metal-organic compounds
(Acetonitrile-κN)chloridobis[2-(pyridin-2-yl)phenyl-κ2C1,N]iridium(III)
aInstitut für Anorganische Chemie der Universität Frankfurt, Max-von-Laue-Strasse 7, D-60438 Frankfurt am Main, Germany, and bInstitut für Organische Chemie, Universität Frankfurt, Max-von-Laue-Strasse 7, D-60438 Frankfurt am Main, Germany
*Correspondence e-mail: bats@chemie.uni-frankfurt.de
The IrIII atom of the title compound, [Ir(C11H8N)2Cl(CH3CN)], displays a distorted octahedral coordination. The pyridyl groups are in trans positions [N—Ir—N = 173.07 (10)°], while the phenyl groups are trans with respect to the acetonitrile and chloride groups [C—Ir—N = 178.13 (11) and C—Ir—Cl = 176.22 (9)°]. The pyridylphenyl groups only show a small deviation from planarity, with the dihedral angle between the planes of the two six-membered rings in each pyridylphenyl group being 5.6 (2) and 5.8 (1)°. The crystal packing shows intermolecular C—H⋯Cl, C—H⋯π(acetonitrile) and C—H⋯π(pyridylphenyl) contacts.
Related literature
For our work on redox active ligands, see: Jäkle et al. (1996); Guo et al. (2001); Margraf et al. (2006); Kretz et al. (2006); Phan et al. (2011); Scheuermann et al. (2008, 2009); Blasberg et al. (2010, 2011). For the synthesis of the starting materials, see: Blasberg et al. (2011); Lowry et al. (2004). For related structures, see: Yang et al. (2009); Shu et al. (2011); McGee & Mann (2007); Garces et al. (1993).
Experimental
Crystal data
|
Refinement
|
|
Data collection: SMART (Siemens, 1995); cell SAINT (Siemens, 1995); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.
Supporting information
https://doi.org/10.1107/S1600536811049373/tk5023sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536811049373/tk5023Isup2.hkl
Dichlorido-[1-(bis-1H-pyrazol-1-ylmethyl)-benzene-3,4-diol-N,N']palladium(II) (50 mg, 0.12 mmol; Blasberg et al., 2011) was reacted with 19 mg (0.23 mmol) of lithium t-butoxide in tetrahydrofuran (4 ml) for 5 min, after which 62 mg (0.12 mmol) of tetrakis-[2-(pyridin-2-yl)phenyl]-dichlorido-diiridium(III) was added. After stirring overnight, the suspension which had formed, was separated by centrifugation and dried by evaporation. Recrystallization of the tan-colored powder from acetonitrile yielded yellow-brown blocks of the title compound.
The H atoms were positioned geometrically and treated as riding with Cplanar—H = 0.95 Å and Cmethyl—H = 0.98 Å, and with Uiso(H)=1.2Ueq(Cplanar) and Uiso(H)=1.5Ueq(Cmethyl).
One of the highlights of our group's work is the synthesis and characterization of redox active ligands for transition metal catalyzed reactions and applications in material science. Up to now we have applied electro-active ligands with poly(pyrazol-1-yl)borate (Jäkle et al., 1996; Guo et al., 2001), diimine (Margraf et al., 2006; Kretz et al., 2006; Phan et al., 2011) and bis(pyrazol-1-yl)methane (Scheuermann et al., 2008; Scheuermann et al., 2009; Blasberg et al., 2010) donor groups. So far, ferrocenyl and mainly para-quinonyl units (quinone is used if the
is not defined) were used as the redox-active element. But recently our attention turned to ortho-quinone derivatives, since they should allow for efficient bridging of two different transition metal centers in redox-switchable catalysis. In this context, synthesis of the hetero-bimetallic complex 3 with an ortho-hydroquinone-derived bis(pyrazol-1-yl)methane ligand, a catalytically active palladium(II) and a light-switchable iridium(III) center was attempted (see Fig. 1). This molecule might allow for light-driven redox-reactions, which in turn can switch catalysis on or off. The palladium(II) complex 1 (Blasberg et al., 2010; Blasberg et al., 2011) was deprotonated twice with lithium t-butoxide (LiOtBu) in a tetrahydrofuran solution in a and subsequently tetrakis-[2-(pyridin-2-yl)phenyl]-dichlorido-diiridium(III) 2 (Lowry et al., 2004) was added to the resulting dianion. After stirring overnight and recrystallization of the resulting crude material from acetonitrile, the only obtained product was (acetonitrile-N)-chlorido-bis[2-(pyridin-2-yl)phenyl-C,N]iridium(III) 4, instead of the expected compound 3.The molecular structure of the title compound is shown in Fig. 2. The Ir(III) atom displays octahedral coordination (Table 1). The pyridyl groups are in trans positions and the phenyl groups in cis positions with respect to the central metal atom. A trans position of the pyridyl groups also has been observed in dimer 2 (McGee & Mann, 2007; Garces et al., 1993) and in related compounds (Shu et al., 2011). The bond lengths involving the Ir atom are very similar to the values reported for a closely related molecule (Yang et al., 2009). The pyridylphenyl groups only show a small deviation from planarity. The angle between the planes of the two six-membered rings is 5.6 (2) and 5.8 (1)°, respectively, for the two different pyridylphenyl groups. The crystal packing shows two intermolecular C—H···Cl contacts, an intermolecular C—H···πacetonitrile and an intermolecular C—H···πpyridylphenyl contact (Table 2). The C—H···πacetonitrile contact points closer towards atom C23 than towards the midpoint of the C≡ N triple bond. The C—H···πpyridylphenyl contact does not point towards the center of one of the six-membered rings. It rather points towards the midpoint of the C17—C18 bond.
For our work on redox active ligands, see: Jäkle et al. (1996); Guo et al. (2001); Margraf et al. (2006); Kretz et al. (2006); Phan et al. (2011); Scheuermann et al. (2008, 2009); Blasberg et al. (2010, 2011). For the synthesis of the starting materials, see: Blasberg et al. (2011); Lowry et al. (2004). For related structures, see: Yang et al. (2009); Shu et al. (2011); McGee & Mann (2007); Garces et al. (1993).
Data collection: SMART (Siemens, 1995); cell
SAINT (Siemens, 1995); data reduction: SAINT (Siemens, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. The attempted synthesis of compound 3 and the synthesis of the title compound 4. | |
Fig. 2. The molecular structure of the title molecule shown with 50% probability displacement ellipsoids. The H atoms are drawn as small spheres of arbitrary radius. |
[Ir(C11H8N)2Cl(C2H3N)] | F(000) = 2224 |
Mr = 577.07 | Dx = 1.856 Mg m−3 |
Orthorhombic, Pbca | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ac 2ab | Cell parameters from 8192 reflections |
a = 16.5255 (8) Å | θ = 3–26° |
b = 14.6588 (7) Å | µ = 6.61 mm−1 |
c = 17.0536 (8) Å | T = 171 K |
V = 4131.1 (3) Å3 | Block, yellow-brown |
Z = 8 | 0.38 × 0.34 × 0.20 mm |
Siemens SMART 1K CCD diffractometer | 4772 independent reflections |
Radiation source: normal-focus sealed tube | 3899 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.043 |
ω scans | θmax = 28.0°, θmin = 2.2° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2000) | h = −21→21 |
Tmin = 0.176, Tmax = 0.267 | k = −18→19 |
44325 measured reflections | l = −21→21 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.026 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.040 | H-atom parameters constrained |
S = 1.07 | w = 1/[σ2(Fo2) + (0.01P)2 + 6P] where P = (Fo2 + 2Fc2)/3 |
4772 reflections | (Δ/σ)max = 0.002 |
263 parameters | Δρmax = 0.70 e Å−3 |
0 restraints | Δρmin = −0.67 e Å−3 |
[Ir(C11H8N)2Cl(C2H3N)] | V = 4131.1 (3) Å3 |
Mr = 577.07 | Z = 8 |
Orthorhombic, Pbca | Mo Kα radiation |
a = 16.5255 (8) Å | µ = 6.61 mm−1 |
b = 14.6588 (7) Å | T = 171 K |
c = 17.0536 (8) Å | 0.38 × 0.34 × 0.20 mm |
Siemens SMART 1K CCD diffractometer | 4772 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2000) | 3899 reflections with I > 2σ(I) |
Tmin = 0.176, Tmax = 0.267 | Rint = 0.043 |
44325 measured reflections |
R[F2 > 2σ(F2)] = 0.026 | 0 restraints |
wR(F2) = 0.040 | H-atom parameters constrained |
S = 1.07 | Δρmax = 0.70 e Å−3 |
4772 reflections | Δρmin = −0.67 e Å−3 |
263 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ir1 | 0.120571 (6) | 0.443245 (7) | 0.139275 (6) | 0.01422 (4) | |
Cl1 | 0.10742 (5) | 0.35418 (5) | 0.01602 (4) | 0.02214 (17) | |
N1 | 0.15302 (14) | 0.55553 (17) | 0.07570 (14) | 0.0168 (5) | |
N2 | 0.09788 (15) | 0.33598 (17) | 0.21296 (14) | 0.0173 (6) | |
N3 | −0.00690 (15) | 0.46420 (16) | 0.13721 (15) | 0.0180 (5) | |
C1 | 0.10024 (19) | 0.6140 (2) | 0.04170 (19) | 0.0208 (7) | |
H1A | 0.0442 | 0.5995 | 0.0419 | 0.025* | |
C2 | 0.1253 (2) | 0.6939 (2) | 0.00676 (19) | 0.0271 (7) | |
H2A | 0.0872 | 0.7336 | −0.0172 | 0.032* | |
C3 | 0.2071 (2) | 0.7156 (2) | 0.0070 (2) | 0.0269 (8) | |
H3A | 0.2255 | 0.7715 | −0.0148 | 0.032* | |
C4 | 0.2612 (2) | 0.6548 (2) | 0.03935 (19) | 0.0227 (7) | |
H4A | 0.3174 | 0.6682 | 0.0389 | 0.027* | |
C5 | 0.23377 (18) | 0.5736 (2) | 0.07272 (18) | 0.0188 (7) | |
C6 | 0.28432 (19) | 0.5020 (2) | 0.10731 (18) | 0.0183 (7) | |
C7 | 0.3682 (2) | 0.5025 (2) | 0.10645 (19) | 0.0262 (8) | |
H7A | 0.3960 | 0.5525 | 0.0835 | 0.031* | |
C8 | 0.4118 (2) | 0.4314 (2) | 0.1385 (2) | 0.0314 (8) | |
H8A | 0.4693 | 0.4323 | 0.1378 | 0.038* | |
C9 | 0.3706 (2) | 0.3584 (2) | 0.1717 (2) | 0.0287 (8) | |
H9A | 0.4001 | 0.3090 | 0.1937 | 0.034* | |
C10 | 0.2866 (2) | 0.3570 (2) | 0.17310 (19) | 0.0224 (7) | |
H10A | 0.2595 | 0.3067 | 0.1964 | 0.027* | |
C11 | 0.24108 (18) | 0.4280 (2) | 0.14108 (18) | 0.0184 (6) | |
C12 | 0.07559 (19) | 0.2516 (2) | 0.1899 (2) | 0.0234 (7) | |
H12A | 0.0702 | 0.2393 | 0.1354 | 0.028* | |
C13 | 0.0605 (2) | 0.1831 (2) | 0.2425 (2) | 0.0286 (8) | |
H13A | 0.0438 | 0.1246 | 0.2249 | 0.034* | |
C14 | 0.0697 (2) | 0.2002 (2) | 0.3214 (2) | 0.0294 (8) | |
H14A | 0.0605 | 0.1531 | 0.3586 | 0.035* | |
C15 | 0.0923 (2) | 0.2858 (2) | 0.34593 (19) | 0.0256 (8) | |
H15A | 0.0991 | 0.2979 | 0.4003 | 0.031* | |
C16 | 0.10527 (18) | 0.3545 (2) | 0.29141 (18) | 0.0183 (7) | |
C17 | 0.12382 (17) | 0.4502 (2) | 0.30864 (17) | 0.0180 (6) | |
C18 | 0.1296 (2) | 0.4849 (2) | 0.38490 (18) | 0.0234 (7) | |
H18A | 0.1232 | 0.4452 | 0.4285 | 0.028* | |
C19 | 0.1446 (2) | 0.5767 (2) | 0.3970 (2) | 0.0294 (8) | |
H19A | 0.1488 | 0.6004 | 0.4487 | 0.035* | |
C20 | 0.1534 (2) | 0.6340 (2) | 0.3325 (2) | 0.0298 (8) | |
H20A | 0.1635 | 0.6972 | 0.3403 | 0.036* | |
C21 | 0.1477 (2) | 0.5998 (2) | 0.2570 (2) | 0.0246 (8) | |
H21A | 0.1545 | 0.6400 | 0.2139 | 0.030* | |
C22 | 0.13213 (18) | 0.5074 (2) | 0.24265 (17) | 0.0171 (6) | |
C23 | −0.07549 (19) | 0.4705 (2) | 0.1405 (2) | 0.0216 (7) | |
C24 | −0.1632 (2) | 0.4813 (3) | 0.1439 (2) | 0.0344 (9) | |
H24A | −0.1805 | 0.5251 | 0.1038 | 0.052* | |
H24B | −0.1787 | 0.5039 | 0.1959 | 0.052* | |
H24C | −0.1892 | 0.4223 | 0.1343 | 0.052* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ir1 | 0.01496 (6) | 0.01404 (6) | 0.01367 (6) | 0.00062 (5) | −0.00041 (5) | 0.00067 (5) |
Cl1 | 0.0257 (4) | 0.0242 (4) | 0.0165 (4) | 0.0035 (3) | −0.0032 (3) | −0.0025 (3) |
N1 | 0.0193 (12) | 0.0163 (12) | 0.0148 (12) | 0.0023 (11) | 0.0007 (10) | 0.0020 (12) |
N2 | 0.0202 (14) | 0.0168 (13) | 0.0149 (13) | 0.0008 (10) | 0.0016 (10) | 0.0009 (11) |
N3 | 0.0201 (14) | 0.0152 (13) | 0.0186 (13) | −0.0005 (10) | −0.0010 (12) | 0.0001 (11) |
C1 | 0.0192 (17) | 0.0222 (17) | 0.0211 (17) | 0.0020 (13) | −0.0020 (13) | −0.0001 (14) |
C2 | 0.0330 (19) | 0.0214 (17) | 0.0267 (18) | 0.0051 (16) | −0.0036 (16) | 0.0070 (14) |
C3 | 0.036 (2) | 0.0189 (17) | 0.0263 (19) | −0.0037 (15) | 0.0020 (16) | 0.0081 (15) |
C4 | 0.0227 (17) | 0.0223 (17) | 0.0232 (18) | −0.0061 (14) | 0.0014 (14) | 0.0016 (14) |
C5 | 0.0189 (16) | 0.0225 (18) | 0.0149 (15) | −0.0008 (12) | −0.0010 (12) | −0.0017 (13) |
C6 | 0.0201 (16) | 0.0193 (16) | 0.0156 (16) | −0.0011 (13) | −0.0019 (13) | −0.0003 (13) |
C7 | 0.0222 (18) | 0.0309 (19) | 0.0255 (17) | −0.0054 (15) | 0.0003 (14) | 0.0014 (15) |
C8 | 0.0149 (15) | 0.042 (2) | 0.037 (2) | 0.0031 (15) | −0.0031 (16) | 0.001 (2) |
C9 | 0.0236 (19) | 0.0290 (19) | 0.0335 (19) | 0.0084 (15) | −0.0064 (16) | 0.0032 (15) |
C10 | 0.0241 (17) | 0.0168 (17) | 0.0263 (18) | 0.0010 (13) | −0.0024 (14) | 0.0018 (14) |
C11 | 0.0184 (15) | 0.0202 (16) | 0.0167 (14) | 0.0022 (12) | −0.0021 (14) | −0.0059 (15) |
C12 | 0.0259 (18) | 0.0228 (18) | 0.0216 (19) | −0.0010 (14) | −0.0003 (14) | −0.0030 (15) |
C13 | 0.042 (2) | 0.0162 (18) | 0.028 (2) | −0.0037 (15) | 0.0050 (16) | −0.0002 (15) |
C14 | 0.043 (2) | 0.0213 (19) | 0.0240 (19) | −0.0031 (16) | 0.0048 (16) | 0.0089 (15) |
C15 | 0.0321 (18) | 0.0248 (18) | 0.0200 (19) | −0.0001 (14) | 0.0007 (14) | 0.0026 (14) |
C16 | 0.0177 (16) | 0.0183 (16) | 0.0188 (16) | 0.0039 (12) | −0.0001 (13) | 0.0013 (13) |
C17 | 0.0158 (14) | 0.0215 (15) | 0.0167 (14) | 0.0014 (14) | −0.0013 (12) | −0.0006 (13) |
C18 | 0.0253 (18) | 0.0269 (17) | 0.0181 (16) | 0.0000 (15) | −0.0009 (14) | −0.0004 (13) |
C19 | 0.034 (2) | 0.033 (2) | 0.0207 (18) | −0.0021 (15) | −0.0022 (15) | −0.0096 (15) |
C20 | 0.040 (2) | 0.0200 (18) | 0.030 (2) | −0.0014 (15) | −0.0027 (16) | −0.0084 (15) |
C21 | 0.0303 (19) | 0.0207 (18) | 0.0229 (18) | −0.0002 (14) | −0.0012 (15) | −0.0001 (14) |
C22 | 0.0137 (15) | 0.0199 (15) | 0.0176 (15) | 0.0028 (13) | −0.0011 (12) | −0.0005 (13) |
C23 | 0.0243 (18) | 0.0211 (16) | 0.0193 (16) | 0.0008 (12) | −0.0011 (15) | −0.0014 (15) |
C24 | 0.0205 (18) | 0.042 (2) | 0.041 (2) | 0.0020 (15) | 0.0023 (17) | 0.003 (2) |
Ir1—C11 | 2.004 (3) | C9—H9A | 0.9500 |
Ir1—C22 | 2.007 (3) | C10—C11 | 1.394 (4) |
Ir1—N1 | 2.043 (2) | C10—H10A | 0.9500 |
Ir1—N2 | 2.047 (2) | C12—C13 | 1.370 (5) |
Ir1—N3 | 2.129 (3) | C12—H12A | 0.9500 |
Ir1—Cl1 | 2.4839 (7) | C13—C14 | 1.376 (5) |
N1—C1 | 1.353 (4) | C13—H13A | 0.9500 |
N1—C5 | 1.361 (4) | C14—C15 | 1.374 (5) |
N2—C12 | 1.349 (4) | C14—H14A | 0.9500 |
N2—C16 | 1.371 (4) | C15—C16 | 1.388 (4) |
N3—C23 | 1.139 (4) | C15—H15A | 0.9500 |
C1—C2 | 1.378 (4) | C16—C17 | 1.466 (4) |
C1—H1A | 0.9500 | C17—C18 | 1.399 (4) |
C2—C3 | 1.389 (5) | C17—C22 | 1.410 (4) |
C2—H2A | 0.9500 | C18—C19 | 1.385 (5) |
C3—C4 | 1.378 (5) | C18—H18A | 0.9500 |
C3—H3A | 0.9500 | C19—C20 | 1.392 (5) |
C4—C5 | 1.394 (4) | C19—H19A | 0.9500 |
C4—H4A | 0.9500 | C20—C21 | 1.384 (5) |
C5—C6 | 1.465 (4) | C20—H20A | 0.9500 |
C6—C7 | 1.386 (4) | C21—C22 | 1.400 (4) |
C6—C11 | 1.422 (4) | C21—H21A | 0.9500 |
C7—C8 | 1.380 (5) | C23—C24 | 1.459 (4) |
C7—H7A | 0.9500 | C24—H24A | 0.9800 |
C8—C9 | 1.389 (5) | C24—H24B | 0.9800 |
C8—H8A | 0.9500 | C24—H24C | 0.9800 |
C9—C10 | 1.389 (5) | ||
C11—Ir1—C22 | 86.81 (12) | C10—C9—H9A | 119.7 |
C11—Ir1—N1 | 80.64 (11) | C9—C10—C11 | 121.5 (3) |
C22—Ir1—N1 | 93.65 (11) | C9—C10—H10A | 119.3 |
C11—Ir1—N2 | 94.97 (11) | C11—C10—H10A | 119.3 |
C22—Ir1—N2 | 80.69 (11) | C10—C11—C6 | 117.2 (3) |
N1—Ir1—N2 | 173.07 (10) | C10—C11—Ir1 | 128.7 (2) |
C11—Ir1—N3 | 178.13 (11) | C6—C11—Ir1 | 114.1 (2) |
C22—Ir1—N3 | 92.36 (11) | N2—C12—C13 | 122.0 (3) |
N1—Ir1—N3 | 97.75 (9) | N2—C12—H12A | 119.0 |
N2—Ir1—N3 | 86.54 (9) | C13—C12—H12A | 119.0 |
C11—Ir1—Cl1 | 92.36 (9) | C12—C13—C14 | 119.1 (3) |
C22—Ir1—Cl1 | 176.22 (9) | C12—C13—H13A | 120.4 |
N1—Ir1—Cl1 | 89.85 (7) | C14—C13—H13A | 120.4 |
N2—Ir1—Cl1 | 95.72 (7) | C15—C14—C13 | 119.6 (3) |
N3—Ir1—Cl1 | 88.58 (7) | C15—C14—H14A | 120.2 |
C1—N1—C5 | 119.5 (3) | C13—C14—H14A | 120.2 |
C1—N1—Ir1 | 124.6 (2) | C14—C15—C16 | 120.0 (3) |
C5—N1—Ir1 | 115.7 (2) | C14—C15—H15A | 120.0 |
C12—N2—C16 | 119.4 (3) | C16—C15—H15A | 120.0 |
C12—N2—Ir1 | 125.1 (2) | N2—C16—C15 | 119.8 (3) |
C16—N2—Ir1 | 115.5 (2) | N2—C16—C17 | 113.8 (3) |
C23—N3—Ir1 | 174.8 (3) | C15—C16—C17 | 126.4 (3) |
N1—C1—C2 | 122.0 (3) | C18—C17—C22 | 121.3 (3) |
N1—C1—H1A | 119.0 | C18—C17—C16 | 123.2 (3) |
C2—C1—H1A | 119.0 | C22—C17—C16 | 115.4 (3) |
C1—C2—C3 | 119.1 (3) | C19—C18—C17 | 120.3 (3) |
C1—C2—H2A | 120.4 | C19—C18—H18A | 119.9 |
C3—C2—H2A | 120.4 | C17—C18—H18A | 119.9 |
C4—C3—C2 | 118.9 (3) | C18—C19—C20 | 119.2 (3) |
C4—C3—H3A | 120.5 | C18—C19—H19A | 120.4 |
C2—C3—H3A | 120.5 | C20—C19—H19A | 120.4 |
C3—C4—C5 | 120.3 (3) | C21—C20—C19 | 120.6 (3) |
C3—C4—H4A | 119.8 | C21—C20—H20A | 119.7 |
C5—C4—H4A | 119.8 | C19—C20—H20A | 119.7 |
N1—C5—C4 | 120.0 (3) | C20—C21—C22 | 121.7 (3) |
N1—C5—C6 | 113.8 (3) | C20—C21—H21A | 119.1 |
C4—C5—C6 | 126.2 (3) | C22—C21—H21A | 119.1 |
C7—C6—C11 | 120.7 (3) | C21—C22—C17 | 116.9 (3) |
C7—C6—C5 | 124.2 (3) | C21—C22—Ir1 | 128.7 (2) |
C11—C6—C5 | 115.1 (3) | C17—C22—Ir1 | 114.4 (2) |
C8—C7—C6 | 121.0 (3) | N3—C23—C24 | 178.3 (4) |
C8—C7—H7A | 119.5 | C23—C24—H24A | 109.5 |
C6—C7—H7A | 119.5 | C23—C24—H24B | 109.5 |
C7—C8—C9 | 119.1 (3) | H24A—C24—H24B | 109.5 |
C7—C8—H8A | 120.4 | C23—C24—H24C | 109.5 |
C9—C8—H8A | 120.4 | H24A—C24—H24C | 109.5 |
C8—C9—C10 | 120.5 (3) | H24B—C24—H24C | 109.5 |
C8—C9—H9A | 119.7 | ||
C11—Ir1—N1—C1 | 176.5 (3) | C22—Ir1—C11—C10 | 89.2 (3) |
C22—Ir1—N1—C1 | −97.3 (3) | N1—Ir1—C11—C10 | −176.6 (3) |
N3—Ir1—N1—C1 | −4.4 (3) | N2—Ir1—C11—C10 | 8.8 (3) |
Cl1—Ir1—N1—C1 | 84.1 (2) | Cl1—Ir1—C11—C10 | −87.1 (3) |
C11—Ir1—N1—C5 | −7.7 (2) | C22—Ir1—C11—C6 | −88.3 (2) |
C22—Ir1—N1—C5 | 78.5 (2) | N1—Ir1—C11—C6 | 5.9 (2) |
N3—Ir1—N1—C5 | 171.4 (2) | N2—Ir1—C11—C6 | −168.6 (2) |
Cl1—Ir1—N1—C5 | −100.1 (2) | Cl1—Ir1—C11—C6 | 95.4 (2) |
C11—Ir1—N2—C12 | −98.7 (3) | C16—N2—C12—C13 | −0.4 (5) |
C22—Ir1—N2—C12 | 175.4 (3) | Ir1—N2—C12—C13 | −179.3 (2) |
N3—Ir1—N2—C12 | 82.4 (2) | N2—C12—C13—C14 | −1.2 (5) |
Cl1—Ir1—N2—C12 | −5.8 (2) | C12—C13—C14—C15 | 1.2 (5) |
C11—Ir1—N2—C16 | 82.4 (2) | C13—C14—C15—C16 | 0.4 (5) |
C22—Ir1—N2—C16 | −3.5 (2) | C12—N2—C16—C15 | 2.0 (4) |
N3—Ir1—N2—C16 | −96.5 (2) | Ir1—N2—C16—C15 | −179.0 (2) |
Cl1—Ir1—N2—C16 | 175.28 (19) | C12—N2—C16—C17 | −175.6 (3) |
C5—N1—C1—C2 | −2.8 (5) | Ir1—N2—C16—C17 | 3.3 (3) |
Ir1—N1—C1—C2 | 172.8 (2) | C14—C15—C16—N2 | −2.0 (5) |
N1—C1—C2—C3 | −0.6 (5) | C14—C15—C16—C17 | 175.3 (3) |
C1—C2—C3—C4 | 2.6 (5) | N2—C16—C17—C18 | 176.5 (3) |
C2—C3—C4—C5 | −1.3 (5) | C15—C16—C17—C18 | −1.0 (5) |
C1—N1—C5—C4 | 4.2 (4) | N2—C16—C17—C22 | −0.8 (4) |
Ir1—N1—C5—C4 | −171.9 (2) | C15—C16—C17—C22 | −178.3 (3) |
C1—N1—C5—C6 | −176.3 (3) | C22—C17—C18—C19 | −0.7 (5) |
Ir1—N1—C5—C6 | 7.7 (3) | C16—C17—C18—C19 | −177.8 (3) |
C3—C4—C5—N1 | −2.1 (5) | C17—C18—C19—C20 | 0.3 (5) |
C3—C4—C5—C6 | 178.4 (3) | C18—C19—C20—C21 | −0.3 (5) |
N1—C5—C6—C7 | 175.6 (3) | C19—C20—C21—C22 | 0.7 (5) |
C4—C5—C6—C7 | −4.9 (5) | C20—C21—C22—C17 | −1.0 (5) |
N1—C5—C6—C11 | −2.6 (4) | C20—C21—C22—Ir1 | 179.5 (3) |
C4—C5—C6—C11 | 176.9 (3) | C18—C17—C22—C21 | 1.0 (5) |
C11—C6—C7—C8 | −0.2 (5) | C16—C17—C22—C21 | 178.3 (3) |
C5—C6—C7—C8 | −178.3 (3) | C18—C17—C22—Ir1 | −179.5 (2) |
C6—C7—C8—C9 | 0.2 (5) | C16—C17—C22—Ir1 | −2.1 (3) |
C7—C8—C9—C10 | −0.3 (5) | C11—Ir1—C22—C21 | 86.9 (3) |
C8—C9—C10—C11 | 0.4 (5) | N1—Ir1—C22—C21 | 6.5 (3) |
C9—C10—C11—C6 | −0.3 (5) | N2—Ir1—C22—C21 | −177.5 (3) |
C9—C10—C11—Ir1 | −177.7 (3) | N3—Ir1—C22—C21 | −91.4 (3) |
C7—C6—C11—C10 | 0.2 (5) | C11—Ir1—C22—C17 | −92.6 (2) |
C5—C6—C11—C10 | 178.5 (3) | N1—Ir1—C22—C17 | −173.0 (2) |
C7—C6—C11—Ir1 | 178.0 (2) | N2—Ir1—C22—C17 | 3.0 (2) |
C5—C6—C11—Ir1 | −3.7 (4) | N3—Ir1—C22—C17 | 89.1 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1A···Cl1i | 0.95 | 2.78 | 3.600 (3) | 145 |
C14—H14A···Cl1ii | 0.95 | 2.80 | 3.470 (3) | 129 |
C14—H14A···C23iii | 0.95 | 2.69 | 3.431 (4) | 135 |
C8—H8A···C16iv | 0.95 | 2.79 | 3.595 (4) | 143 |
C8—H8A···C17iv | 0.95 | 2.72 | 3.628 (4) | 159 |
C8—H8A···C18iv | 0.95 | 2.79 | 3.705 (4) | 163 |
Symmetry codes: (i) −x, −y+1, −z; (ii) x, −y+1/2, z+1/2; (iii) −x, y−1/2, −z+1/2; (iv) x+1/2, y, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [Ir(C11H8N)2Cl(C2H3N)] |
Mr | 577.07 |
Crystal system, space group | Orthorhombic, Pbca |
Temperature (K) | 171 |
a, b, c (Å) | 16.5255 (8), 14.6588 (7), 17.0536 (8) |
V (Å3) | 4131.1 (3) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 6.61 |
Crystal size (mm) | 0.38 × 0.34 × 0.20 |
Data collection | |
Diffractometer | Siemens SMART 1K CCD |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2000) |
Tmin, Tmax | 0.176, 0.267 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 44325, 4772, 3899 |
Rint | 0.043 |
(sin θ/λ)max (Å−1) | 0.660 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.026, 0.040, 1.07 |
No. of reflections | 4772 |
No. of parameters | 263 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.70, −0.67 |
Computer programs: SMART (Siemens, 1995), SAINT (Siemens, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
Ir1—C11 | 2.004 (3) | Ir1—N2 | 2.047 (2) |
Ir1—C22 | 2.007 (3) | Ir1—N3 | 2.129 (3) |
Ir1—N1 | 2.043 (2) | Ir1—Cl1 | 2.4839 (7) |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1A···Cl1i | 0.95 | 2.78 | 3.600 (3) | 145 |
C14—H14A···Cl1ii | 0.95 | 2.80 | 3.470 (3) | 129 |
C14—H14A···C23iii | 0.95 | 2.69 | 3.431 (4) | 135 |
C8—H8A···C16iv | 0.95 | 2.79 | 3.595 (4) | 143 |
C8—H8A···C17iv | 0.95 | 2.72 | 3.628 (4) | 159 |
C8—H8A···C18iv | 0.95 | 2.79 | 3.705 (4) | 163 |
Symmetry codes: (i) −x, −y+1, −z; (ii) x, −y+1/2, z+1/2; (iii) −x, y−1/2, −z+1/2; (iv) x+1/2, y, −z+1/2. |
References
Blasberg, F., Bats, J. W., Bolte, M., Lerner, H.-W. & Wagner, M. (2010). Inorg. Chem. 49, 7435–7445. Web of Science CSD CrossRef CAS PubMed Google Scholar
Blasberg, F., Bolte, M., Wagner, M. & Lerner, H.-W. (2011). J. Organomet. Chem. 696, 3593–3600. Web of Science CSD CrossRef CAS Google Scholar
Garces, F. O., Dedeian, K., Keder, N. L. & Watts, R. J. (1993). Acta Cryst. C49, 1117–1120. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Guo, S. L., Peters, F., Fabrizi de Biani, F., Bats, J. W., Herdtweck, E., Zanello, P. & Wagner, M. (2001). Inorg. Chem. 40, 4928–4936. Web of Science CSD CrossRef PubMed CAS Google Scholar
Jäkle, F., Polborn, K. & Wagner, M. (1996). Chem. Ber. 129, 603–606. Google Scholar
Kretz, T., Bats, J. W., Losi, S., Wolf, B., Lerner, H.-W., Lang, M., Zanello, P. & Wagner, M. (2006). Dalton Trans. pp. 4914–4921. Web of Science CrossRef Google Scholar
Lowry, M. S., Hudson, W. R., Pascal-Jr, R. A. & Bernhard, S. (2004). J. Am. Chem. Soc. 126, 14129–14135. Web of Science CrossRef PubMed CAS Google Scholar
Margraf, G., Kretz, T., Fabrizi de Biani, F., Laschi, F., Losi, S., Zanello, P., Bats, J. W., Wolf, B., Remović-Langer, K., Lang, M., Prokofiev, A., Assmus, W., Lerner, H.-W. & Wagner, M. (2006). Inorg. Chem. 45, 1277–1288. Web of Science CSD CrossRef PubMed CAS Google Scholar
McGee, K. A. & Mann, K. R. (2007). Inorg. Chem. 46, 7800–7809. Web of Science CSD CrossRef PubMed CAS Google Scholar
Phan, N. H., Halasz, I., Opahle, I., Alig, E., Fink, L., Bats, J. W., Cong, P. T., Lerner, H.-W., Sarkar, B., Wolf, B., Jeschke, H. O., Lang, M., Valentí, R., Dinnebier, R. & Wagner, M. (2011). CrystEngComm, 13, 391–395. Web of Science CSD CrossRef CAS Google Scholar
Scheuermann, S., Kretz, T., Vitze, H., Bats, J. W., Bolte, M., Lerner, H.-W. & Wagner, M. (2008). Chem. Eur. J. 14, 2590–2601. Web of Science CSD CrossRef PubMed CAS Google Scholar
Scheuermann, S., Sarkar, B., Bolte, M., Bats, J. W., Lerner, H.-W. & Wagner, M. (2009). Inorg. Chem. 48, 9385–9392. Web of Science CSD CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2000). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shu, Q., Bats, J. W. & Schmittel, M. (2011). Inorg. Chem. 50, 10531–10533. Web of Science CAS PubMed Google Scholar
Siemens (1995). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA. Google Scholar
Yang, L., von Zelewsky, A., Nguyen, H. P., Muller, G., Labat, G. & Stoeckli-Evans, H. (2009). Inorg. Chim. Acta, 362, 3853–3856. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
One of the highlights of our group's work is the synthesis and characterization of redox active ligands for transition metal catalyzed reactions and applications in material science. Up to now we have applied electro-active ligands with poly(pyrazol-1-yl)borate (Jäkle et al., 1996; Guo et al., 2001), diimine (Margraf et al., 2006; Kretz et al., 2006; Phan et al., 2011) and bis(pyrazol-1-yl)methane (Scheuermann et al., 2008; Scheuermann et al., 2009; Blasberg et al., 2010) donor groups. So far, ferrocenyl and mainly para-quinonyl units (quinone is used if the oxidation state is not defined) were used as the redox-active element. But recently our attention turned to ortho-quinone derivatives, since they should allow for efficient bridging of two different transition metal centers in redox-switchable catalysis. In this context, synthesis of the hetero-bimetallic complex 3 with an ortho-hydroquinone-derived bis(pyrazol-1-yl)methane ligand, a catalytically active palladium(II) and a light-switchable iridium(III) center was attempted (see Fig. 1). This molecule might allow for light-driven redox-reactions, which in turn can switch catalysis on or off. The palladium(II) complex 1 (Blasberg et al., 2010; Blasberg et al., 2011) was deprotonated twice with lithium t-butoxide (LiOtBu) in a tetrahydrofuran solution in a glove box and subsequently tetrakis-[2-(pyridin-2-yl)phenyl]-dichlorido-diiridium(III) 2 (Lowry et al., 2004) was added to the resulting dianion. After stirring overnight and recrystallization of the resulting crude material from acetonitrile, the only obtained product was (acetonitrile-N)-chlorido-bis[2-(pyridin-2-yl)phenyl-C,N]iridium(III) 4, instead of the expected compound 3.
The molecular structure of the title compound is shown in Fig. 2. The Ir(III) atom displays octahedral coordination (Table 1). The pyridyl groups are in trans positions and the phenyl groups in cis positions with respect to the central metal atom. A trans position of the pyridyl groups also has been observed in dimer 2 (McGee & Mann, 2007; Garces et al., 1993) and in related compounds (Shu et al., 2011). The bond lengths involving the Ir atom are very similar to the values reported for a closely related molecule (Yang et al., 2009). The pyridylphenyl groups only show a small deviation from planarity. The angle between the planes of the two six-membered rings is 5.6 (2) and 5.8 (1)°, respectively, for the two different pyridylphenyl groups. The crystal packing shows two intermolecular C—H···Cl contacts, an intermolecular C—H···πacetonitrile and an intermolecular C—H···πpyridylphenyl contact (Table 2). The C—H···πacetonitrile contact points closer towards atom C23 than towards the midpoint of the C≡ N triple bond. The C—H···πpyridylphenyl contact does not point towards the center of one of the six-membered rings. It rather points towards the midpoint of the C17—C18 bond.