organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Propyl­ammonium 4,4,4-tri­fluoro-1-(naphthalen-2-yl)butane-1,3-dionate

aDepartment of Chemistry, University of Aveiro, CICECO, 3810-193 Aveiro, Portugal
*Correspondence e-mail: filipe.paz@ua.pt

(Received 11 November 2011; accepted 14 November 2011; online 19 November 2011)

The title salt, C3H10N+·C14H8F3O2, constitutes the first organic crystal containing a residue of 4,4,4-trifluoro-1-(naphthalen-2-yl)butane-1,3-dione. The terminal –CF3 group is disordered over two locations [occupancy ratio = 0.830 (7):0.170 (7)]. Bond delocalization involving the two carbonyl groups and the α-carbon was observed. The crystal packing is mediated by several supra­molecular inter­actions, namely charged-assisted N—H⋯O hydrogen bonds, C—H⋯F and C—F⋯F short contacts and C—H⋯π inter­actions.

Related literature

For general background to β-diketonates, see: Binnemans (2005[Binnemans, K. (2005). Handbook on the Physics and Chemistry of Rare Earths, Vol. 35, edited by K. A., Gschneidner, J. C. G. Bünzli & V. K. Pecharsky, pp. 107-272. Amsterdam: Elsevier.]); Bruno, Coelho et al. (2008[Bruno, S. M., Coelho, A. C., Ferreira, R. A. S., Carlos, L. D., Pillinger, M., Valente, A. A., Ribeiro-Claro, P. & Gonçalves, I. S. (2008). Eur. J. Inorg. Chem. pp. 3786-3795.]); Bruno, Ferreira et al. (2008[Bruno, S. M., Ferreira, R. A. S., Carlos, L. D., Pillinger, M., Ribeiro-Claro, P. & Gonçalves, I. S. (2008). Micropor. Mesopor. Mater. 113, 453-462.]); Gago et al. (2005[Gago, S., Fernandes, J. A., Rainho, J. P., Ferreira, R. A. S., Pillinger, M., Valente, A. A., Santos, T. M., Carlos, L. D., Ribeiro-Claro, P. J. A. & Gonçalves, I. S. (2005). Chem. Mater. 17, 5077-5084.]); Vigato et al. (2009[Vigato, P. A., Peruzzo, V. & Tamburini, S. (2009). Coord. Chem. Rev. 253, 1099-1201.]). For coordination compounds having a naphtho­yltrifluoro­acetonate anion, see: Marandi et al. (2009[Marandi, F., Hanasavi, Z. & Farzaneh, H. (2009). J. Coord. Chem. 62, 3332-3342.]); Ishida et al. (2007[Ishida, T., Adachi, K., Kawata, S., Suzuki, T., Fuyuhiro, A. & Kaizaki, S. (2007). Polyhedron, 26, 2013-2020.]); Akhbari & Morsali (2007[Akhbari, K. & Morsali, A. (2007). Cryst. Growth Des. 7, 2024-2030.]); Bruno et al. (2009[Bruno, S. M., Ferreira, R. A. S., Paz, F. A. A., Carlos, L. D., Pillinger, M., Ribeiro-Claro, P. & Gonçalves, I. S. (2009). Inorg. Chem. 48, 4882-4895.]); Fernandes et al. (2005[Fernandes, J. A., Ferreira, R. A. S., Pillinger, M., Carlos, L. D., Jepsen, J., Hazell, A., Ribeiro-Claro, P. & Gonçalves, I. S. (2005). J. Lumin. 113, 50-63.], 2006[Fernandes, J. A., Braga, S. S., Pillinger, M., Ferreira, R. A. S., Carlos, L. D., Hazell, A., Ribeiro-Claro, P. & Gonçalves, I. S. (2006). Polyhedron, 25, 1471-1476.]); Lunstroot et al. (2009[Lunstroot, K., Nockemann, P., van Hecke, K., van Meervelt, L., Görller-Walrand, C., Binnemans, K. & Driesen, K. (2009). Inorg. Chem. 48, 3018-3026.]). For materials containing naphtho­yltrifluoro­acetonate, see: Bruno, Coelho et al. (2008[Bruno, S. M., Coelho, A. C., Ferreira, R. A. S., Carlos, L. D., Pillinger, M., Valente, A. A., Ribeiro-Claro, P. & Gonçalves, I. S. (2008). Eur. J. Inorg. Chem. pp. 3786-3795.]); Bruno, Ferreira et al. (2008[Bruno, S. M., Ferreira, R. A. S., Carlos, L. D., Pillinger, M., Ribeiro-Claro, P. & Gonçalves, I. S. (2008). Micropor. Mesopor. Mater. 113, 453-462.]); Gago et al. (2005[Gago, S., Fernandes, J. A., Rainho, J. P., Ferreira, R. A. S., Pillinger, M., Valente, A. A., Santos, T. M., Carlos, L. D., Ribeiro-Claro, P. J. A. & Gonçalves, I. S. (2005). Chem. Mater. 17, 5077-5084.]). For standard bond lengths determined by X-ray and neutron diffraction, see: Allen et al. (1987[Allen, F., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For a description of the graph-set notation of hydrogen-bonded aggregates, see: Grell et al. (1999[Grell, J., Bernstein, J. & Tinhofer, G. (1999). Acta Cryst. B55, 1030-1043.]).

[Scheme 1]

Experimental

Crystal data
  • C3H10N+·C14H8F3O2

  • Mr = 325.32

  • Monoclinic, P 21 /n

  • a = 16.1038 (11) Å

  • b = 5.7008 (4) Å

  • c = 17.2621 (11) Å

  • β = 91.497 (4)°

  • V = 1584.20 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 150 K

  • 0.16 × 0.07 × 0.05 mm

Data collection
  • Bruker X8 KappaCCD APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1998[Sheldrick, G. M. (1998). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.982, Tmax = 0.994

  • 21307 measured reflections

  • 2883 independent reflections

  • 1958 reflections with I > 2σ(I)

  • Rint = 0.068

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.117

  • S = 1.06

  • 2883 reflections

  • 246 parameters

  • 42 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Selected bond lengths (Å)

O1—C2 1.268 (3)
O2—C4 1.256 (3)
C2—C3 1.377 (3)
C3—C4 1.417 (3)

Table 2
Selected short distance supra­molecular inter­actions (Å, °)

Cg is the centroid of the C8–C14 ring.

ABC AB BC AC ABC
Strong hydrogen bonds        
N1—H1X⋯O1i 0.95 (1) 1.98 (1) 2.871 (3) 155 (2)
N1—H1Y⋯O2ii 0.96 (1) 1.88 (1) 2.798 (3) 159 (2)
N1—H1Z⋯O1iii 0.95 (1) 1.98 (1) 2.835 (2) 148 (2)
N1—H1Z⋯O2iii 0.95 (1) 2.34 (2) 2.985 (3) 124 (1)
C—H⋯F contacts        
C14—H14⋯F1iv 0.95 2.66 3.305 (4) 126
C13—H13⋯F1iv 0.95 2.69 3.320 (4) 124
C13—H13⋯F3iii 0.95 2.64 3.337 (4) 130
C—H⋯π contacts        
C11—H11⋯Cgv 0.95 2.93 3.677 (3) 136
C17—H17CCgvi 0.98 2.87 3.786 (3) 157
F⋯F contact        
C1—F3⋯F3vii 1.30 (1) 2.78 (1) 3.409 (4) 108 (1)
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (v) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (vi) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (vii) -x, -y-1, -z+1.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2005[Bruker (2005). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg, 2009[Brandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

β-Diketones are composed of two carbonyl groups separated by one carbon atom, the α-carbon. The conjugation of the two double bonds stabilizes the β-diketonate anion, which results from the loss of a proton of the neutral β-diketone. β-Diketonates are good chelating ligands, and under appropriate conditions might form mono- and polynuclear complexes, with d- and f-block elements (Binnemans, 2005). These types of complexes may find several direct applications, mainly in the fields of photoluminescence, NMR spectroscopy and biomedicine, due to their intrinsic optical and magnetic properties (Bruno, Coelho et al., 2008; Bruno, Ferreira et al., 2008; Gago et al., 2005; Vigato et al., 2009). 1-(2-Naphthoyl)-3,3,3-trifluoroacetone (HNTA) (systematic name: 1-(2-naphthyl)-4,4,4-trifluorobutane-1,3-dione) is a β-diketone which has been used in the preparation of a handful of coordination compounds with lead (Marandi et al., 2009), transition metals (Ishida et al., 2007; Akhbari & Morsali, 2007) and lanthanides (Bruno et al., 2009; Fernandes et al., 2005, 2006; Lunstroot et al., 2009). Our group has been interested in the photoluminescence behaviour of the latter family of compounds. In this context we have prepared a handful of photoluminescent materials comprising HNTA residues and lanthanides (Bruno, Coelho et al., 2008; Bruno, Ferreira et al., 2008; Gago et al., 2005). As part of our on-going research we have isolated the title compound, which represents to the best of our knowledge the first organic crystal containing HNTA residues.

The asymmetric unit of the title salt comprises one propylammonium cation (PrNH3+) and one naphthoyltrifluoroacetonate anion (NTA-) (Fig. 1). The +synclinal torsion angle N1—C15—C16—C17 of PrNH3+ has a value of 65.1 (3)°. The —CF3 group in NTA- exhibits rotational disorder, which was modelled by the superposition of two different parts whose rate of occupancy was refined and converged to 0.830 (7) and 0.170 (7), respectively. Most atoms of this anion are placed in two planes: the naphthyl carbon atoms (C5 to C14) and C4 define plane A [largest deviation of 0.042 (2) Å for C4]; C1 to C4, O1, F2' and F3 define plane B [largest deviation of 0.049 (3) Å for C1]. The angle subtended by planes A and B is 39.0 (2)°, while the bond C4—O2 subtends an angle of 16.2 (3)° with plane B (i.e., the bond is raised from the plane). Atoms O1, C2 to C4 and O2 are engaged in a system of delocalized bonds due to the proton transfer to propylamine. This feature is evident in the C—C and C—O distances which are intermediate between the expected values for single and double bonds (see Table 1 for geometric details; Allen et al., 1987).

The crystal structure is rich in several types of supramolecular contacts, particularly strong charge-assisted hydrogen bonds (N+—H···O-) and weaker short distance contacts, namely C—H···F, F···F and C—H···π interactions (see Table 2 for a full listing and division into families). Hydrogen bonds appear between the two charged species comprising the asymmetric unit, establishing direct connections between the positively charged ammonium cation and the ketonic oxygen atoms (with partial negative charge): N1 donates H1Z in a bifurcated hydrogen bonding interaction simultaneously to O1 and O2; this leads to the formation of two spiral chains with graph set motif C21(4) (Grell et al., 1999), with the N1—H1Z bond being common to both. We note that the importance of these spirals in the crystal structure can be distinguished due to the asymmetric nature of the aforementioned bifurcated hydrogen bond: the main spiral chain has a considerably shorter N···O distance, being thus formed by the sequence H1X—N1—H1Z···O1 (dashed pink lines in Figs 2 and 3); the other supramolecular chain can be envisaged as formed by the sequence H1Y—N1—H1Z···O2 (dashed green lines in Figs 2 and 3). Noteworthy is that all these interactions are confined into a small hydrophilic space of the crystal structure which runs parallel to the b axis. The C—H···F contacts occur between H atoms from the aromatic rings and neighboring F atoms, being also close to the observed F···F contacts (dashed violet lines in Fig. 3). The C—H···π contacts arise from H atoms belonging to the terminal —CH3 moiety of the PrNH3+ cation, or from an aromatic ring, with the terminal ring of neighbouring naphthyl moiety. All the above mentioned supramolecular interactions contribute decisively for the crystal packing, in which the cations and anions are disposed into layers parallel to the (1 0 1) plane (Fig. 3).

Related literature top

For general background to β-diketonates, see: Binnemans (2005); Bruno, Coelho et al. (2008); Bruno, Ferreira et al. (2008); Gago et al. (2005); Vigato et al. (2009). For coordination compounds having the naphthoyltrifluoroacetonate anion, see: Marandi et al. (2009); Ishida et al. (2007); Akhbari & Morsali (2007); Bruno et al. (2009); Fernandes et al. (2005, 2006); Lunstroot et al. (2009). For materials containing naphthoyltrifluoroacetonate, see: Bruno, Coelho et al. (2008); Bruno, Ferreira et al. (2008); Gago et al. (2005). For standard bond lengths determined by X-ray and neutron diffraction, see: Allen et al. (1987). For a description of the graph-set notation of hydrogen-bonded aggregates, see: Grell et al. (1999).

Experimental top

All chemicals were purchased from commercial sources and used as received.

1-(2-Naphthoyl)-3,3,3-trifluoroacetone (1.06 g, 4.00 mmol) was dissolved in CHCl3 (20 ml) at ambient temperature. Propylamine (0.34 g, 4.00 mmol) was added and a yellow precipitate formed. The resultant mixture was further stirred for 16 h. After evaporation of the solvent to dryness, the resulting yellow solid was dissolved in CH2Cl2 at 40°C. Excess of dried MgSO4 was added to the solution, which was then filtered off and evaporated to dryness. Suitable crystals of the title compound were isolated by slow cooling to ambient temperature of a hot concentrated solution in CH2Cl2.

Refinement top

Hydrogen atoms bound to carbon were placed at their idealized positions and were included in the final structural model in riding-motion approximation with C—H = 0.95 Å (aromatic and methine C—H), 0.99 Å (—CH2—) and 0.98 Å (—CH3). Hydrogen atoms associated with the —NH3+ group were directly located from difference Fourier maps and were included in the final structural model with the N—H and H···H distances restrained to 0.95 (1) and 1.55 (1) Å, respectively, as to ensure a chemically reasonable geometry for this moiety. The isotropic thermal displacement parameters for hydrogen atoms were fixed at 1.2×Ueq (C—H and —CH2) or 1.5×Ueq (—CH3 and —NH3+) of the respective parent atoms.

The —CF3 group was found to be disordered and was modelled over two distinct positions with complementary rates of occupancy calculated from unrestrained refinement. The site occupancies ultimately converged to 0.830 (7) and 0.170 (7).

Structure description top

β-Diketones are composed of two carbonyl groups separated by one carbon atom, the α-carbon. The conjugation of the two double bonds stabilizes the β-diketonate anion, which results from the loss of a proton of the neutral β-diketone. β-Diketonates are good chelating ligands, and under appropriate conditions might form mono- and polynuclear complexes, with d- and f-block elements (Binnemans, 2005). These types of complexes may find several direct applications, mainly in the fields of photoluminescence, NMR spectroscopy and biomedicine, due to their intrinsic optical and magnetic properties (Bruno, Coelho et al., 2008; Bruno, Ferreira et al., 2008; Gago et al., 2005; Vigato et al., 2009). 1-(2-Naphthoyl)-3,3,3-trifluoroacetone (HNTA) (systematic name: 1-(2-naphthyl)-4,4,4-trifluorobutane-1,3-dione) is a β-diketone which has been used in the preparation of a handful of coordination compounds with lead (Marandi et al., 2009), transition metals (Ishida et al., 2007; Akhbari & Morsali, 2007) and lanthanides (Bruno et al., 2009; Fernandes et al., 2005, 2006; Lunstroot et al., 2009). Our group has been interested in the photoluminescence behaviour of the latter family of compounds. In this context we have prepared a handful of photoluminescent materials comprising HNTA residues and lanthanides (Bruno, Coelho et al., 2008; Bruno, Ferreira et al., 2008; Gago et al., 2005). As part of our on-going research we have isolated the title compound, which represents to the best of our knowledge the first organic crystal containing HNTA residues.

The asymmetric unit of the title salt comprises one propylammonium cation (PrNH3+) and one naphthoyltrifluoroacetonate anion (NTA-) (Fig. 1). The +synclinal torsion angle N1—C15—C16—C17 of PrNH3+ has a value of 65.1 (3)°. The —CF3 group in NTA- exhibits rotational disorder, which was modelled by the superposition of two different parts whose rate of occupancy was refined and converged to 0.830 (7) and 0.170 (7), respectively. Most atoms of this anion are placed in two planes: the naphthyl carbon atoms (C5 to C14) and C4 define plane A [largest deviation of 0.042 (2) Å for C4]; C1 to C4, O1, F2' and F3 define plane B [largest deviation of 0.049 (3) Å for C1]. The angle subtended by planes A and B is 39.0 (2)°, while the bond C4—O2 subtends an angle of 16.2 (3)° with plane B (i.e., the bond is raised from the plane). Atoms O1, C2 to C4 and O2 are engaged in a system of delocalized bonds due to the proton transfer to propylamine. This feature is evident in the C—C and C—O distances which are intermediate between the expected values for single and double bonds (see Table 1 for geometric details; Allen et al., 1987).

The crystal structure is rich in several types of supramolecular contacts, particularly strong charge-assisted hydrogen bonds (N+—H···O-) and weaker short distance contacts, namely C—H···F, F···F and C—H···π interactions (see Table 2 for a full listing and division into families). Hydrogen bonds appear between the two charged species comprising the asymmetric unit, establishing direct connections between the positively charged ammonium cation and the ketonic oxygen atoms (with partial negative charge): N1 donates H1Z in a bifurcated hydrogen bonding interaction simultaneously to O1 and O2; this leads to the formation of two spiral chains with graph set motif C21(4) (Grell et al., 1999), with the N1—H1Z bond being common to both. We note that the importance of these spirals in the crystal structure can be distinguished due to the asymmetric nature of the aforementioned bifurcated hydrogen bond: the main spiral chain has a considerably shorter N···O distance, being thus formed by the sequence H1X—N1—H1Z···O1 (dashed pink lines in Figs 2 and 3); the other supramolecular chain can be envisaged as formed by the sequence H1Y—N1—H1Z···O2 (dashed green lines in Figs 2 and 3). Noteworthy is that all these interactions are confined into a small hydrophilic space of the crystal structure which runs parallel to the b axis. The C—H···F contacts occur between H atoms from the aromatic rings and neighboring F atoms, being also close to the observed F···F contacts (dashed violet lines in Fig. 3). The C—H···π contacts arise from H atoms belonging to the terminal —CH3 moiety of the PrNH3+ cation, or from an aromatic ring, with the terminal ring of neighbouring naphthyl moiety. All the above mentioned supramolecular interactions contribute decisively for the crystal packing, in which the cations and anions are disposed into layers parallel to the (1 0 1) plane (Fig. 3).

For general background to β-diketonates, see: Binnemans (2005); Bruno, Coelho et al. (2008); Bruno, Ferreira et al. (2008); Gago et al. (2005); Vigato et al. (2009). For coordination compounds having the naphthoyltrifluoroacetonate anion, see: Marandi et al. (2009); Ishida et al. (2007); Akhbari & Morsali (2007); Bruno et al. (2009); Fernandes et al. (2005, 2006); Lunstroot et al. (2009). For materials containing naphthoyltrifluoroacetonate, see: Bruno, Coelho et al. (2008); Bruno, Ferreira et al. (2008); Gago et al. (2005). For standard bond lengths determined by X-ray and neutron diffraction, see: Allen et al. (1987). For a description of the graph-set notation of hydrogen-bonded aggregates, see: Grell et al. (1999).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT-Plus (Bruker, 2005); data reduction: SAINT-Plus (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular units (anion plus cation) composing the asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level and the atomic labeling is provided for all non-hydrogen atoms. Hydrogen atoms are represented as small spheres with arbitrary radius.
[Figure 2] Fig. 2. Hydrogen bonded supramolecular chains running parallel to the [010] direction of the unit cell. The N+—H···O- interactions composing the main spiral chain are represented by dashed pink lines and highlighted in yellow in the background. The N+—H···O- interactions located solely on the secondary spiral are represented as dashed green lines. For geometric details of the represented interactions see Table 2. Symmetry operations used to generate equivalent atoms: (i) 1/2 - x, -1/2 + y, 3/2 - z; (ii) -1/2 - x, 1/2 + y, 3/2 - z.
[Figure 3] Fig. 3. Crystal packing of the title compound viewed along the [010] direction. Only the F atoms corresponding to the most representative part are represented (F1, F2 and F3). Strong hydrogen bonds are represented following the colour scheme of Figure 2. Short distance interactions of the type C–H···F and F···F are represented as dashed violet lines. C—H···π interactions are depicted as dashed blue lines. For geometric details of the represented interactions see Table 2.
Propylammonium 4,4,4-trifluoro-1-(naphthalen-2-yl)butane-1,3-dionate top
Crystal data top
C3H10N+·C14H8F3O2F(000) = 680
Mr = 325.32Dx = 1.364 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4047 reflections
a = 16.1038 (11) Åθ = 2.4–24.3°
b = 5.7008 (4) ŵ = 0.11 mm1
c = 17.2621 (11) ÅT = 150 K
β = 91.497 (4)°Needle, colourless
V = 1584.20 (19) Å30.16 × 0.07 × 0.05 mm
Z = 4
Data collection top
Bruker X8 KappaCCD APEXII
diffractometer
2883 independent reflections
Radiation source: fine-focus sealed tube1958 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.068
ω and φ scansθmax = 25.4°, θmin = 3.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
h = 1919
Tmin = 0.982, Tmax = 0.994k = 66
21307 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0422P)2 + 1.0164P]
where P = (Fo2 + 2Fc2)/3
2883 reflections(Δ/σ)max = 0.004
246 parametersΔρmax = 0.20 e Å3
42 restraintsΔρmin = 0.21 e Å3
Crystal data top
C3H10N+·C14H8F3O2V = 1584.20 (19) Å3
Mr = 325.32Z = 4
Monoclinic, P21/nMo Kα radiation
a = 16.1038 (11) ŵ = 0.11 mm1
b = 5.7008 (4) ÅT = 150 K
c = 17.2621 (11) Å0.16 × 0.07 × 0.05 mm
β = 91.497 (4)°
Data collection top
Bruker X8 KappaCCD APEXII
diffractometer
2883 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
1958 reflections with I > 2σ(I)
Tmin = 0.982, Tmax = 0.994Rint = 0.068
21307 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05042 restraints
wR(F2) = 0.117H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.20 e Å3
2883 reflectionsΔρmin = 0.21 e Å3
246 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.17996 (9)0.2046 (3)0.67034 (9)0.0292 (4)
O20.11872 (9)0.1894 (3)0.76308 (9)0.0290 (4)
C10.08668 (15)0.3303 (5)0.57660 (14)0.0303 (6)
C20.10632 (14)0.1814 (4)0.64723 (13)0.0248 (6)
C30.04273 (14)0.0443 (5)0.67711 (14)0.0281 (6)
H30.01010.05840.65440.034*
C40.05040 (14)0.1161 (4)0.73921 (13)0.0243 (6)
C50.02702 (13)0.2027 (4)0.77986 (13)0.0237 (5)
C60.02518 (14)0.4157 (4)0.82202 (14)0.0277 (6)
H60.02450.50560.82190.033*
C70.09322 (14)0.4941 (5)0.86279 (14)0.0286 (6)
H70.09040.63810.89030.034*
C80.16822 (14)0.3635 (4)0.86470 (13)0.0233 (6)
C90.17081 (13)0.1478 (4)0.82323 (13)0.0209 (5)
C100.09915 (13)0.0741 (4)0.78071 (13)0.0231 (5)
H100.10100.06790.75200.028*
C110.24530 (14)0.0163 (4)0.82469 (14)0.0266 (6)
H110.24760.12780.79720.032*
C120.31392 (15)0.0937 (5)0.86504 (14)0.0305 (6)
H120.36360.00390.86520.037*
C130.31131 (15)0.3064 (5)0.90644 (14)0.0312 (6)
H130.35920.35850.93470.037*
C140.24057 (14)0.4381 (5)0.90631 (14)0.0277 (6)
H140.23980.58130.93440.033*
F10.1330 (2)0.2618 (5)0.51583 (13)0.0712 (12)0.830 (7)
F20.1071 (3)0.5535 (4)0.58622 (18)0.0660 (12)0.830 (7)
F30.01008 (15)0.3235 (8)0.5544 (2)0.0829 (16)0.830 (7)
F1'0.0653 (12)0.226 (2)0.5185 (7)0.059 (5)0.170 (7)
F2'0.1435 (9)0.464 (4)0.5531 (10)0.069 (5)0.170 (7)
F3'0.0244 (9)0.480 (2)0.5937 (7)0.052 (5)0.170 (7)
N10.74144 (12)0.3443 (4)0.67812 (11)0.0252 (5)
H1X0.7588 (12)0.495 (2)0.6613 (12)0.038*
H1Y0.7898 (9)0.262 (3)0.6976 (12)0.038*
H1Z0.7049 (10)0.363 (4)0.7203 (10)0.038*
C150.69841 (15)0.2055 (5)0.61567 (14)0.0306 (6)
H15A0.68130.05250.63720.037*
H15B0.73800.17430.57400.037*
C160.62297 (15)0.3274 (5)0.58129 (15)0.0313 (6)
H16A0.58450.36370.62350.038*
H16B0.59400.21820.54510.038*
C170.64185 (18)0.5528 (5)0.53828 (16)0.0413 (7)
H17A0.66810.66530.57420.062*
H17B0.59010.61940.51680.062*
H17C0.67960.51900.49610.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0236 (9)0.0286 (11)0.0355 (10)0.0029 (8)0.0063 (7)0.0031 (8)
O20.0247 (9)0.0283 (11)0.0341 (10)0.0026 (8)0.0030 (7)0.0044 (8)
C10.0254 (13)0.0346 (18)0.0307 (15)0.0062 (13)0.0011 (11)0.0036 (13)
C20.0257 (13)0.0239 (15)0.0249 (12)0.0036 (11)0.0002 (10)0.0027 (11)
C30.0218 (12)0.0341 (16)0.0285 (13)0.0013 (11)0.0034 (10)0.0056 (12)
C40.0237 (12)0.0230 (14)0.0265 (13)0.0008 (11)0.0022 (10)0.0047 (11)
C50.0239 (12)0.0223 (14)0.0250 (12)0.0019 (11)0.0028 (9)0.0010 (11)
C60.0252 (13)0.0220 (15)0.0359 (14)0.0042 (11)0.0024 (10)0.0025 (12)
C70.0334 (14)0.0187 (14)0.0336 (14)0.0018 (11)0.0005 (11)0.0059 (11)
C80.0274 (13)0.0191 (14)0.0234 (12)0.0018 (10)0.0025 (10)0.0001 (11)
C90.0246 (12)0.0162 (14)0.0222 (12)0.0022 (10)0.0027 (9)0.0024 (10)
C100.0282 (13)0.0169 (14)0.0243 (13)0.0018 (10)0.0032 (10)0.0015 (11)
C110.0288 (13)0.0216 (15)0.0295 (13)0.0030 (11)0.0035 (10)0.0004 (11)
C120.0243 (13)0.0336 (17)0.0337 (14)0.0021 (11)0.0013 (11)0.0048 (13)
C130.0275 (13)0.0354 (17)0.0305 (14)0.0042 (12)0.0018 (10)0.0014 (13)
C140.0319 (14)0.0218 (15)0.0295 (13)0.0039 (11)0.0013 (10)0.0015 (12)
F10.105 (3)0.072 (2)0.0346 (13)0.0386 (19)0.0269 (14)0.0150 (13)
F20.120 (3)0.0212 (15)0.0590 (18)0.0016 (15)0.0397 (18)0.0044 (12)
F30.0352 (13)0.128 (4)0.087 (2)0.0328 (17)0.0303 (14)0.079 (3)
F1'0.090 (10)0.048 (7)0.040 (6)0.008 (7)0.025 (6)0.011 (5)
F2'0.054 (7)0.082 (10)0.071 (8)0.035 (7)0.018 (6)0.045 (7)
F3'0.061 (8)0.047 (7)0.046 (6)0.035 (6)0.010 (5)0.021 (5)
N10.0243 (10)0.0228 (12)0.0287 (11)0.0008 (9)0.0026 (9)0.0017 (10)
C150.0380 (14)0.0206 (15)0.0331 (14)0.0017 (12)0.0006 (11)0.0032 (12)
C160.0358 (14)0.0258 (16)0.0320 (14)0.0041 (12)0.0034 (11)0.0015 (12)
C170.0560 (18)0.0306 (17)0.0368 (16)0.0005 (14)0.0052 (13)0.0049 (13)
Geometric parameters (Å, º) top
O1—C21.268 (3)C9—C101.415 (3)
O2—C41.256 (3)C10—H100.9500
C2—C31.377 (3)C11—C121.364 (3)
C3—C41.417 (3)C11—H110.9500
C1—F1'1.223 (11)C12—C131.408 (4)
C1—F2'1.252 (12)C12—H120.9500
C1—F31.302 (3)C13—C141.364 (3)
C1—F21.325 (4)C13—H130.9500
C1—F11.329 (3)C14—H140.9500
C1—F3'1.344 (10)N1—C151.493 (3)
C1—C21.526 (3)N1—H1X0.952 (9)
C3—H30.9500N1—H1Y0.962 (9)
C4—C51.498 (3)N1—H1Z0.953 (9)
C5—C101.373 (3)C15—C161.508 (3)
C5—C61.416 (3)C15—H15A0.9900
C6—C71.362 (3)C15—H15B0.9900
C6—H60.9500C16—C171.518 (4)
C7—C81.418 (3)C16—H16A0.9900
C7—H70.9500C16—H16B0.9900
C8—C141.418 (3)C17—H17A0.9800
C8—C91.424 (3)C17—H17B0.9800
C9—C111.414 (3)C17—H17C0.9800
F1'—C1—F2'104.5 (10)C11—C9—C8119.0 (2)
F1'—C1—F357.0 (8)C10—C9—C8118.9 (2)
F2'—C1—F3127.9 (6)C5—C10—C9121.7 (2)
F1'—C1—F2130.2 (6)C5—C10—H10119.2
F3—C1—F2107.8 (3)C9—C10—H10119.2
F1'—C1—F151.3 (9)C12—C11—C9120.9 (2)
F2'—C1—F162.2 (11)C12—C11—H11119.6
F3—C1—F1106.0 (3)C9—C11—H11119.6
F2—C1—F1104.2 (3)C11—C12—C13120.2 (2)
F1'—C1—F3'105.3 (9)C11—C12—H12119.9
F2'—C1—F3'102.5 (11)C13—C12—H12119.9
F3—C1—F3'51.4 (7)C14—C13—C12120.6 (2)
F2—C1—F3'63.1 (7)C14—C13—H13119.7
F1—C1—F3'139.4 (5)C12—C13—H13119.7
F1'—C1—C2117.0 (6)C13—C14—C8120.7 (2)
F2'—C1—C2115.7 (6)C13—C14—H14119.6
F3—C1—C2115.8 (2)C8—C14—H14119.6
F2—C1—C2112.1 (2)C15—N1—H1X113.1 (14)
F1—C1—C2110.1 (2)C15—N1—H1Y110.5 (14)
F3'—C1—C2110.3 (5)H1X—N1—H1Y107.8 (12)
O1—C2—C3129.3 (2)C15—N1—H1Z109.1 (14)
O1—C2—C1114.1 (2)H1X—N1—H1Z108.8 (13)
C3—C2—C1116.6 (2)H1Y—N1—H1Z107.3 (12)
C2—C3—C4124.8 (2)N1—C15—C16113.2 (2)
C2—C3—H3117.6N1—C15—H15A108.9
C4—C3—H3117.6C16—C15—H15A108.9
O2—C4—C3123.9 (2)N1—C15—H15B108.9
O2—C4—C5117.5 (2)C16—C15—H15B108.9
C3—C4—C5118.6 (2)H15A—C15—H15B107.7
C10—C5—C6118.8 (2)C15—C16—C17114.4 (2)
C10—C5—C4121.5 (2)C15—C16—H16A108.7
C6—C5—C4119.6 (2)C17—C16—H16A108.7
C7—C6—C5121.3 (2)C15—C16—H16B108.7
C7—C6—H6119.4C17—C16—H16B108.7
C5—C6—H6119.4H16A—C16—H16B107.6
C6—C7—C8120.8 (2)C16—C17—H17A109.5
C6—C7—H7119.6C16—C17—H17B109.5
C8—C7—H7119.6H17A—C17—H17B109.5
C14—C8—C7122.8 (2)C16—C17—H17C109.5
C14—C8—C9118.6 (2)H17A—C17—H17C109.5
C7—C8—C9118.5 (2)H17B—C17—H17C109.5
C11—C9—C10122.1 (2)
F1'—C1—C2—O1120.2 (11)C4—C5—C6—C7176.8 (2)
F2'—C1—C2—O13.6 (13)C5—C6—C7—C80.4 (4)
F3—C1—C2—O1175.4 (3)C6—C7—C8—C14180.0 (2)
F2—C1—C2—O151.1 (4)C6—C7—C8—C90.2 (3)
F1—C1—C2—O164.4 (3)C14—C8—C9—C110.3 (3)
F3'—C1—C2—O1119.5 (9)C7—C8—C9—C11180.0 (2)
F1'—C1—C2—C360.3 (11)C14—C8—C9—C10179.1 (2)
F2'—C1—C2—C3175.8 (13)C7—C8—C9—C101.1 (3)
F3—C1—C2—C34.0 (4)C6—C5—C10—C90.8 (3)
F2—C1—C2—C3128.3 (3)C4—C5—C10—C9175.8 (2)
F1—C1—C2—C3116.2 (3)C11—C9—C10—C5179.8 (2)
F3'—C1—C2—C360.0 (9)C8—C9—C10—C51.4 (3)
O1—C2—C3—C44.8 (4)C10—C9—C11—C12178.8 (2)
C1—C2—C3—C4175.9 (2)C8—C9—C11—C120.0 (3)
C2—C3—C4—O216.0 (4)C9—C11—C12—C130.4 (4)
C2—C3—C4—C5163.2 (2)C11—C12—C13—C140.4 (4)
O2—C4—C5—C10154.1 (2)C12—C13—C14—C80.1 (4)
C3—C4—C5—C1025.2 (3)C7—C8—C14—C13180.0 (2)
O2—C4—C5—C622.4 (3)C9—C8—C14—C130.2 (3)
C3—C4—C5—C6158.2 (2)N1—C15—C16—C1765.1 (3)
C10—C5—C6—C70.1 (4)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C8–C14 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1X···O1i0.95 (1)1.98 (1)2.871 (3)155 (2)
N1—H1Y···O2ii0.96 (1)1.88 (1)2.798 (3)159 (2)
N1—H1Z···O1iii0.95 (1)1.98 (1)2.835 (2)148 (2)
N1—H1Z···O2iii0.95 (1)2.34 (2)2.985 (3)124 (1)
C14—H14···F1iv0.952.663.305 (4)126
C13—H13···F1iv0.952.693.320 (4)124
C13—H13···F3iii0.952.643.337 (4)130
C11—H11···Cgv0.952.933.677 (3)136
C17—H17C···Cgvi0.982.873.786 (3)157
C1—F3···F3vii1.30 (1)2.78 (1)3.409 (4)108 (1)
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z; (iii) x+1/2, y+1/2, z+3/2; (iv) x+1/2, y+1/2, z+1/2; (v) x+1/2, y+1/2, z1/2; (vi) x+1/2, y1/2, z+3/2; (vii) x, y1, z+1.

Experimental details

Crystal data
Chemical formulaC3H10N+·C14H8F3O2
Mr325.32
Crystal system, space groupMonoclinic, P21/n
Temperature (K)150
a, b, c (Å)16.1038 (11), 5.7008 (4), 17.2621 (11)
β (°) 91.497 (4)
V3)1584.20 (19)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.16 × 0.07 × 0.05
Data collection
DiffractometerBruker X8 KappaCCD APEXII
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1998)
Tmin, Tmax0.982, 0.994
No. of measured, independent and
observed [I > 2σ(I)] reflections
21307, 2883, 1958
Rint0.068
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.117, 1.06
No. of reflections2883
No. of parameters246
No. of restraints42
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.21

Computer programs: APEX2 (Bruker, 2006), SAINT-Plus (Bruker, 2005), SHELXTL (Sheldrick, 2008), DIAMOND (Brandenburg, 2009).

Selected bond lengths (Å) top
O1—C21.268 (3)C2—C31.377 (3)
O2—C41.256 (3)C3—C41.417 (3)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C8–C14 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1X···O1i0.952 (9)1.980 (14)2.871 (3)155 (2)
N1—H1Y···O2ii0.962 (9)1.879 (13)2.798 (3)159 (2)
N1—H1Z···O1iii0.953 (9)1.979 (14)2.835 (2)148.3 (16)
N1—H1Z···O2iii0.953 (9)2.343 (17)2.985 (3)124.2 (14)
C14—H14···F1iv0.952.663.305 (4)126
C13—H13···F1iv0.952.693.320 (4)124
C13—H13···F3iii0.952.643.337 (4)130
C11—H11···Cgv0.952.933.677 (3)136
C17—H17C···Cgvi0.982.873.786 (3)157
C1—F3···F3vii1.302 (3)2.778 (6)3.409 (4)107.8 (2)
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z; (iii) x+1/2, y+1/2, z+3/2; (iv) x+1/2, y+1/2, z+1/2; (v) x+1/2, y+1/2, z1/2; (vi) x+1/2, y1/2, z+3/2; (vii) x, y1, z+1.
 

Acknowledgements

We are grateful to the Fundação para a Ciência e a Tecnologia (FCT/FEDER, Portugal) for their general financial support to CICECO, and for the post-doctoral research grants Nos. SFRH/BPD/63736/2009 (to JAF) and SFRH/BPD/46473/2008 (to SMB). Thanks are also due to the FCT for specific funding toward the purchase of the single-crystal diffractometer.

References

First citationAkhbari, K. & Morsali, A. (2007). Cryst. Growth Des. 7, 2024–2030.  Web of Science CSD CrossRef CAS Google Scholar
First citationAllen, F., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Google Scholar
First citationBinnemans, K. (2005). Handbook on the Physics and Chemistry of Rare Earths, Vol. 35, edited by K. A., Gschneidner, J. C. G. Bünzli & V. K. Pecharsky, pp. 107–272. Amsterdam: Elsevier.  Google Scholar
First citationBrandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2005). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruno, S. M., Coelho, A. C., Ferreira, R. A. S., Carlos, L. D., Pillinger, M., Valente, A. A., Ribeiro-Claro, P. & Gonçalves, I. S. (2008). Eur. J. Inorg. Chem. pp. 3786–3795.  Web of Science CrossRef Google Scholar
First citationBruno, S. M., Ferreira, R. A. S., Carlos, L. D., Pillinger, M., Ribeiro-Claro, P. & Gonçalves, I. S. (2008). Micropor. Mesopor. Mater. 113, 453–462.  Web of Science CrossRef CAS Google Scholar
First citationBruno, S. M., Ferreira, R. A. S., Paz, F. A. A., Carlos, L. D., Pillinger, M., Ribeiro-Claro, P. & Gonçalves, I. S. (2009). Inorg. Chem. 48, 4882–4895.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFernandes, J. A., Braga, S. S., Pillinger, M., Ferreira, R. A. S., Carlos, L. D., Hazell, A., Ribeiro-Claro, P. & Gonçalves, I. S. (2006). Polyhedron, 25, 1471–1476.  Web of Science CSD CrossRef CAS Google Scholar
First citationFernandes, J. A., Ferreira, R. A. S., Pillinger, M., Carlos, L. D., Jepsen, J., Hazell, A., Ribeiro-Claro, P. & Gonçalves, I. S. (2005). J. Lumin. 113, 50–63.  CrossRef CAS Google Scholar
First citationGago, S., Fernandes, J. A., Rainho, J. P., Ferreira, R. A. S., Pillinger, M., Valente, A. A., Santos, T. M., Carlos, L. D., Ribeiro-Claro, P. J. A. & Gonçalves, I. S. (2005). Chem. Mater. 17, 5077–5084.  Web of Science CrossRef CAS Google Scholar
First citationGrell, J., Bernstein, J. & Tinhofer, G. (1999). Acta Cryst. B55, 1030–1043.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationIshida, T., Adachi, K., Kawata, S., Suzuki, T., Fuyuhiro, A. & Kaizaki, S. (2007). Polyhedron, 26, 2013–2020.  Web of Science CSD CrossRef CAS Google Scholar
First citationLunstroot, K., Nockemann, P., van Hecke, K., van Meervelt, L., Görller-Walrand, C., Binnemans, K. & Driesen, K. (2009). Inorg. Chem. 48, 3018–3026.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMarandi, F., Hanasavi, Z. & Farzaneh, H. (2009). J. Coord. Chem. 62, 3332–3342.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1998). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVigato, P. A., Peruzzo, V. & Tamburini, S. (2009). Coord. Chem. Rev. 253, 1099–1201.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds