Å

  • b = 5.9631 (1) Å

  • c = 14.4526 (3) Å

  • β = 102.661 (1)°

  • V = 1303.12 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 298 K

  • 0.40 × 0.30 × 0.20 mm

Data collection
  • Nonius KappaCCD diffractometer

  • 12213 measured reflections

  • 3248 independent reflections

  • 2693 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.163

  • S = 1.08

  • 3248 reflections

  • 191 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O14—H14⋯O12 0.82 1.76 2.492 (2) 148
C3—H3⋯O11i 0.93 2.56 3.288 (2) 136
Symmetry code: (i) [x, -y-{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: COLLECT (Nonius, 2001[Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97, publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The title molecule is related to isochromanone derivatives that are generally known as regulators of plant growth (Bianchi et al., 2004). Depending on their chemical structure and concentration they can act either as inhibitors or stimulators of these processes. Some substituted isochromanones isolated from myxobacteria strains were introduced as anti-fungal agents (Buntin et al., 2008).

The structure of the title compound (I) (Fig. 1) consists of two planar benzene rings with the maximum deviations from the best planes of 0.035 (2) Å for atom C1 (benzene ring C1—C6) and ±0.007 (2) Å for atoms C15 and C16 (benzene ring C15—C20). An S(6) ring motif (Bernstein et al., 1995), arises from an intramolecular O—H···O hydrogen bond to generate a planar pseudo six-membered ring (maximum deviation from planarity being 0.059 (2) Å for atom C13) to result in a tricyclic ring system (Fig. 1). The dihedral angles between two benzene rings is 59.26 (9) and that between the pseudo six-membered ring and benzene ring C1—C6 is 13.65 (9) °. The heterocyclic ring C1/C6/C7/O8/C9/C10 adopts a screw-boat conformation as judged from the puckering parameters (Cremer & Pople, 1975): Q = 0.0952 (19) Å, θ = 67.5 (11)° and φ = 228.4 (12)°. Furthermore, intermolecular C—H···O contacts (Table 1) link molecules into infinite chains through along [001] (Fig. 2).

The supramolecular aggregation is completed by the presence of C—O···π interactions (O12···Cg3[x,1/2 - y,-1/2 + z] = 3.934 (2) Å, C9—O12···Cg3 = 83.48 (12)°, where Cg3 is the centroid of the benzene ring C15—C20, and ππ stacking between two parallel isochromanedione-benzene C1—C6 rings; in the latter, the centroid···centroid distance, (Cg2···Cg2 (-x,-y,-z) of 3.746 (1) Å), is less than 3.8 Å, the maximum regarded as relevant for ππ interactions (Janiak, 2000) (Fig.3).

Related literature top

For the biological activity of isochromanone, see: Bianchi et al. (2004); Buntin et al. (2008). For ππ stacking interactions, see: Janiak (2000). For hydrogen-bond motifs, see: Bernstein et al. (1995). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

To a solution of 4-chlorobenzoyl chloride (4.10 -2 mol) in dry tetrahydrofuran (150 ml ), was added dried triethylamine (0.12 mol) and homophthalic anhydride (4.10 -2 mol) in small portions over 30 min. The mixture was then refluxed for 3 h and poured in 300 ml of chloroform. The solution was acidified with dilute hydrochloric acid until the pH was 2 - 3. The organic layer was extracted, washed with water, dried over MgSO4 and the solvent removed. The crude product was recrystallized from a chloroform-hexane (1/1, v/v) mixture. Yellow crystals were obtained in a good yield: 90%; M.pt. 432–433 K.

Refinement top

H atoms were placed in calculated positions (O—H = 0.82 Å and C—H = 0.93 Å) and refined using a riding model approximation with Uiso(H) constrained to 1.2 (aromatic) or 1.5 (O—H) times Ueq of the respective parent atom.

Structure description top

The title molecule is related to isochromanone derivatives that are generally known as regulators of plant growth (Bianchi et al., 2004). Depending on their chemical structure and concentration they can act either as inhibitors or stimulators of these processes. Some substituted isochromanones isolated from myxobacteria strains were introduced as anti-fungal agents (Buntin et al., 2008).

The structure of the title compound (I) (Fig. 1) consists of two planar benzene rings with the maximum deviations from the best planes of 0.035 (2) Å for atom C1 (benzene ring C1—C6) and ±0.007 (2) Å for atoms C15 and C16 (benzene ring C15—C20). An S(6) ring motif (Bernstein et al., 1995), arises from an intramolecular O—H···O hydrogen bond to generate a planar pseudo six-membered ring (maximum deviation from planarity being 0.059 (2) Å for atom C13) to result in a tricyclic ring system (Fig. 1). The dihedral angles between two benzene rings is 59.26 (9) and that between the pseudo six-membered ring and benzene ring C1—C6 is 13.65 (9) °. The heterocyclic ring C1/C6/C7/O8/C9/C10 adopts a screw-boat conformation as judged from the puckering parameters (Cremer & Pople, 1975): Q = 0.0952 (19) Å, θ = 67.5 (11)° and φ = 228.4 (12)°. Furthermore, intermolecular C—H···O contacts (Table 1) link molecules into infinite chains through along [001] (Fig. 2).

The supramolecular aggregation is completed by the presence of C—O···π interactions (O12···Cg3[x,1/2 - y,-1/2 + z] = 3.934 (2) Å, C9—O12···Cg3 = 83.48 (12)°, where Cg3 is the centroid of the benzene ring C15—C20, and ππ stacking between two parallel isochromanedione-benzene C1—C6 rings; in the latter, the centroid···centroid distance, (Cg2···Cg2 (-x,-y,-z) of 3.746 (1) Å), is less than 3.8 Å, the maximum regarded as relevant for ππ interactions (Janiak, 2000) (Fig.3).

For the biological activity of isochromanone, see: Bianchi et al. (2004); Buntin et al. (2008). For ππ stacking interactions, see: Janiak (2000). For hydrogen-bond motifs, see: Bernstein et al. (1995). For puckering parameters, see: Cremer & Pople (1975).

Computing details top

Data collection: COLLECT (Nonius, 2001); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), publCIF (Westrip, 2010) and WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atomic labeling scheme with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius. Dashed lines indicate an hydrogen bond.
[Figure 2] Fig. 2. Crystal packing, viewed down the b axis, showing parallel chains along the c direction. Dashed lines indicate C—H···O contacts. H atoms not involved in hydrogen bonds have been omitted for clarity.
[Figure 3] Fig. 3. A view of the crystal packing, showing C—O···π and ππ stacking interactions (dashed lines). The yellow dots are centroids of rings. H atoms have been omitted for clarity.
4-[(4-Chlorophenyl)(hydroxy)methylidene]isochromane-1,3-dione top
Crystal data top
C16H9ClO4F(000) = 616
Mr = 300.68Dx = 1.533 Mg m3
Monoclinic, P21/cMelting point = 432–433 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 15.4973 (4) ÅCell parameters from 12213 reflections
b = 5.9631 (1) Åθ = 1.4–29.0°
c = 14.4526 (3) ŵ = 0.31 mm1
β = 102.661 (1)°T = 298 K
V = 1303.12 (5) Å3Prism, yellow
Z = 40.40 × 0.30 × 0.20 mm
Data collection top
Nonius KappaCCD
diffractometer
2693 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.037
Graphite monochromatorθmax = 29.0°, θmin = 1.4°
φ and ω scansh = 2020
12213 measured reflectionsk = 77
3248 independent reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.163H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.085P)2 + 0.4082P]
where P = (Fo2 + 2Fc2)/3
3248 reflections(Δ/σ)max < 0.001
191 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.31 e Å3
36 constraints
Crystal data top
C16H9ClO4V = 1303.12 (5) Å3
Mr = 300.68Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.4973 (4) ŵ = 0.31 mm1
b = 5.9631 (1) ÅT = 298 K
c = 14.4526 (3) Å0.40 × 0.30 × 0.20 mm
β = 102.661 (1)°
Data collection top
Nonius KappaCCD
diffractometer
2693 reflections with I > 2σ(I)
12213 measured reflectionsRint = 0.037
3248 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.163H-atom parameters constrained
S = 1.08Δρmax = 0.25 e Å3
3248 reflectionsΔρmin = 0.31 e Å3
191 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl210.46136 (4)0.22385 (12)0.41605 (4)0.0768 (3)
O80.15001 (11)0.2734 (3)0.20791 (9)0.0600 (4)
C10.16846 (10)0.1431 (3)0.01749 (10)0.0355 (3)
C60.11986 (11)0.0094 (3)0.09040 (10)0.0412 (4)
O120.22812 (11)0.5783 (3)0.16990 (11)0.0688 (5)
C20.16289 (11)0.0881 (3)0.07551 (10)0.0391 (4)
H20.18980.18040.12540.047*
C100.21737 (11)0.3377 (3)0.04175 (11)0.0401 (4)
O140.30865 (10)0.6583 (2)0.00417 (11)0.0631 (4)
H140.28810.68130.06060.095*
C70.11070 (14)0.0730 (3)0.18995 (12)0.0525 (5)
C130.27868 (11)0.4635 (3)0.02079 (13)0.0437 (4)
C190.40760 (12)0.1419 (3)0.22901 (14)0.0479 (4)
H190.43680.00530.24160.057*
O110.07046 (13)0.0255 (3)0.25801 (10)0.0769 (5)
C50.07423 (13)0.1807 (3)0.07083 (13)0.0507 (4)
H50.04290.26810.12030.061*
C40.07567 (13)0.2382 (3)0.02135 (15)0.0521 (5)
H40.04820.36900.03490.062*
C160.32267 (13)0.5515 (3)0.19262 (14)0.0504 (4)
H160.29490.69000.18020.060*
C150.32154 (11)0.4012 (3)0.11887 (12)0.0413 (4)
C200.36492 (12)0.1967 (3)0.13808 (13)0.0452 (4)
H200.36510.09610.08890.054*
C170.36473 (13)0.4967 (3)0.28416 (14)0.0547 (5)
H170.36480.59660.33360.066*
C30.11838 (12)0.1000 (3)0.09398 (12)0.0454 (4)
H30.11690.13500.15630.054*
C180.40658 (12)0.2924 (3)0.30156 (13)0.0484 (4)
C90.19987 (13)0.4065 (3)0.13974 (12)0.0499 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl210.0704 (4)0.1024 (5)0.0503 (3)0.0049 (3)0.0029 (3)0.0100 (3)
O80.0778 (10)0.0730 (10)0.0291 (6)0.0145 (7)0.0118 (6)0.0079 (6)
C10.0389 (7)0.0382 (8)0.0293 (7)0.0059 (6)0.0070 (6)0.0002 (5)
C60.0459 (8)0.0452 (9)0.0303 (7)0.0107 (7)0.0032 (6)0.0060 (6)
O120.0821 (11)0.0719 (10)0.0570 (8)0.0075 (8)0.0251 (7)0.0298 (7)
C20.0427 (8)0.0448 (9)0.0290 (7)0.0061 (6)0.0059 (6)0.0030 (6)
C100.0452 (8)0.0422 (8)0.0347 (7)0.0065 (6)0.0124 (6)0.0057 (6)
O140.0663 (9)0.0489 (8)0.0720 (10)0.0103 (7)0.0107 (7)0.0188 (7)
C70.0646 (11)0.0585 (11)0.0313 (8)0.0215 (9)0.0034 (7)0.0057 (7)
C130.0444 (8)0.0379 (8)0.0508 (9)0.0024 (6)0.0147 (7)0.0074 (7)
C190.0424 (8)0.0427 (9)0.0569 (10)0.0037 (7)0.0075 (7)0.0054 (7)
O110.1078 (13)0.0786 (11)0.0337 (7)0.0195 (9)0.0076 (7)0.0149 (7)
C50.0531 (10)0.0472 (10)0.0456 (9)0.0004 (8)0.0030 (7)0.0133 (7)
C40.0534 (10)0.0446 (10)0.0550 (11)0.0112 (8)0.0052 (8)0.0023 (8)
C160.0512 (10)0.0372 (9)0.0597 (11)0.0044 (7)0.0056 (8)0.0054 (7)
C150.0384 (8)0.0365 (8)0.0483 (9)0.0032 (6)0.0081 (7)0.0014 (6)
C200.0472 (9)0.0387 (9)0.0493 (9)0.0025 (7)0.0097 (7)0.0033 (7)
C170.0549 (11)0.0544 (11)0.0523 (10)0.0022 (8)0.0068 (8)0.0133 (8)
C30.0476 (9)0.0502 (10)0.0376 (8)0.0064 (7)0.0074 (7)0.0035 (7)
C180.0384 (8)0.0576 (11)0.0473 (9)0.0039 (7)0.0054 (7)0.0028 (8)
C90.0552 (10)0.0583 (11)0.0392 (8)0.0153 (8)0.0171 (7)0.0120 (7)
Geometric parameters (Å, º) top
Cl21—C181.7349 (19)C13—C151.475 (2)
O8—C91.365 (3)C19—C201.375 (3)
O8—C71.391 (3)C19—C181.383 (3)
C1—C61.402 (2)C19—H190.9300
C1—C21.405 (2)C5—C41.371 (3)
C1—C101.469 (2)C5—H50.9300
C6—C51.397 (3)C4—C31.384 (3)
C6—C71.465 (2)C4—H40.9300
O12—C91.231 (2)C16—C171.380 (3)
C2—C31.373 (2)C16—C151.390 (2)
C2—H20.9300C16—H160.9300
C10—C131.381 (2)C15—C201.390 (2)
C10—C91.442 (2)C20—H200.9300
O14—C131.330 (2)C17—C181.377 (3)
O14—H140.8200C17—H170.9300
C7—O111.197 (2)C3—H30.9300
C9—O8—C7124.50 (14)C6—C5—H5120.1
C6—C1—C2116.77 (15)C5—C4—C3119.43 (17)
C6—C1—C10119.35 (14)C5—C4—H4120.3
C2—C1—C10123.78 (14)C3—C4—H4120.3
C5—C6—C1121.45 (15)C17—C16—C15120.40 (17)
C5—C6—C7117.68 (16)C17—C16—H16119.8
C1—C6—C7120.75 (17)C15—C16—H16119.8
C3—C2—C1121.06 (15)C16—C15—C20119.22 (16)
C3—C2—H2119.5C16—C15—C13120.09 (16)
C1—C2—H2119.5C20—C15—C13120.61 (16)
C13—C10—C9116.26 (16)C19—C20—C15120.63 (17)
C13—C10—C1126.15 (14)C19—C20—H20119.7
C9—C10—C1117.58 (15)C15—C20—H20119.7
C13—O14—H14109.5C18—C17—C16119.31 (18)
O11—C7—O8116.02 (18)C18—C17—H17120.3
O11—C7—C6127.0 (2)C16—C17—H17120.3
O8—C7—C6116.98 (16)C2—C3—C4121.07 (16)
O14—C13—C10121.90 (16)C2—C3—H3119.5
O14—C13—C15111.74 (16)C4—C3—H3119.5
C10—C13—C15126.31 (15)C17—C18—C19121.25 (18)
C20—C19—C18119.17 (17)C17—C18—Cl21119.68 (16)
C20—C19—H19120.4C19—C18—Cl21119.05 (15)
C18—C19—H19120.4O12—C9—O8114.66 (16)
C4—C5—C6119.89 (16)O12—C9—C10125.43 (19)
C4—C5—H5120.1O8—C9—C10119.89 (17)
C2—C1—C6—C55.3 (2)C17—C16—C15—C201.4 (3)
C10—C1—C6—C5178.26 (15)C17—C16—C15—C13178.23 (17)
C2—C1—C6—C7170.79 (15)O14—C13—C15—C1652.6 (2)
C10—C1—C6—C75.7 (2)C10—C13—C15—C16129.9 (2)
C6—C1—C2—C35.7 (2)O14—C13—C15—C20124.18 (18)
C10—C1—C2—C3177.98 (15)C10—C13—C15—C2053.3 (2)
C6—C1—C10—C13169.15 (16)C18—C19—C20—C150.3 (3)
C2—C1—C10—C1314.6 (3)C16—C15—C20—C190.8 (3)
C6—C1—C10—C911.3 (2)C13—C15—C20—C19177.65 (16)
C2—C1—C10—C9164.88 (16)C15—C16—C17—C180.8 (3)
C9—O8—C7—O11178.66 (18)C1—C2—C3—C41.7 (3)
C9—O8—C7—C63.6 (3)C5—C4—C3—C23.1 (3)
C5—C6—C7—O113.0 (3)C16—C17—C18—C190.3 (3)
C1—C6—C7—O11179.20 (19)C16—C17—C18—Cl21178.84 (15)
C5—C6—C7—O8174.43 (15)C20—C19—C18—C170.9 (3)
C1—C6—C7—O81.8 (2)C20—C19—C18—Cl21179.41 (14)
C9—C10—C13—O1411.1 (3)C7—O8—C9—O12179.24 (16)
C1—C10—C13—O14168.40 (16)C7—O8—C9—C102.3 (3)
C9—C10—C13—C15166.14 (16)C13—C10—C9—O127.6 (3)
C1—C10—C13—C1514.3 (3)C1—C10—C9—O12172.00 (17)
C1—C6—C5—C40.7 (3)C13—C10—C9—O8170.70 (16)
C7—C6—C5—C4175.45 (18)C1—C10—C9—O89.7 (2)
C6—C5—C4—C33.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O14—H14···O120.821.762.492 (2)148
C3—H3···O11i0.932.563.288 (2)136
Symmetry code: (i) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC16H9ClO4
Mr300.68
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)15.4973 (4), 5.9631 (1), 14.4526 (3)
β (°) 102.661 (1)
V3)1303.12 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.31
Crystal size (mm)0.40 × 0.30 × 0.20
Data collection
DiffractometerNonius KappaCCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
12213, 3248, 2693
Rint0.037
(sin θ/λ)max1)0.683
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.163, 1.08
No. of reflections3248
No. of parameters191
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.31

Computer programs: COLLECT (Nonius, 2001), DENZO/SCALEPACK (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), PLATON (Spek, 2009), SHELXL97 (Sheldrick, 2008), publCIF (Westrip, 2010) and WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O14—H14···O120.821.762.492 (2)148
C3—H3···O11i0.932.563.288 (2)136
Symmetry code: (i) x, y1/2, z+1/2.
 

Acknowledgements

We thank the Laboratoire de Physique des Inter­actions Ioniques et Spectropôle, Université de Provence, and Université Paul Cézanne, Faculté des Sciences et Techniques de Saint Jérôme, Marseille, France, for the use of their facilities.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBianchi, D. A., Blanco, N. E., Carrillo, N. & Kaufnam, T. S. (2004). J. Agric. Food Chem. 52, 1923–1927.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBuntin, K., Rachid, S., Scharfe, M., Blöcker, H., Weissman, K. J. & Müller, R. (2008). Angew. Chem. Int. Ed. Engl. 47, 4595–4599.  CrossRef PubMed CAS Google Scholar
First citationCremer, D. & Pople, J. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationJaniak, J. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896.  Web of Science CrossRef Google Scholar
First citationNonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds