metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Aceto­nitrile-κN)chloridobis[2-(pyridin-2-yl)phenyl-κ2C1,N]iridium(III)

aInstitut für Anorganische Chemie der Universität Frankfurt, Max-von-Laue-Strasse 7, D-60438 Frankfurt am Main, Germany, and bInstitut für Organische Chemie, Universität Frankfurt, Max-von-Laue-Strasse 7, D-60438 Frankfurt am Main, Germany
*Correspondence e-mail: bats@chemie.uni-frankfurt.de

(Received 17 November 2011; accepted 18 November 2011; online 25 November 2011)

The IrIII atom of the title compound, [Ir(C11H8N)2Cl(CH3CN)], displays a distorted octa­hedral coordination. The pyridyl groups are in trans positions [N—Ir—N = 173.07 (10)°], while the phenyl groups are trans with respect to the acetonitrile and chloride groups [C—Ir—N = 178.13 (11) and C—Ir—Cl = 176.22 (9)°]. The pyridyl­phenyl groups only show a small deviation from planarity, with the dihedral angle between the planes of the two six-membered rings in each pyridyl­phenyl group being 5.6 (2) and 5.8 (1)°. The crystal packing shows inter­molecular C—H⋯Cl, C—H⋯π(acetonitrile) and C—H⋯π(pyridyl­phen­yl) contacts.

Related literature

For our work on redox active ligands, see: Jäkle et al. (1996[Jäkle, F., Polborn, K. & Wagner, M. (1996). Chem. Ber. 129, 603-606.]); Guo et al. (2001[Guo, S. L., Peters, F., Fabrizi de Biani, F., Bats, J. W., Herdtweck, E., Zanello, P. & Wagner, M. (2001). Inorg. Chem. 40, 4928-4936.]); Margraf et al. (2006[Margraf, G., Kretz, T., Fabrizi de Biani, F., Laschi, F., Losi, S., Zanello, P., Bats, J. W., Wolf, B., Remović-Langer, K., Lang, M., Prokofiev, A., Assmus, W., Lerner, H.-W. & Wagner, M. (2006). Inorg. Chem. 45, 1277-1288.]); Kretz et al. (2006[Kretz, T., Bats, J. W., Losi, S., Wolf, B., Lerner, H.-W., Lang, M., Zanello, P. & Wagner, M. (2006). Dalton Trans. pp. 4914-4921.]); Phan et al. (2011[Phan, N. H., Halasz, I., Opahle, I., Alig, E., Fink, L., Bats, J. W., Cong, P. T., Lerner, H.-W., Sarkar, B., Wolf, B., Jeschke, H. O., Lang, M., Valentí, R., Dinnebier, R. & Wagner, M. (2011). CrystEngComm, 13, 391-395.]); Scheuermann et al. (2008[Scheuermann, S., Kretz, T., Vitze, H., Bats, J. W., Bolte, M., Lerner, H.-W. & Wagner, M. (2008). Chem. Eur. J. 14, 2590-2601.], 2009[Scheuermann, S., Sarkar, B., Bolte, M., Bats, J. W., Lerner, H.-W. & Wagner, M. (2009). Inorg. Chem. 48, 9385-9392.]); Blasberg et al. (2010[Blasberg, F., Bats, J. W., Bolte, M., Lerner, H.-W. & Wagner, M. (2010). Inorg. Chem. 49, 7435-7445.], 2011[Blasberg, F., Bolte, M., Wagner, M. & Lerner, H.-W. (2011). J. Organomet. Chem. 696, 3593-3600.]). For the synthesis of the starting materials, see: Blasberg et al. (2011[Blasberg, F., Bolte, M., Wagner, M. & Lerner, H.-W. (2011). J. Organomet. Chem. 696, 3593-3600.]); Lowry et al. (2004[Lowry, M. S., Hudson, W. R., Pascal-Jr, R. A. & Bernhard, S. (2004). J. Am. Chem. Soc. 126, 14129-14135.]). For related structures, see: Yang et al. (2009[Yang, L., von Zelewsky, A., Nguyen, H. P., Muller, G., Labat, G. & Stoeckli-Evans, H. (2009). Inorg. Chim. Acta, 362, 3853-3856.]); Shu et al. (2011[Shu, Q., Bats, J. W. & Schmittel, M. (2011). Inorg. Chem. 50, 10531-10533.]); McGee & Mann (2007[McGee, K. A. & Mann, K. R. (2007). Inorg. Chem. 46, 7800-7809.]); Garces et al. (1993[Garces, F. O., Dedeian, K., Keder, N. L. & Watts, R. J. (1993). Acta Cryst. C49, 1117-1120.]).

[Scheme 1]

Experimental

Crystal data
  • [Ir(C11H8N)2Cl(C2H3N)]

  • Mr = 577.07

  • Orthorhombic, P b c a

  • a = 16.5255 (8) Å

  • b = 14.6588 (7) Å

  • c = 17.0536 (8) Å

  • V = 4131.1 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 6.61 mm−1

  • T = 171 K

  • 0.38 × 0.34 × 0.20 mm

Data collection
  • Siemens SMART 1K CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000[Sheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.]) Tmin = 0.176, Tmax = 0.267

  • 44325 measured reflections

  • 4772 independent reflections

  • 3899 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.040

  • S = 1.07

  • 4772 reflections

  • 263 parameters

  • H-atom parameters constrained

  • Δρmax = 0.70 e Å−3

  • Δρmin = −0.67 e Å−3

Table 1
Selected bond lengths (Å)

Ir1—C11 2.004 (3)
Ir1—C22 2.007 (3)
Ir1—N1 2.043 (2)
Ir1—N2 2.047 (2)
Ir1—N3 2.129 (3)
Ir1—Cl1 2.4839 (7)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯Cl1i 0.95 2.78 3.600 (3) 145
C14—H14A⋯Cl1ii 0.95 2.80 3.470 (3) 129
C14—H14A⋯C23iii 0.95 2.69 3.431 (4) 135
C8—H8A⋯C16iv 0.95 2.79 3.595 (4) 143
C8—H8A⋯C17iv 0.95 2.72 3.628 (4) 159
C8—H8A⋯C18iv 0.95 2.79 3.705 (4) 163
Symmetry codes: (i) -x, -y+1, -z; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}].

Data collection: SMART (Siemens, 1995[Siemens (1995). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1995[Siemens (1995). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

One of the highlights of our group's work is the synthesis and characterization of redox active ligands for transition metal catalyzed reactions and applications in material science. Up to now we have applied electro-active ligands with poly(pyrazol-1-yl)borate (Jäkle et al., 1996; Guo et al., 2001), diimine (Margraf et al., 2006; Kretz et al., 2006; Phan et al., 2011) and bis(pyrazol-1-yl)methane (Scheuermann et al., 2008; Scheuermann et al., 2009; Blasberg et al., 2010) donor groups. So far, ferrocenyl and mainly para-quinonyl units (quinone is used if the oxidation state is not defined) were used as the redox-active element. But recently our attention turned to ortho-quinone derivatives, since they should allow for efficient bridging of two different transition metal centers in redox-switchable catalysis. In this context, synthesis of the hetero-bimetallic complex 3 with an ortho-hydroquinone-derived bis(pyrazol-1-yl)methane ligand, a catalytically active palladium(II) and a light-switchable iridium(III) center was attempted (see Fig. 1). This molecule might allow for light-driven redox-reactions, which in turn can switch catalysis on or off. The palladium(II) complex 1 (Blasberg et al., 2010; Blasberg et al., 2011) was deprotonated twice with lithium t-butoxide (LiOtBu) in a tetrahydrofuran solution in a glove box and subsequently tetrakis-[2-(pyridin-2-yl)phenyl]-dichlorido-diiridium(III) 2 (Lowry et al., 2004) was added to the resulting dianion. After stirring overnight and recrystallization of the resulting crude material from acetonitrile, the only obtained product was (acetonitrile-N)-chlorido-bis[2-(pyridin-2-yl)phenyl-C,N]iridium(III) 4, instead of the expected compound 3.

The molecular structure of the title compound is shown in Fig. 2. The Ir(III) atom displays octahedral coordination (Table 1). The pyridyl groups are in trans positions and the phenyl groups in cis positions with respect to the central metal atom. A trans position of the pyridyl groups also has been observed in dimer 2 (McGee & Mann, 2007; Garces et al., 1993) and in related compounds (Shu et al., 2011). The bond lengths involving the Ir atom are very similar to the values reported for a closely related molecule (Yang et al., 2009). The pyridylphenyl groups only show a small deviation from planarity. The angle between the planes of the two six-membered rings is 5.6 (2) and 5.8 (1)°, respectively, for the two different pyridylphenyl groups. The crystal packing shows two intermolecular C—H···Cl contacts, an intermolecular C—H···πacetonitrile and an intermolecular C—H···πpyridylphenyl contact (Table 2). The C—H···πacetonitrile contact points closer towards atom C23 than towards the midpoint of the C N triple bond. The C—H···πpyridylphenyl contact does not point towards the center of one of the six-membered rings. It rather points towards the midpoint of the C17—C18 bond.

Related literature top

For our work on redox active ligands, see: Jäkle et al. (1996); Guo et al. (2001); Margraf et al. (2006); Kretz et al. (2006); Phan et al. (2011); Scheuermann et al. (2008, 2009); Blasberg et al. (2010, 2011). For the synthesis of the starting materials, see: Blasberg et al. (2011); Lowry et al. (2004). For related structures, see: Yang et al. (2009); Shu et al. (2011); McGee & Mann (2007); Garces et al. (1993).

Experimental top

Dichlorido-[1-(bis-1H-pyrazol-1-ylmethyl)-benzene-3,4-diol-N,N']palladium(II) (50 mg, 0.12 mmol; Blasberg et al., 2011) was reacted with 19 mg (0.23 mmol) of lithium t-butoxide in tetrahydrofuran (4 ml) for 5 min, after which 62 mg (0.12 mmol) of tetrakis-[2-(pyridin-2-yl)phenyl]-dichlorido-diiridium(III) was added. After stirring overnight, the suspension which had formed, was separated by centrifugation and dried by evaporation. Recrystallization of the tan-colored powder from acetonitrile yielded yellow-brown blocks of the title compound.

Refinement top

The H atoms were positioned geometrically and treated as riding with Cplanar—H = 0.95 Å and Cmethyl—H = 0.98 Å, and with Uiso(H)=1.2Ueq(Cplanar) and Uiso(H)=1.5Ueq(Cmethyl).

Structure description top

One of the highlights of our group's work is the synthesis and characterization of redox active ligands for transition metal catalyzed reactions and applications in material science. Up to now we have applied electro-active ligands with poly(pyrazol-1-yl)borate (Jäkle et al., 1996; Guo et al., 2001), diimine (Margraf et al., 2006; Kretz et al., 2006; Phan et al., 2011) and bis(pyrazol-1-yl)methane (Scheuermann et al., 2008; Scheuermann et al., 2009; Blasberg et al., 2010) donor groups. So far, ferrocenyl and mainly para-quinonyl units (quinone is used if the oxidation state is not defined) were used as the redox-active element. But recently our attention turned to ortho-quinone derivatives, since they should allow for efficient bridging of two different transition metal centers in redox-switchable catalysis. In this context, synthesis of the hetero-bimetallic complex 3 with an ortho-hydroquinone-derived bis(pyrazol-1-yl)methane ligand, a catalytically active palladium(II) and a light-switchable iridium(III) center was attempted (see Fig. 1). This molecule might allow for light-driven redox-reactions, which in turn can switch catalysis on or off. The palladium(II) complex 1 (Blasberg et al., 2010; Blasberg et al., 2011) was deprotonated twice with lithium t-butoxide (LiOtBu) in a tetrahydrofuran solution in a glove box and subsequently tetrakis-[2-(pyridin-2-yl)phenyl]-dichlorido-diiridium(III) 2 (Lowry et al., 2004) was added to the resulting dianion. After stirring overnight and recrystallization of the resulting crude material from acetonitrile, the only obtained product was (acetonitrile-N)-chlorido-bis[2-(pyridin-2-yl)phenyl-C,N]iridium(III) 4, instead of the expected compound 3.

The molecular structure of the title compound is shown in Fig. 2. The Ir(III) atom displays octahedral coordination (Table 1). The pyridyl groups are in trans positions and the phenyl groups in cis positions with respect to the central metal atom. A trans position of the pyridyl groups also has been observed in dimer 2 (McGee & Mann, 2007; Garces et al., 1993) and in related compounds (Shu et al., 2011). The bond lengths involving the Ir atom are very similar to the values reported for a closely related molecule (Yang et al., 2009). The pyridylphenyl groups only show a small deviation from planarity. The angle between the planes of the two six-membered rings is 5.6 (2) and 5.8 (1)°, respectively, for the two different pyridylphenyl groups. The crystal packing shows two intermolecular C—H···Cl contacts, an intermolecular C—H···πacetonitrile and an intermolecular C—H···πpyridylphenyl contact (Table 2). The C—H···πacetonitrile contact points closer towards atom C23 than towards the midpoint of the C N triple bond. The C—H···πpyridylphenyl contact does not point towards the center of one of the six-membered rings. It rather points towards the midpoint of the C17—C18 bond.

For our work on redox active ligands, see: Jäkle et al. (1996); Guo et al. (2001); Margraf et al. (2006); Kretz et al. (2006); Phan et al. (2011); Scheuermann et al. (2008, 2009); Blasberg et al. (2010, 2011). For the synthesis of the starting materials, see: Blasberg et al. (2011); Lowry et al. (2004). For related structures, see: Yang et al. (2009); Shu et al. (2011); McGee & Mann (2007); Garces et al. (1993).

Computing details top

Data collection: SMART (Siemens, 1995); cell refinement: SAINT (Siemens, 1995); data reduction: SAINT (Siemens, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The attempted synthesis of compound 3 and the synthesis of the title compound 4.
[Figure 2] Fig. 2. The molecular structure of the title molecule shown with 50% probability displacement ellipsoids. The H atoms are drawn as small spheres of arbitrary radius.
(Acetonitrile-κN)chloridobis[2-(pyridin-2-yl)phenyl- κ2C1,N]iridium(III) top
Crystal data top
[Ir(C11H8N)2Cl(C2H3N)]F(000) = 2224
Mr = 577.07Dx = 1.856 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 8192 reflections
a = 16.5255 (8) Åθ = 3–26°
b = 14.6588 (7) ŵ = 6.61 mm1
c = 17.0536 (8) ÅT = 171 K
V = 4131.1 (3) Å3Block, yellow-brown
Z = 80.38 × 0.34 × 0.20 mm
Data collection top
Siemens SMART 1K CCD
diffractometer
4772 independent reflections
Radiation source: normal-focus sealed tube3899 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
ω scansθmax = 28.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
h = 2121
Tmin = 0.176, Tmax = 0.267k = 1819
44325 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.040H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.01P)2 + 6P]
where P = (Fo2 + 2Fc2)/3
4772 reflections(Δ/σ)max = 0.002
263 parametersΔρmax = 0.70 e Å3
0 restraintsΔρmin = 0.67 e Å3
Crystal data top
[Ir(C11H8N)2Cl(C2H3N)]V = 4131.1 (3) Å3
Mr = 577.07Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 16.5255 (8) ŵ = 6.61 mm1
b = 14.6588 (7) ÅT = 171 K
c = 17.0536 (8) Å0.38 × 0.34 × 0.20 mm
Data collection top
Siemens SMART 1K CCD
diffractometer
4772 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
3899 reflections with I > 2σ(I)
Tmin = 0.176, Tmax = 0.267Rint = 0.043
44325 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.040H-atom parameters constrained
S = 1.07Δρmax = 0.70 e Å3
4772 reflectionsΔρmin = 0.67 e Å3
263 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ir10.120571 (6)0.443245 (7)0.139275 (6)0.01422 (4)
Cl10.10742 (5)0.35418 (5)0.01602 (4)0.02214 (17)
N10.15302 (14)0.55553 (17)0.07570 (14)0.0168 (5)
N20.09788 (15)0.33598 (17)0.21296 (14)0.0173 (6)
N30.00690 (15)0.46420 (16)0.13721 (15)0.0180 (5)
C10.10024 (19)0.6140 (2)0.04170 (19)0.0208 (7)
H1A0.04420.59950.04190.025*
C20.1253 (2)0.6939 (2)0.00676 (19)0.0271 (7)
H2A0.08720.73360.01720.032*
C30.2071 (2)0.7156 (2)0.0070 (2)0.0269 (8)
H3A0.22550.77150.01480.032*
C40.2612 (2)0.6548 (2)0.03935 (19)0.0227 (7)
H4A0.31740.66820.03890.027*
C50.23377 (18)0.5736 (2)0.07272 (18)0.0188 (7)
C60.28432 (19)0.5020 (2)0.10731 (18)0.0183 (7)
C70.3682 (2)0.5025 (2)0.10645 (19)0.0262 (8)
H7A0.39600.55250.08350.031*
C80.4118 (2)0.4314 (2)0.1385 (2)0.0314 (8)
H8A0.46930.43230.13780.038*
C90.3706 (2)0.3584 (2)0.1717 (2)0.0287 (8)
H9A0.40010.30900.19370.034*
C100.2866 (2)0.3570 (2)0.17310 (19)0.0224 (7)
H10A0.25950.30670.19640.027*
C110.24108 (18)0.4280 (2)0.14108 (18)0.0184 (6)
C120.07559 (19)0.2516 (2)0.1899 (2)0.0234 (7)
H12A0.07020.23930.13540.028*
C130.0605 (2)0.1831 (2)0.2425 (2)0.0286 (8)
H13A0.04380.12460.22490.034*
C140.0697 (2)0.2002 (2)0.3214 (2)0.0294 (8)
H14A0.06050.15310.35860.035*
C150.0923 (2)0.2858 (2)0.34593 (19)0.0256 (8)
H15A0.09910.29790.40030.031*
C160.10527 (18)0.3545 (2)0.29141 (18)0.0183 (7)
C170.12382 (17)0.4502 (2)0.30864 (17)0.0180 (6)
C180.1296 (2)0.4849 (2)0.38490 (18)0.0234 (7)
H18A0.12320.44520.42850.028*
C190.1446 (2)0.5767 (2)0.3970 (2)0.0294 (8)
H19A0.14880.60040.44870.035*
C200.1534 (2)0.6340 (2)0.3325 (2)0.0298 (8)
H20A0.16350.69720.34030.036*
C210.1477 (2)0.5998 (2)0.2570 (2)0.0246 (8)
H21A0.15450.64000.21390.030*
C220.13213 (18)0.5074 (2)0.24265 (17)0.0171 (6)
C230.07549 (19)0.4705 (2)0.1405 (2)0.0216 (7)
C240.1632 (2)0.4813 (3)0.1439 (2)0.0344 (9)
H24A0.18050.52510.10380.052*
H24B0.17870.50390.19590.052*
H24C0.18920.42230.13430.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ir10.01496 (6)0.01404 (6)0.01367 (6)0.00062 (5)0.00041 (5)0.00067 (5)
Cl10.0257 (4)0.0242 (4)0.0165 (4)0.0035 (3)0.0032 (3)0.0025 (3)
N10.0193 (12)0.0163 (12)0.0148 (12)0.0023 (11)0.0007 (10)0.0020 (12)
N20.0202 (14)0.0168 (13)0.0149 (13)0.0008 (10)0.0016 (10)0.0009 (11)
N30.0201 (14)0.0152 (13)0.0186 (13)0.0005 (10)0.0010 (12)0.0001 (11)
C10.0192 (17)0.0222 (17)0.0211 (17)0.0020 (13)0.0020 (13)0.0001 (14)
C20.0330 (19)0.0214 (17)0.0267 (18)0.0051 (16)0.0036 (16)0.0070 (14)
C30.036 (2)0.0189 (17)0.0263 (19)0.0037 (15)0.0020 (16)0.0081 (15)
C40.0227 (17)0.0223 (17)0.0232 (18)0.0061 (14)0.0014 (14)0.0016 (14)
C50.0189 (16)0.0225 (18)0.0149 (15)0.0008 (12)0.0010 (12)0.0017 (13)
C60.0201 (16)0.0193 (16)0.0156 (16)0.0011 (13)0.0019 (13)0.0003 (13)
C70.0222 (18)0.0309 (19)0.0255 (17)0.0054 (15)0.0003 (14)0.0014 (15)
C80.0149 (15)0.042 (2)0.037 (2)0.0031 (15)0.0031 (16)0.001 (2)
C90.0236 (19)0.0290 (19)0.0335 (19)0.0084 (15)0.0064 (16)0.0032 (15)
C100.0241 (17)0.0168 (17)0.0263 (18)0.0010 (13)0.0024 (14)0.0018 (14)
C110.0184 (15)0.0202 (16)0.0167 (14)0.0022 (12)0.0021 (14)0.0059 (15)
C120.0259 (18)0.0228 (18)0.0216 (19)0.0010 (14)0.0003 (14)0.0030 (15)
C130.042 (2)0.0162 (18)0.028 (2)0.0037 (15)0.0050 (16)0.0002 (15)
C140.043 (2)0.0213 (19)0.0240 (19)0.0031 (16)0.0048 (16)0.0089 (15)
C150.0321 (18)0.0248 (18)0.0200 (19)0.0001 (14)0.0007 (14)0.0026 (14)
C160.0177 (16)0.0183 (16)0.0188 (16)0.0039 (12)0.0001 (13)0.0013 (13)
C170.0158 (14)0.0215 (15)0.0167 (14)0.0014 (14)0.0013 (12)0.0006 (13)
C180.0253 (18)0.0269 (17)0.0181 (16)0.0000 (15)0.0009 (14)0.0004 (13)
C190.034 (2)0.033 (2)0.0207 (18)0.0021 (15)0.0022 (15)0.0096 (15)
C200.040 (2)0.0200 (18)0.030 (2)0.0014 (15)0.0027 (16)0.0084 (15)
C210.0303 (19)0.0207 (18)0.0229 (18)0.0002 (14)0.0012 (15)0.0001 (14)
C220.0137 (15)0.0199 (15)0.0176 (15)0.0028 (13)0.0011 (12)0.0005 (13)
C230.0243 (18)0.0211 (16)0.0193 (16)0.0008 (12)0.0011 (15)0.0014 (15)
C240.0205 (18)0.042 (2)0.041 (2)0.0020 (15)0.0023 (17)0.003 (2)
Geometric parameters (Å, º) top
Ir1—C112.004 (3)C9—H9A0.9500
Ir1—C222.007 (3)C10—C111.394 (4)
Ir1—N12.043 (2)C10—H10A0.9500
Ir1—N22.047 (2)C12—C131.370 (5)
Ir1—N32.129 (3)C12—H12A0.9500
Ir1—Cl12.4839 (7)C13—C141.376 (5)
N1—C11.353 (4)C13—H13A0.9500
N1—C51.361 (4)C14—C151.374 (5)
N2—C121.349 (4)C14—H14A0.9500
N2—C161.371 (4)C15—C161.388 (4)
N3—C231.139 (4)C15—H15A0.9500
C1—C21.378 (4)C16—C171.466 (4)
C1—H1A0.9500C17—C181.399 (4)
C2—C31.389 (5)C17—C221.410 (4)
C2—H2A0.9500C18—C191.385 (5)
C3—C41.378 (5)C18—H18A0.9500
C3—H3A0.9500C19—C201.392 (5)
C4—C51.394 (4)C19—H19A0.9500
C4—H4A0.9500C20—C211.384 (5)
C5—C61.465 (4)C20—H20A0.9500
C6—C71.386 (4)C21—C221.400 (4)
C6—C111.422 (4)C21—H21A0.9500
C7—C81.380 (5)C23—C241.459 (4)
C7—H7A0.9500C24—H24A0.9800
C8—C91.389 (5)C24—H24B0.9800
C8—H8A0.9500C24—H24C0.9800
C9—C101.389 (5)
C11—Ir1—C2286.81 (12)C10—C9—H9A119.7
C11—Ir1—N180.64 (11)C9—C10—C11121.5 (3)
C22—Ir1—N193.65 (11)C9—C10—H10A119.3
C11—Ir1—N294.97 (11)C11—C10—H10A119.3
C22—Ir1—N280.69 (11)C10—C11—C6117.2 (3)
N1—Ir1—N2173.07 (10)C10—C11—Ir1128.7 (2)
C11—Ir1—N3178.13 (11)C6—C11—Ir1114.1 (2)
C22—Ir1—N392.36 (11)N2—C12—C13122.0 (3)
N1—Ir1—N397.75 (9)N2—C12—H12A119.0
N2—Ir1—N386.54 (9)C13—C12—H12A119.0
C11—Ir1—Cl192.36 (9)C12—C13—C14119.1 (3)
C22—Ir1—Cl1176.22 (9)C12—C13—H13A120.4
N1—Ir1—Cl189.85 (7)C14—C13—H13A120.4
N2—Ir1—Cl195.72 (7)C15—C14—C13119.6 (3)
N3—Ir1—Cl188.58 (7)C15—C14—H14A120.2
C1—N1—C5119.5 (3)C13—C14—H14A120.2
C1—N1—Ir1124.6 (2)C14—C15—C16120.0 (3)
C5—N1—Ir1115.7 (2)C14—C15—H15A120.0
C12—N2—C16119.4 (3)C16—C15—H15A120.0
C12—N2—Ir1125.1 (2)N2—C16—C15119.8 (3)
C16—N2—Ir1115.5 (2)N2—C16—C17113.8 (3)
C23—N3—Ir1174.8 (3)C15—C16—C17126.4 (3)
N1—C1—C2122.0 (3)C18—C17—C22121.3 (3)
N1—C1—H1A119.0C18—C17—C16123.2 (3)
C2—C1—H1A119.0C22—C17—C16115.4 (3)
C1—C2—C3119.1 (3)C19—C18—C17120.3 (3)
C1—C2—H2A120.4C19—C18—H18A119.9
C3—C2—H2A120.4C17—C18—H18A119.9
C4—C3—C2118.9 (3)C18—C19—C20119.2 (3)
C4—C3—H3A120.5C18—C19—H19A120.4
C2—C3—H3A120.5C20—C19—H19A120.4
C3—C4—C5120.3 (3)C21—C20—C19120.6 (3)
C3—C4—H4A119.8C21—C20—H20A119.7
C5—C4—H4A119.8C19—C20—H20A119.7
N1—C5—C4120.0 (3)C20—C21—C22121.7 (3)
N1—C5—C6113.8 (3)C20—C21—H21A119.1
C4—C5—C6126.2 (3)C22—C21—H21A119.1
C7—C6—C11120.7 (3)C21—C22—C17116.9 (3)
C7—C6—C5124.2 (3)C21—C22—Ir1128.7 (2)
C11—C6—C5115.1 (3)C17—C22—Ir1114.4 (2)
C8—C7—C6121.0 (3)N3—C23—C24178.3 (4)
C8—C7—H7A119.5C23—C24—H24A109.5
C6—C7—H7A119.5C23—C24—H24B109.5
C7—C8—C9119.1 (3)H24A—C24—H24B109.5
C7—C8—H8A120.4C23—C24—H24C109.5
C9—C8—H8A120.4H24A—C24—H24C109.5
C8—C9—C10120.5 (3)H24B—C24—H24C109.5
C8—C9—H9A119.7
C11—Ir1—N1—C1176.5 (3)C22—Ir1—C11—C1089.2 (3)
C22—Ir1—N1—C197.3 (3)N1—Ir1—C11—C10176.6 (3)
N3—Ir1—N1—C14.4 (3)N2—Ir1—C11—C108.8 (3)
Cl1—Ir1—N1—C184.1 (2)Cl1—Ir1—C11—C1087.1 (3)
C11—Ir1—N1—C57.7 (2)C22—Ir1—C11—C688.3 (2)
C22—Ir1—N1—C578.5 (2)N1—Ir1—C11—C65.9 (2)
N3—Ir1—N1—C5171.4 (2)N2—Ir1—C11—C6168.6 (2)
Cl1—Ir1—N1—C5100.1 (2)Cl1—Ir1—C11—C695.4 (2)
C11—Ir1—N2—C1298.7 (3)C16—N2—C12—C130.4 (5)
C22—Ir1—N2—C12175.4 (3)Ir1—N2—C12—C13179.3 (2)
N3—Ir1—N2—C1282.4 (2)N2—C12—C13—C141.2 (5)
Cl1—Ir1—N2—C125.8 (2)C12—C13—C14—C151.2 (5)
C11—Ir1—N2—C1682.4 (2)C13—C14—C15—C160.4 (5)
C22—Ir1—N2—C163.5 (2)C12—N2—C16—C152.0 (4)
N3—Ir1—N2—C1696.5 (2)Ir1—N2—C16—C15179.0 (2)
Cl1—Ir1—N2—C16175.28 (19)C12—N2—C16—C17175.6 (3)
C5—N1—C1—C22.8 (5)Ir1—N2—C16—C173.3 (3)
Ir1—N1—C1—C2172.8 (2)C14—C15—C16—N22.0 (5)
N1—C1—C2—C30.6 (5)C14—C15—C16—C17175.3 (3)
C1—C2—C3—C42.6 (5)N2—C16—C17—C18176.5 (3)
C2—C3—C4—C51.3 (5)C15—C16—C17—C181.0 (5)
C1—N1—C5—C44.2 (4)N2—C16—C17—C220.8 (4)
Ir1—N1—C5—C4171.9 (2)C15—C16—C17—C22178.3 (3)
C1—N1—C5—C6176.3 (3)C22—C17—C18—C190.7 (5)
Ir1—N1—C5—C67.7 (3)C16—C17—C18—C19177.8 (3)
C3—C4—C5—N12.1 (5)C17—C18—C19—C200.3 (5)
C3—C4—C5—C6178.4 (3)C18—C19—C20—C210.3 (5)
N1—C5—C6—C7175.6 (3)C19—C20—C21—C220.7 (5)
C4—C5—C6—C74.9 (5)C20—C21—C22—C171.0 (5)
N1—C5—C6—C112.6 (4)C20—C21—C22—Ir1179.5 (3)
C4—C5—C6—C11176.9 (3)C18—C17—C22—C211.0 (5)
C11—C6—C7—C80.2 (5)C16—C17—C22—C21178.3 (3)
C5—C6—C7—C8178.3 (3)C18—C17—C22—Ir1179.5 (2)
C6—C7—C8—C90.2 (5)C16—C17—C22—Ir12.1 (3)
C7—C8—C9—C100.3 (5)C11—Ir1—C22—C2186.9 (3)
C8—C9—C10—C110.4 (5)N1—Ir1—C22—C216.5 (3)
C9—C10—C11—C60.3 (5)N2—Ir1—C22—C21177.5 (3)
C9—C10—C11—Ir1177.7 (3)N3—Ir1—C22—C2191.4 (3)
C7—C6—C11—C100.2 (5)C11—Ir1—C22—C1792.6 (2)
C5—C6—C11—C10178.5 (3)N1—Ir1—C22—C17173.0 (2)
C7—C6—C11—Ir1178.0 (2)N2—Ir1—C22—C173.0 (2)
C5—C6—C11—Ir13.7 (4)N3—Ir1—C22—C1789.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···Cl1i0.952.783.600 (3)145
C14—H14A···Cl1ii0.952.803.470 (3)129
C14—H14A···C23iii0.952.693.431 (4)135
C8—H8A···C16iv0.952.793.595 (4)143
C8—H8A···C17iv0.952.723.628 (4)159
C8—H8A···C18iv0.952.793.705 (4)163
Symmetry codes: (i) x, y+1, z; (ii) x, y+1/2, z+1/2; (iii) x, y1/2, z+1/2; (iv) x+1/2, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Ir(C11H8N)2Cl(C2H3N)]
Mr577.07
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)171
a, b, c (Å)16.5255 (8), 14.6588 (7), 17.0536 (8)
V3)4131.1 (3)
Z8
Radiation typeMo Kα
µ (mm1)6.61
Crystal size (mm)0.38 × 0.34 × 0.20
Data collection
DiffractometerSiemens SMART 1K CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2000)
Tmin, Tmax0.176, 0.267
No. of measured, independent and
observed [I > 2σ(I)] reflections
44325, 4772, 3899
Rint0.043
(sin θ/λ)max1)0.660
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.040, 1.07
No. of reflections4772
No. of parameters263
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.70, 0.67

Computer programs: SMART (Siemens, 1995), SAINT (Siemens, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Ir1—C112.004 (3)Ir1—N22.047 (2)
Ir1—C222.007 (3)Ir1—N32.129 (3)
Ir1—N12.043 (2)Ir1—Cl12.4839 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···Cl1i0.952.783.600 (3)145
C14—H14A···Cl1ii0.952.803.470 (3)129
C14—H14A···C23iii0.952.693.431 (4)135
C8—H8A···C16iv0.952.793.595 (4)143
C8—H8A···C17iv0.952.723.628 (4)159
C8—H8A···C18iv0.952.793.705 (4)163
Symmetry codes: (i) x, y+1, z; (ii) x, y+1/2, z+1/2; (iii) x, y1/2, z+1/2; (iv) x+1/2, y, z+1/2.
 

References

First citationBlasberg, F., Bats, J. W., Bolte, M., Lerner, H.-W. & Wagner, M. (2010). Inorg. Chem. 49, 7435–7445.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBlasberg, F., Bolte, M., Wagner, M. & Lerner, H.-W. (2011). J. Organomet. Chem. 696, 3593–3600.  Web of Science CSD CrossRef CAS Google Scholar
First citationGarces, F. O., Dedeian, K., Keder, N. L. & Watts, R. J. (1993). Acta Cryst. C49, 1117–1120.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGuo, S. L., Peters, F., Fabrizi de Biani, F., Bats, J. W., Herdtweck, E., Zanello, P. & Wagner, M. (2001). Inorg. Chem. 40, 4928–4936.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationJäkle, F., Polborn, K. & Wagner, M. (1996). Chem. Ber. 129, 603–606.  Google Scholar
First citationKretz, T., Bats, J. W., Losi, S., Wolf, B., Lerner, H.-W., Lang, M., Zanello, P. & Wagner, M. (2006). Dalton Trans. pp. 4914–4921.  Web of Science CrossRef Google Scholar
First citationLowry, M. S., Hudson, W. R., Pascal-Jr, R. A. & Bernhard, S. (2004). J. Am. Chem. Soc. 126, 14129–14135.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMargraf, G., Kretz, T., Fabrizi de Biani, F., Laschi, F., Losi, S., Zanello, P., Bats, J. W., Wolf, B., Remović-Langer, K., Lang, M., Prokofiev, A., Assmus, W., Lerner, H.-W. & Wagner, M. (2006). Inorg. Chem. 45, 1277–1288.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMcGee, K. A. & Mann, K. R. (2007). Inorg. Chem. 46, 7800–7809.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationPhan, N. H., Halasz, I., Opahle, I., Alig, E., Fink, L., Bats, J. W., Cong, P. T., Lerner, H.-W., Sarkar, B., Wolf, B., Jeschke, H. O., Lang, M., Valentí, R., Dinnebier, R. & Wagner, M. (2011). CrystEngComm, 13, 391–395.  Web of Science CSD CrossRef CAS Google Scholar
First citationScheuermann, S., Kretz, T., Vitze, H., Bats, J. W., Bolte, M., Lerner, H.-W. & Wagner, M. (2008). Chem. Eur. J. 14, 2590–2601.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationScheuermann, S., Sarkar, B., Bolte, M., Bats, J. W., Lerner, H.-W. & Wagner, M. (2009). Inorg. Chem. 48, 9385–9392.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShu, Q., Bats, J. W. & Schmittel, M. (2011). Inorg. Chem. 50, 10531–10533.  Web of Science CAS PubMed Google Scholar
First citationSiemens (1995). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationYang, L., von Zelewsky, A., Nguyen, H. P., Muller, G., Labat, G. & Stoeckli-Evans, H. (2009). Inorg. Chim. Acta, 362, 3853–3856.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds